|
|
|
|
|
|
|
|
|
|
|
import random
|
|
import yaml
|
|
import time
|
|
from munch import Munch
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
import librosa
|
|
import click
|
|
import shutil
|
|
import warnings
|
|
warnings.simplefilter('ignore')
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from meldataset import build_dataloader
|
|
|
|
from Utils.ASR.models import ASRCNN
|
|
from Utils.JDC.model import JDCNet
|
|
from Utils.PLBERT.util import load_plbert
|
|
|
|
from models import *
|
|
from losses import *
|
|
from utils import *
|
|
|
|
from Modules.slmadv import SLMAdversarialLoss
|
|
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
|
|
|
from optimizers import build_optimizer
|
|
|
|
|
|
class MyDataParallel(torch.nn.DataParallel):
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return getattr(self.module, name)
|
|
|
|
import logging
|
|
from logging import StreamHandler
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.DEBUG)
|
|
handler = StreamHandler()
|
|
handler.setLevel(logging.DEBUG)
|
|
logger.addHandler(handler)
|
|
|
|
|
|
@click.command()
|
|
@click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str)
|
|
def main(config_path):
|
|
config = yaml.safe_load(open(config_path))
|
|
|
|
log_dir = config['log_dir']
|
|
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
|
|
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
|
|
writer = SummaryWriter(log_dir + "/tensorboard")
|
|
|
|
|
|
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
|
|
file_handler.setLevel(logging.DEBUG)
|
|
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
|
|
logger.addHandler(file_handler)
|
|
|
|
|
|
batch_size = config.get('batch_size', 10)
|
|
|
|
epochs = config.get('epochs', 200)
|
|
save_freq = config.get('save_freq', 2)
|
|
log_interval = config.get('log_interval', 10)
|
|
saving_epoch = config.get('save_freq', 2)
|
|
|
|
data_params = config.get('data_params', None)
|
|
sr = config['preprocess_params'].get('sr', 24000)
|
|
train_path = data_params['train_data']
|
|
val_path = data_params['val_data']
|
|
root_path = data_params['root_path']
|
|
min_length = data_params['min_length']
|
|
OOD_data = data_params['OOD_data']
|
|
|
|
max_len = config.get('max_len', 200)
|
|
|
|
loss_params = Munch(config['loss_params'])
|
|
diff_epoch = loss_params.diff_epoch
|
|
joint_epoch = loss_params.joint_epoch
|
|
|
|
optimizer_params = Munch(config['optimizer_params'])
|
|
|
|
train_list, val_list = get_data_path_list(train_path, val_path)
|
|
device = 'cuda'
|
|
|
|
train_dataloader = build_dataloader(train_list,
|
|
root_path,
|
|
OOD_data=OOD_data,
|
|
min_length=min_length,
|
|
batch_size=batch_size,
|
|
num_workers=2,
|
|
dataset_config={},
|
|
device=device)
|
|
|
|
val_dataloader = build_dataloader(val_list,
|
|
root_path,
|
|
OOD_data=OOD_data,
|
|
min_length=min_length,
|
|
batch_size=batch_size,
|
|
validation=True,
|
|
num_workers=0,
|
|
device=device,
|
|
dataset_config={})
|
|
|
|
|
|
ASR_config = config.get('ASR_config', False)
|
|
ASR_path = config.get('ASR_path', False)
|
|
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
|
|
|
|
|
F0_path = config.get('F0_path', False)
|
|
pitch_extractor = load_F0_models(F0_path)
|
|
|
|
|
|
BERT_path = config.get('PLBERT_dir', False)
|
|
plbert = load_plbert(BERT_path)
|
|
|
|
|
|
model_params = recursive_munch(config['model_params'])
|
|
multispeaker = model_params.multispeaker
|
|
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
|
_ = [model[key].to(device) for key in model]
|
|
|
|
|
|
for key in model:
|
|
if key != "mpd" and key != "msd" and key != "wd":
|
|
model[key] = MyDataParallel(model[key])
|
|
|
|
start_epoch = 0
|
|
iters = 0
|
|
|
|
load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
|
|
|
|
if not load_pretrained:
|
|
if config.get('first_stage_path', '') != '':
|
|
first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
|
|
print('Loading the first stage model at %s ...' % first_stage_path)
|
|
model, _, start_epoch, iters = load_checkpoint(model,
|
|
None,
|
|
first_stage_path,
|
|
load_only_params=True,
|
|
ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion'])
|
|
|
|
|
|
diff_epoch += start_epoch
|
|
joint_epoch += start_epoch
|
|
epochs += start_epoch
|
|
|
|
model.predictor_encoder = copy.deepcopy(model.style_encoder)
|
|
else:
|
|
raise ValueError('You need to specify the path to the first stage model.')
