End of training
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- README.md +62 -0
- __init__.py +1 -0
- added_tokens.json +24 -0
- config.json +205 -0
- configuration_unmasking_qwen.py +5 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_unmasking_qwen.py +1051 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
step_*
|
2 |
+
epoch_*
|
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- pytorch
|
8 |
+
- custom-model
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# UnmaskingQwen3 for Token Classification
|
13 |
+
|
14 |
+
This model is a fine-tuned version of a custom UnmaskingQwen3ForTokenClassification model for token classification tasks.
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
- **Model Type**: Custom UnmaskingQwen3ForTokenClassification
|
19 |
+
- **Task**: Token Classification (NER/POS/Chunking)
|
20 |
+
- **Training Framework**: Transformers + Accelerate
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
26 |
+
|
27 |
+
# Load the model and tokenizer
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name", trust_remote_code=True)
|
29 |
+
model = AutoModelForTokenClassification.from_pretrained("your-username/your-model-name", trust_remote_code=True)
|
30 |
+
|
31 |
+
# Use for inference
|
32 |
+
inputs = tokenizer(["Your text here"], return_tensors="pt", is_split_into_words=False)
|
33 |
+
outputs = model(**inputs)
|
34 |
+
predictions = outputs.logits.argmax(dim=-1)
|
35 |
+
```
|
36 |
+
|
37 |
+
## Training Details
|
38 |
+
|
39 |
+
- **Training Data**: ['automated-analytics/ai4privacy-pii-masking-en-v1-ner', 'automated-analytics/gretel-pii-masking-en-v1-ner']
|
40 |
+
- **Learning Rate**: 5e-05
|
41 |
+
- **Batch Size**: 128
|
42 |
+
- **Epochs**: 3
|
43 |
+
- **Max Length**: 128
|
44 |
+
|
45 |
+
## Evaluation Results
|
46 |
+
|
47 |
+
### Overall Metrics
|
48 |
+
|
49 |
+
- Precision: 0.0000
|
50 |
+
- Recall: 0.0000
|
51 |
+
- F1 Score: 0.0000
|
52 |
+
- Accuracy: 0.0000
|
53 |
+
|
54 |
+
### Entity-level Performance
|
55 |
+
|
56 |
+
| Entity Type | Precision | Recall | F1-Score | Support |
|
57 |
+
| ----------- | --------- | ------ | -------- | ------- |
|
58 |
+
|
59 |
+
|
60 |
+
## Important Note
|
61 |
+
|
62 |
+
This model uses a custom model class. Make sure to use `trust_remote_code=True` when loading the model.
|
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .modeling_unmasking_qwen import UnmaskingQwen2ForTokenClassification, UnmaskingQwen3ForTokenClassification
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UnmaskingQwen2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 896,
|
10 |
+
"id2label": {
|
11 |
+
"0": "O",
|
12 |
+
"1": "B-medical_record_number",
|
13 |
+
"2": "I-medical_record_number",
|
14 |
+
"3": "B-date_of_birth",
|
15 |
+
"4": "I-date_of_birth",
|
16 |
+
"5": "B-ssn",
|
17 |
+
"6": "I-ssn",
|
18 |
+
"7": "B-date",
|
19 |
+
"8": "I-date",
|
20 |
+
"9": "B-first_name",
|
21 |
+
"10": "I-first_name",
|
22 |
