File size: 8,037 Bytes
a6deb6e 3592533 a6deb6e 6690520 3592533 6690520 3592533 6690520 3592533 6690520 3592533 6690520 3592533 6690520 3592533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
---
license: apache-2.0
base_model: BioMistral/BioMistral-7B
tags:
- medical
- biomedical
- healthcare
- question-answering
- lora
- peft
- medquad
- biomistral
- instruction-tuning
language:
- en
datasets:
- jpmiller/medquad
library_name: peft
pipeline_tag: text-generation
model_type: mistral
---
# BioMistral-7B LoRA Fine-tuned on MedQuAD
This model is a LoRA (Low-Rank Adaptation) fine-tuned version of [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B) for medical question answering, trained on the MedQuAD dataset from Kaggle.
## Model Description
- **Base Model**: BioMistral/BioMistral-7B
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Model Type**: Causal Language Model
- **Training Dataset**: MedQuAD (Medical Question Answering Dataset)
- **Domain**: Medical/Biomedical
- **Language**: English
- **License**: Apache 2.0 (inherited from base model)
## Dataset Information
### MedQuAD Dataset
- **Source**: [MedQuAD on Kaggle](https://www.kaggle.com/datasets/jpmiller/medquad)
- **Full Name**: Medical Question Answering Dataset
- **Description**: A collection of medical questions and answers from trusted medical sources
- **Training Examples**: 14,770 question-answer pairs
- **Validation Examples**: 1,642 question-answer pairs
- **Format**: Instruction-Input-Output triplets for medical Q&A
### Data Sources (MedQuAD)
The MedQuAD dataset contains medical information from various authoritative sources including:
- National Institutes of Health (NIH)
- National Cancer Institute (NCI)
- National Institute of Mental Health (NIMH)
- Centers for Disease Control and Prevention (CDC)
- And other trusted medical organizations
## Training Details
### Training Configuration
- **Training Steps**: 2,772 (3 epochs)
- **Batch Size**: 2 per device
- **Gradient Accumulation**: 8 steps
- **Effective Batch Size**: 16
- **Learning Rate**: 2e-4
- **Warmup Steps**: 100
- **Max Sequence Length**: 512
- **Optimizer**: AdamW
- **Precision**: FP16
### LoRA Configuration
- **LoRA Rank (r)**: 16
- **LoRA Alpha**: 32
- **LoRA Dropout**: 0.1
- **Target Modules**: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
- **Trainable Parameters**: ~0.1% of total parameters
### Training Results
| Step | Training Loss | Validation Loss |
|------|---------------|-----------------|
| 500 | 0.8277 | 0.8332 |
| 1000 | 0.5424 | 0.8180 |
| 1500 | 0.5696 | 0.7986 |
| 2000 | 0.3430 | 0.8451 |
| 2500 | 0.3184 | 0.8488 |
**Final Validation Loss**: 0.8488
## Installation
```bash
pip install transformers peft torch accelerate bitsandbytes
```
## Usage
### Using LoRA Adapters (Recommended)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Load base model
base_model_name = "BioMistral/BioMistral-7B"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
torch_dtype=torch.float16
)
# Load LoRA adapters
lora_model_name = "ayuwal12/biomistral-7b-lora-adapters"
model = PeftModel.from_pretrained(base_model, lora_model_name)
# Set pad token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def generate_medical_response(question, context="", max_length=256):
if context.strip():
prompt = f"### Instruction:\n{question}\n\n### Input:\n{context}\n\n### Response:\n"
else:
prompt = f"### Instruction:\n{question}\n\n### Response:\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### Response:\n")[-1].strip()
# Example usage
response = generate_medical_response("What are the symptoms of hypertension?")
print(response)
```
## Example Medical Questions
### General Medical Questions
```python
question = "What is hypertension and how is it diagnosed?"
response = generate_medical_response(question)
```
### Symptoms and Conditions
```python
question = "What are the common symptoms of type 2 diabetes?"
response = generate_medical_response(question)
```
### Treatment and Management
```python
question = "How is high blood pressure treated?"
response = generate_medical_response(question)
```
### With Medical Context
```python
question = "What should I know about this condition?"
context = "Patient has been diagnosed with stage 1 hypertension"
response = generate_medical_response(question, context)
```
## Model Performance
- **Training Loss**: Decreased from 0.83 to 0.32 over 3 epochs
- **Validation Loss**: Stabilized around 0.85
- **Convergence**: Model shows good learning with minimal overfitting
- **Memory Efficiency**: Uses ~0.1% trainable parameters via LoRA
- **Domain**: Specialized for medical question answering
## Capabilities
This model excels at:
- β
**Medical Question Answering**: Trained specifically on medical Q&A pairs
- β
**Disease Information**: Provides information about various medical conditions
- β
**Symptom Analysis**: Explains symptoms and their significance
- β
**Treatment Overview**: Discusses general treatment approaches
- β
**Medical Terminology**: Understands and explains medical terms
## Limitations
- Based on BioMistral-7B, inherits its limitations
- Trained on MedQuAD dataset, may not cover all medical domains equally
- **Not for diagnosis**: Cannot replace professional medical evaluation
- **Information only**: Provides general medical information, not personalized advice
- May not have the most recent medical research (depends on training data cutoff)
## Intended Use
This model is designed for:
- π **Educational purposes** in medical and healthcare domains
- π¬ **Research applications** in biomedical NLP
- π‘ **Medical information retrieval** systems
- π₯ **Healthcare chatbots** (with appropriate disclaimers)
- π **Medical knowledge base** applications
## Ethical Considerations & Medical Disclaimer
β οΈ **IMPORTANT MEDICAL DISCLAIMER**:
- This model is for **educational and research purposes only**
- **NOT for medical diagnosis** or treatment decisions
- Always consult qualified healthcare professionals for medical advice
- AI-generated medical content may contain errors or biases
- Do not use this model for emergency medical situations
- Individual medical conditions require personalized professional care
## Dataset Citation
```bibtex
@misc{medquad,
title={MedQuAD: Medical Question Answering Dataset},
author={Ben Abacha, Asma and Mrabet, Yassine and Zhang, Yuhao and Shivade, Chaitanya and Langlotz, Curtis and Demner-Fushman, Dina},
year={2019},
howpublished={Available on Kaggle: https://www.kaggle.com/datasets/jpmiller/medquad}
}
```
## Model Citation
If you use this model, please cite:
```bibtex
@misc{biomistral-medquad-lora,
title={BioMistral-7B LoRA Fine-tuned on MedQuAD},
author={Ayuwal},
year={2024},
howpublished={https://huggingface.co/ayuwal12/biomistral-7b-lora-adapters},
}
```
## Acknowledgments
- **Base model**: [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
- **Training dataset**: [MedQuAD](https://www.kaggle.com/datasets/jpmiller/medquad)
- **LoRA implementation**: [PEFT](https://github.com/huggingface/peft)
- **Training framework**: [Transformers](https://github.com/huggingface/transformers)
- **Original MedQuAD authors**: Ben Abacha et al.
## Contact
For questions or issues, please open an issue on the model repository.
---
*This model was trained on the MedQuAD dataset and is intended for educational and research purposes in the medical domain. Always consult healthcare professionals for medical advice.*
|