|
|
|
|
gl = GeneratorLoss(model.mpd, model.msd).to(device)
|
|
dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
|
|
wl = WavLMLoss(model_params.slm.model,
|
|
model.wd,
|
|
sr,
|
|
model_params.slm.sr).to(device)
|
|
|
|
gl = MyDataParallel(gl)
|
|
dl = MyDataParallel(dl)
|
|
wl = MyDataParallel(wl)
|
|
|
|
sampler = DiffusionSampler(
|
|
model.diffusion.diffusion,
|
|
sampler=ADPM2Sampler(),
|
|
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
|
|
clamp=False
|
|
)
|
|
|
|
scheduler_params = {
|
|
"max_lr": optimizer_params.lr,
|
|
"pct_start": float(0),
|
|
"epochs": epochs,
|
|
"steps_per_epoch": len(train_dataloader),
|
|
}
|
|
scheduler_params_dict= {key: scheduler_params.copy() for key in model}
|
|
scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
|
|
scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
|
|
scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
|
|
|
|
optimizer = build_optimizer({key: model[key].parameters() for key in model},
|
|
scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr)
|
|
|
|
|
|
for g in optimizer.optimizers['bert'].param_groups:
|
|
g['betas'] = (0.9, 0.99)
|
|
g['lr'] = optimizer_params.bert_lr
|
|
g['initial_lr'] = optimizer_params.bert_lr
|
|
g['min_lr'] = 0
|
|
g['weight_decay'] = 0.01
|
|
|
|
|
|
for module in ["decoder", "style_encoder"]:
|
|
for g in optimizer.optimizers[module].param_groups:
|
|
g['betas'] = (0.0, 0.99)
|
|
g['lr'] = optimizer_params.ft_lr
|
|
g['initial_lr'] = optimizer_params.ft_lr
|
|
g['min_lr'] = 0
|
|
g['weight_decay'] = 1e-4
|
|
|
|
|
|
if load_pretrained:
|
|
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
|
|
load_only_params=config.get('load_only_params', True))
|
|
|
|
n_down = model.text_aligner.n_down
|
|
|
|
best_loss = float('inf')
|
|
loss_train_record = list([])
|
|
loss_test_record = list([])
|
|
iters = 0
|
|
|
|
criterion = nn.L1Loss()
|
|
torch.cuda.empty_cache()
|
|
|
|
stft_loss = MultiResolutionSTFTLoss().to(device)
|
|
|
|
print('BERT', optimizer.optimizers['bert'])
|
|
print('decoder', optimizer.optimizers['decoder'])
|
|
|
|
start_ds = False
|
|
|
|
running_std = []
|
|
|
|
slmadv_params = Munch(config['slmadv_params'])
|
|
slmadv = SLMAdversarialLoss(model, wl, sampler,
|
|
slmadv_params.min_len,
|
|
slmadv_params.max_len,
|
|
batch_percentage=slmadv_params.batch_percentage,
|
|
skip_update=slmadv_params.iter,
|
|
sig=slmadv_params.sig
|
|
)
|
|
|
|
|
|
for epoch in range(start_epoch, epochs):
|
|
running_loss = 0
|
|
start_time = time.time()
|
|
|
|
_ = [model[key].eval() for key in model]
|
|
|
|
model.text_aligner.train()
|
|
model.text_encoder.train()
|
|
|
|
model.predictor.train()
|
|
model.bert_encoder.train()
|
|
model.bert.train()
|
|
model.msd.train()
|
|
model.mpd.train()
|
|
|
|
for i, batch in enumerate(train_dataloader):
|
|
waves = batch[0]
|
|
batch = [b.to(device) for b in batch[1:]]
|
|
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
|
|
with torch.no_grad():
|
|
mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
|
|
mel_mask = length_to_mask(mel_input_length).to(device)
|
|
text_mask = length_to_mask(input_lengths).to(texts.device)
|
|
|
|
|
|
if multispeaker and epoch >= diff_epoch:
|
|
ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
|
|