+
"11": "B-email",
|
23 |
+
"12": "I-email",
|
24 |
+
"13": "B-last_name",
|
25 |
+
"14": "I-last_name",
|
26 |
+
"15": "B-customer_id",
|
27 |
+
"16": "I-customer_id",
|
28 |
+
"17": "B-employee_id",
|
29 |
+
"18": "I-employee_id",
|
30 |
+
"19": "B-name",
|
31 |
+
"20": "I-name",
|
32 |
+
"21": "B-street_address",
|
33 |
+
"22": "I-street_address",
|
34 |
+
"23": "B-phone_number",
|
35 |
+
"24": "I-phone_number",
|
36 |
+
"25": "B-ipv4",
|
37 |
+
"26": "I-ipv4",
|
38 |
+
"27": "B-credit_card_number",
|
39 |
+
"28": "I-credit_card_number",
|
40 |
+
"29": "B-license_plate",
|
41 |
+
"30": "I-license_plate",
|
42 |
+
"31": "B-address",
|
43 |
+
"32": "I-address",
|
44 |
+
"33": "B-user_name",
|
45 |
+
"34": "I-user_name",
|
46 |
+
"35": "B-device_identifier",
|
47 |
+
"36": "I-device_identifier",
|
48 |
+
"37": "B-bank_routing_number",
|
49 |
+
"38": "I-bank_routing_number",
|
50 |
+
"39": "B-date_time",
|
51 |
+
"40": "I-date_time",
|
52 |
+
"41": "B-company_name",
|
53 |
+
"42": "I-company_name",
|
54 |
+
"43": "B-unique_identifier",
|
55 |
+
"44": "I-unique_identifier",
|
56 |
+
"45": "B-biometric_identifier",
|
57 |
+
"46": "I-biometric_identifier",
|
58 |
+
"47": "B-account_number",
|
59 |
+
"48": "I-account_number",
|
60 |
+
"49": "B-city",
|
61 |
+
"50": "I-city",
|
62 |
+
"51": "B-certificate_license_number",
|
63 |
+
"52": "I-certificate_license_number",
|
64 |
+
"53": "B-time",
|
65 |
+
"54": "I-time",
|
66 |
+
"55": "B-postcode",
|
67 |
+
"56": "I-postcode",
|
68 |
+
"57": "B-vehicle_identifier",
|
69 |
+
"58": "I-vehicle_identifier",
|
70 |
+
"59": "B-coordinate",
|
71 |
+
"60": "I-coordinate",
|
72 |
+
"61": "B-country",
|
73 |
+
"62": "I-country",
|
74 |
+
"63": "B-api_key",
|
75 |
+
"64": "I-api_key",
|
76 |
+
"65": "B-ipv6",
|
77 |
+
"66": "I-ipv6",
|
78 |
+
"67": "B-password",
|
79 |
+
"68": "I-password",
|
80 |
+
"69": "B-health_plan_beneficiary_number",
|
81 |
+
"70": "I-health_plan_beneficiary_number",
|
82 |
+
"71": "B-national_id",
|
83 |
+
"72": "I-national_id",
|
84 |
+
"73": "B-tax_id",
|
85 |
+
"74": "I-tax_id",
|
86 |
+
"75": "B-url",
|
87 |
+
"76": "I-url",
|
88 |
+
"77": "B-state",
|
89 |
+
"78": "I-state",
|
90 |
+
"79": "B-swift_bic",
|
91 |
+
"80": "I-swift_bic",
|
92 |
+
"81": "B-cvv",
|
93 |
+
"82": "I-cvv",
|
94 |
+
"83": "B-pin",
|
95 |
+
"84": "I-pin"
|
96 |
+
},
|
97 |
+
"initializer_range": 0.02,
|
98 |
+
"intermediate_size": 4864,
|
99 |
+
"label2id": {
|
100 |
+
"B-account_number": 47,
|
101 |
+
"B-address": 31,
|
102 |
+
"B-api_key": 63,
|
103 |
+
"B-bank_routing_number": 37,
|
104 |
+
"B-biometric_identifier": 45,
|
105 |
+
"B-certificate_license_number": 51,
|
106 |
+
"B-city": 49,
|
107 |
+
"B-company_name": 41,
|
108 |
+
"B-coordinate": 59,
|
109 |
+
"B-country": 61,
|
110 |
+
"B-credit_card_number": 27,
|
111 |
+
"B-customer_id": 15,
|
112 |
+
"B-cvv": 81,
|
113 |
+
"B-date": 7,
|
114 |
+
"B-date_of_birth": 3,
|
115 |
+
"B-date_time": 39,
|
116 |
+