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
|
|
ref = torch.cat([ref_ss, ref_sp], dim=1)
|
|
|
|
try:
|
|
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
|
|
s2s_attn = s2s_attn.transpose(-1, -2)
|
|
s2s_attn = s2s_attn[..., 1:]
|
|
s2s_attn = s2s_attn.transpose(-1, -2)
|
|
except:
|
|
continue
|
|
|
|
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
|
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
|
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
|
|
|
|
|
if bool(random.getrandbits(1)):
|
|
asr = (t_en @ s2s_attn)
|
|
else:
|
|
asr = (t_en @ s2s_attn_mono)
|
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach()
|
|
|
|
|
|
|
|
ss = []
|
|
gs = []
|
|
for bib in range(len(mel_input_length)):
|
|
mel_length = int(mel_input_length[bib].item())
|
|
mel = mels[bib, :, :mel_input_length[bib]]
|
|
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
|
|
ss.append(s)
|
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
|
|
gs.append(s)
|
|
|
|
s_dur = torch.stack(ss).squeeze()
|
|
gs = torch.stack(gs).squeeze()
|
|
s_trg = torch.cat([gs, s_dur], dim=-1).detach()
|
|
|
|
bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
|
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
|
|
|
|
|
if epoch >= diff_epoch:
|
|
num_steps = np.random.randint(3, 5)
|
|
|
|
if model_params.diffusion.dist.estimate_sigma_data:
|
|
model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item()
|
|
running_std.append(model.diffusion.module.diffusion.sigma_data)
|
|
|
|
if multispeaker:
|
|
s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
|
|
embedding=bert_dur,
|
|
embedding_scale=1,
|
|
features=ref,
|
|
embedding_mask_proba=0.1,
|
|
num_steps=num_steps).squeeze(1)
|
|
loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean()
|
|
loss_sty = F.l1_loss(s_preds, s_trg.detach())
|
|
else:
|
|
s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
|
|
embedding=bert_dur,
|
|
embedding_scale=1,
|
|
embedding_mask_proba=0.1,
|
|
num_steps=num_steps).squeeze(1)
|
|
loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean()
|
|
loss_sty = F.l1_loss(s_preds, s_trg.detach())
|
|
else:
|
|
loss_sty = 0
|
|
loss_diff = 0
|
|
|
|
|
|
s_loss = 0
|
|
|
|
|
|
d, p = model.predictor(d_en, s_dur,
|
|
input_lengths,
|
|
s2s_attn_mono,
|
|
text_mask)
|
|
|
|
mel_len_st = int(mel_input_length.min().item() / 2 - 1)
|
|
mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2)
|
|
en = []
|
|
gt = []
|
|
p_en = []
|
|
wav = []
|
|
st = []
|
|
|
|
for bib in range(len(mel_input_length)):
|
|
mel_length = int(mel_input_length[bib].item() / 2)
|
|
|
|
random_start = np.random.randint(0, mel_length - mel_len)
|
|
en.append(asr[bib, :, random_start:random_start+mel_len])
|
|
p_en.append(p[bib, :, random_start:random_start+mel_len])
|
|
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
|
|
|
|
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
|
wav.append(torch.from_numpy(y).to(device))
|
|
|
|
|
|
random_start = np.random.randint(0, mel_length - mel_len_st)
|
|
st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
|
|
|
|
wav = torch.stack(wav).float().detach()
|
|
|
|
en = torch.stack(en)
|
|
p_en = torch.stack(p_en)
|
|
gt = torch.stack(gt).detach()
|
|
st = torch.stack(st).detach()
|
|
|
|
|
|
if gt.size(-1) < 80:
|
|
continue
|
|
|
|
s = model.style_encoder(gt.unsqueeze(1))
|
|
s_dur = model.predictor_encoder(gt.unsqueeze(1))
|
|
|
|
with torch.no_grad():
|
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
|
|
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
|
|
|
|
N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
|
|
|
|
y_rec_gt = wav.unsqueeze(1)
|
|
y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
|
|
|
|
wav = y_rec_gt
|
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
|
|
|
|
y_rec = model.decoder(en, F0_fake, N_fake, s)
|
|
|
|
loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
|
|
loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
|
|
|
|
optimizer.zero_grad()
|
|
d_loss = dl(wav.detach(), y_rec.detach()).mean()
|
|
d_loss.backward()
|
|
optimizer.step('msd')
|
|
optimizer.step('mpd')
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss_mel = stft_loss(y_rec, wav)
|
|
loss_gen_all = gl(wav, y_rec).mean()
|
|
loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean()
|
|
|
|
loss_ce = 0
|
|
loss_dur = 0
|
|
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
|
|
_s2s_pred = _s2s_pred[:_text_length, :]
|
|
_text_input = _text_input[:_text_length].long()
|
|
_s2s_trg = torch.zeros_like(_s2s_pred)
|
|
for p in range(_s2s_trg.shape[0]):
|
|
_s2s_trg[p, :_text_input[p]] = 1
|
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
|
|
|
|
loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
|
|
_text_input[1:_text_length-1])
|
|
loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
|
|
|
|
loss_ce /= texts.size(0)
|
|
loss_dur /= texts.size(0)
|
|
|
|
loss_s2s = 0
|
|
for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
|
|
loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
|
|
loss_s2s /= texts.size(0)
|
|
|
|
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
|
|
|
|
g_loss = loss_params.lambda_mel * loss_mel + \
|
|
loss_params.lambda_F0 * loss_F0_rec + \
|
|
loss_params.lambda_ce * loss_ce + \
|
|
loss_params.lambda_norm * loss_norm_rec + \
|
|
loss_params.lambda_dur * loss_dur + \
|
|
loss_params.lambda_gen * loss_gen_all + \
|
|
loss_params.lambda_slm * loss_lm + \
|
|
loss_params.lambda_sty * loss_sty + \
|
|
loss_params.lambda_diff * loss_diff + \
|
|
loss_params.lambda_mono * loss_mono + \
|
|
loss_params.lambda_s2s * loss_s2s
|
|
|
|
running_loss += loss_mel.item()
|
|
g_loss.backward()
|
|
if torch.isnan(g_loss):
|
|
from IPython.core.debugger import set_trace
|
|
set_trace()
|
|
|
|
optimizer.step('bert_encoder')
|
|
optimizer.step('bert')
|
|
optimizer.step('predictor')
|
|
optimizer.step('predictor_encoder')
|
|
optimizer.step('style_encoder')
|
|
optimizer.step('decoder')
|
|
|
|
optimizer.step('text_encoder')
|
|
optimizer.step('text_aligner')
|
|
|
|
if epoch >= diff_epoch:
|
|
optimizer.step('diffusion')
|
|
|
|
d_loss_slm, loss_gen_lm = 0, 0
|
|
if epoch >= joint_epoch:
|
|
|
|
if np.random.rand() < 0.5:
|
|
use_ind = True
|
|
else:
|
|
use_ind = False
|
|
|
|
if use_ind:
|
|
ref_lengths = input_lengths
|
|
ref_texts = texts
|
|
|
|
slm_out = slmadv(i,
|
|
y_rec_gt,
|
|
y_rec_gt_pred,
|
|
waves,
|
|
mel_input_length,
|
|
ref_texts,
|
|
ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
|
|
|
|
if slm_out is not None:
|
|
d_loss_slm, loss_gen_lm, y_pred = slm_out
|