"B-device_identifier": 35,
|
117 |
+
"B-email": 11,
|
118 |
+
"B-employee_id": 17,
|
119 |
+
"B-first_name": 9,
|
120 |
+
"B-health_plan_beneficiary_number": 69,
|
121 |
+
"B-ipv4": 25,
|
122 |
+
"B-ipv6": 65,
|
123 |
+
"B-last_name": 13,
|
124 |
+
"B-license_plate": 29,
|
125 |
+
"B-medical_record_number": 1,
|
126 |
+
"B-name": 19,
|
127 |
+
"B-national_id": 71,
|
128 |
+
"B-password": 67,
|
129 |
+
"B-phone_number": 23,
|
130 |
+
"B-pin": 83,
|
131 |
+
"B-postcode": 55,
|
132 |
+
"B-ssn": 5,
|
133 |
+
"B-state": 77,
|
134 |
+
"B-street_address": 21,
|
135 |
+
"B-swift_bic": 79,
|
136 |
+
"B-tax_id": 73,
|
137 |
+
"B-time": 53,
|
138 |
+
"B-unique_identifier": 43,
|
139 |
+
"B-url": 75,
|
140 |
+
"B-user_name": 33,
|
141 |
+
"B-vehicle_identifier": 57,
|
142 |
+
"I-account_number": 48,
|
143 |
+
"I-address": 32,
|
144 |
+
"I-api_key": 64,
|
145 |
+
"I-bank_routing_number": 38,
|
146 |
+
"I-biometric_identifier": 46,
|
147 |
+
"I-certificate_license_number": 52,
|
148 |
+
"I-city": 50,
|
149 |
+
"I-company_name": 42,
|
150 |
+
"I-coordinate": 60,
|
151 |
+
"I-country": 62,
|
152 |
+
"I-credit_card_number": 28,
|
153 |
+
"I-customer_id": 16,
|
154 |
+
"I-cvv": 82,
|
155 |
+
"I-date": 8,
|
156 |
+
"I-date_of_birth": 4,
|
157 |
+
"I-date_time": 40,
|
158 |
+
"I-device_identifier": 36,
|
159 |
+
"I-email": 12,
|
160 |
+
"I-employee_id": 18,
|
161 |
+
"I-first_name": 10,
|
162 |
+
"I-health_plan_beneficiary_number": 70,
|
163 |
+
"I-ipv4": 26,
|
164 |
+
"I-ipv6": 66,
|
165 |
+
"I-last_name": 14,
|
166 |
+
"I-license_plate": 30,
|
167 |
+
"I-medical_record_number": 2,
|
168 |
+
"I-name": 20,
|
169 |
+
"I-national_id": 72,
|
170 |
+
"I-password": 68,
|
171 |
+
"I-phone_number": 24,
|
172 |
+
"I-pin": 84,
|
173 |
+
"I-postcode": 56,
|
174 |
+
"I-ssn": 6,
|
175 |
+
"I-state": 78,
|
176 |
+
"I-street_address": 22,
|
177 |
+
"I-swift_bic": 80,
|
178 |
+
"I-tax_id": 74,
|
179 |
+
"I-time": 54,
|
180 |
+
"I-unique_identifier": 44,
|
181 |
+
"I-url": 76,
|
182 |
+
"I-user_name": 34,
|
183 |
+
"I-vehicle_identifier": 58,
|
184 |
+
"O": 0
|
185 |
+
},
|
186 |
+
"max_position_embeddings": 32768,
|
187 |
+
"max_window_layers": 21,
|
188 |
+
"model_type": "qwen2",
|
189 |
+
"num_attention_heads": 14,
|
190 |
+
"num_hidden_layers": 24,
|
191 |
+
"num_key_value_heads": 2,
|
192 |
+
"rms_norm_eps": 1e-06,
|
193 |
+
"rope_scaling": null,
|
194 |
+
"rope_theta": 1000000.0,
|
195 |
+
"sliding_window": 32768,
|
196 |
+
"tie_word_embeddings": true,
|
197 |
+
"torch_dtype": "float32",
|
198 |
+
"transformers_version": "4.51.3",
|
199 |
+
"use_cache": true,
|
200 |
+
"use_sliding_window": false,
|
201 |
+
"vocab_size": 151936,
|
202 |
+
"auto_map": {
|
203 |
+
"AutoModelForTokenClassification": "modeling_unmasking_qwen.UnmaskingQwen3ForTokenClassification"
|
204 |
+
}
|
205 |
+
}
|
configuration_unmasking_qwen.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
class UnmaskingQwenConfig(PretrainedConfig):
|
5 |
+
model_type = "unmasking_qwen"