|
|
|
|
|
optimizer.zero_grad()
|
|
loss_gen_lm.backward()
|
|
|
|
|
|
total_norm = {}
|
|
for key in model.keys():
|
|
total_norm[key] = 0
|
|
parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
|
|
for p in parameters:
|
|
param_norm = p.grad.detach().data.norm(2)
|
|
total_norm[key] += param_norm.item() ** 2
|
|
total_norm[key] = total_norm[key] ** 0.5
|
|
|
|
|
|
if total_norm['predictor'] > slmadv_params.thresh:
|
|
for key in model.keys():
|
|
for p in model[key].parameters():
|
|
if p.grad is not None:
|
|
p.grad *= (1 / total_norm['predictor'])
|
|
|
|
for p in model.predictor.duration_proj.parameters():
|
|
if p.grad is not None:
|
|
p.grad *= slmadv_params.scale
|
|
|
|
for p in model.predictor.lstm.parameters():
|
|
if p.grad is not None:
|
|
p.grad *= slmadv_params.scale
|
|
|
|
for p in model.diffusion.parameters():
|
|
if p.grad is not None:
|
|
p.grad *= slmadv_params.scale
|
|
|
|
optimizer.step('bert_encoder')
|
|
optimizer.step('bert')
|
|
optimizer.step('predictor')
|
|
optimizer.step('diffusion')
|
|
|
|
|
|
if d_loss_slm != 0:
|
|
optimizer.zero_grad()
|
|
d_loss_slm.backward(retain_graph=True)
|
|
optimizer.step('wd')
|
|
|
|
iters = iters + 1
|
|
|
|
if (i+1)%log_interval == 0:
|
|
logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f'
|
|
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono))
|
|
|
|
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
|
|
writer.add_scalar('train/gen_loss', loss_gen_all, iters)
|
|
writer.add_scalar('train/d_loss', d_loss, iters)
|
|
writer.add_scalar('train/ce_loss', loss_ce, iters)
|
|
writer.add_scalar('train/dur_loss', loss_dur, iters)
|
|
writer.add_scalar('train/slm_loss', loss_lm, iters)
|
|
writer.add_scalar('train/norm_loss', loss_norm_rec, iters)
|
|
writer.add_scalar('train/F0_loss', loss_F0_rec, iters)
|
|
writer.add_scalar('train/sty_loss', loss_sty, iters)
|
|
writer.add_scalar('train/diff_loss', loss_diff, iters)
|
|
writer.add_scalar('train/d_loss_slm', d_loss_slm, iters)
|
|
writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters)
|
|
|
|
running_loss = 0
|
|
|
|
print('Time elasped:', time.time()-start_time)
|
|
|
|
loss_test = 0
|
|
loss_align = 0
|
|
loss_f = 0
|
|
_ = [model[key].eval() for key in model]
|
|
|
|
with torch.no_grad():
|
|
iters_test = 0
|
|
for batch_idx, batch in enumerate(val_dataloader):
|
|
optimizer.zero_grad()
|
|
|
|
try:
|
|
waves = batch[0]
|
|
batch = [b.to(device) for b in batch[1:]]
|
|
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
|
|
with torch.no_grad():
|
|
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
|
|
text_mask = length_to_mask(input_lengths).to(texts.device)
|
|
|
|
_, _, s2s_attn = model.text_aligner(mels, mask, texts)
|
|
s2s_attn = s2s_attn.transpose(-1, -2)
|
|
s2s_attn = s2s_attn[..., 1:]
|
|
s2s_attn = s2s_attn.transpose(-1, -2)
|
|
|
|
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
|
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
|
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
|
asr = (t_en @ s2s_attn_mono)
|
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach()
|
|
|
|
ss = []
|
|
gs = []
|
|
|
|
for bib in range(len(mel_input_length)):
|
|
mel_length = int(mel_input_length[bib].item())
|
|
mel = mels[bib, :, :mel_input_length[bib]]
|
|
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
|
|
ss.append(s)
|
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
|
|
gs.append(s)
|
|
|
|
s = torch.stack(ss).squeeze()
|
|
gs = torch.stack(gs).squeeze()
|
|
s_trg = torch.cat([s, gs], dim=-1).detach()
|
|
|
|
bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
|
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
|
d, p = model.predictor(d_en, s,
|
|
input_lengths,
|
|
s2s_attn_mono,
|
|
text_mask)
|
|
|
|
mel_len = int(mel_input_length.min().item() / 2 - 1)
|
|
en = []
|
|
gt = []
|
|
|
|
p_en = []
|
|
wav = []
|
|
|
|
for bib in range(len(mel_input_length)):
|
|
mel_length = int(mel_input_length[bib].item() / 2)
|
|
|
|
random_start = np.random.randint(0, mel_length - mel_len)
|
|
en.append(asr[bib, :, random_start:random_start+mel_len])
|
|
p_en.append(p[bib, :, random_start:random_start+mel_len])
|
|
|
|
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
|
|
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
|
wav.append(torch.from_numpy(y).to(device))
|
|
|
|
wav = torch.stack(wav).float().detach()
|
|
|
|
en = torch.stack(en)
|
|
p_en = torch.stack(p_en)
|
|
gt = torch.stack(gt).detach()
|
|
s = model.predictor_encoder(gt.unsqueeze(1))
|
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s)
|
|
|
|
loss_dur = 0
|
|
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
|
|
_s2s_pred = _s2s_pred[:_text_length, :]
|
|
_text_input = _text_input[:_text_length].long()
|
|
_s2s_trg = torch.zeros_like(_s2s_pred)
|
|
for bib in range(_s2s_trg.shape[0]):
|
|
_s2s_trg[bib, :_text_input[bib]] = 1
|
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
|
|
loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
|
|
_text_input[1:_text_length-1])
|
|
|
|
loss_dur /= texts.size(0)
|
|
|
|
s = model.style_encoder(gt.unsqueeze(1))
|
|
|
|
y_rec = model.decoder(en, F0_fake, N_fake, s)
|
|
loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
|
|
|
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
|
|
|
|
loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
|
|
|
|
loss_test += (loss_mel).mean()
|
|
loss_align += (loss_dur).mean()
|
|
loss_f += (loss_F0).mean()
|
|
|
|
iters_test += 1
|
|
except:
|
|
continue
|
|
|
|
print('Epochs:', epoch + 1)
|
|
logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n')
|
|
print('\n\n\n')
|
|
writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
|
|
writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1)
|
|
writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1)
|
|
|
|
|
|
if (epoch + 1) % save_freq == 0 :
|
|
if (loss_test / iters_test) < best_loss:
|
|
best_loss = loss_test / iters_test
|
|
print('Saving..')
|
|
state = {
|
|
'net': {key: model[key].state_dict() for key in model},
|
|
'optimizer': optimizer.state_dict(),
|
|
'iters': iters,
|
|
'val_loss': loss_test / iters_test,
|
|
'epoch': epoch,
|
|
}
|
|
save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
|
|
torch.save(state, save_path)
|
|
|
|
|
|
if model_params.diffusion.dist.estimate_sigma_data:
|
|
config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
|
|
|
|
with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
|
|
yaml.dump(config, outfile, default_flow_style=True)
|
|
|
|
|
|
if __name__=="__main__":
|
|
main()
|
|
|