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a794f6e3e7c5ad34ec15ddb9fd27c18ee491a588c9981fbe23454b24fddc97fa
|
3 |
+
size 1976468620
|
modeling_unmasking_qwen.py
ADDED
@@ -0,0 +1,1051 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Unmasking Qwen Token Classification Models
|
3 |
+
# Automatically generated file for model use with trust_remote_code=True
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
9 |
+
|
10 |
+
from typing import Optional, Tuple, Union, List, Dict, Callable
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
|
15 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
16 |
+
from transformers.models.bert import (
|
17 |
+
BertConfig, BertModel, BertPreTrainedModel
|
18 |
+
)
|
19 |
+
from transformers.models.roberta import (
|
20 |
+
RobertaConfig, RobertaModel, RobertaPreTrainedModel
|
21 |
+
)
|
22 |
+
from transformers.models.deberta_v2 import (
|
23 |
+
DebertaV2Config, DebertaV2Model, DebertaV2PreTrainedModel
|
24 |
+
)
|
25 |
+
from transformers.models.modernbert.modeling_modernbert import (
|
26 |
+
ModernBertConfig, ModernBertModel, ModernBertPreTrainedModel, ModernBertPredictionHead
|
27 |
+
)
|
28 |
+
from transformers import Qwen2Config
|
29 |
+
from transformers.modeling_outputs import TokenClassifierOutput, BaseModelOutputWithPast
|
30 |
+
from transformers.cache_utils import Cache
|
31 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
32 |
+
from transformers.processing_utils import Unpack
|
33 |
+
from transformers.models.qwen2.modeling_qwen2 import (
|
34 |
+
Qwen2PreTrainedModel,
|
35 |
+
Qwen2Model,
|
36 |
+
SlidingWindowCache,
|
37 |
+
StaticCache
|
38 |
+
)
|
39 |
+
|
40 |
+
from transformers.models.qwen3.modeling_qwen3 import (
|
41 |
+
Qwen3PreTrainedModel,
|
42 |
+
Qwen3Config,
|
43 |
+
Qwen3Model,
|
44 |
+
Qwen3RMSNorm,
|
45 |
+
Qwen3DecoderLayer,
|
46 |
+
Qwen3Attention,
|
47 |
+
BaseModelOutputWithPast,
|
48 |
+
TokenClassifierOutput,
|
49 |
+
Cache,
|
50 |
+
FlashAttentionKwargs,
|
51 |
+
Unpack,
|
52 |
+
Qwen3RotaryEmbedding,
|
53 |
+
Qwen3MLP,
|
54 |
+
apply_rotary_pos_emb,
|
55 |
+
can_return_tuple,
|
56 |
+
eager_attention_forward
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def fixed_cross_entropy(
|
61 |
+
source: torch.Tensor,
|
62 |
+
target: torch.Tensor,
|
63 |
+
num_items_in_batch: Optional[int] = None,
|
64 |
+
ignore_index: int = -100,
|
65 |
+
**kwargs,
|
66 |
+
) -> torch.Tensor:
|
67 |
+
reduction = "sum" if num_items_in_batch is not None else "mean"
|
68 |
+
loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction)
|
69 |
+
if reduction == "sum":
|
70 |
+
if not isinstance(num_items_in_batch, torch.Tensor):
|
71 |
+
num_items_in_batch = torch.tensor(num_items_in_batch, device=loss.device, dtype=loss.dtype)
|
72 |
+
elif num_items_in_batch.device != loss.device:
|
73 |
+
num_items_in_batch = num_items_in_batch.to(loss.device)
|
74 |
+
loss = loss / num_items_in_batch
|
75 |
+
return loss
|
76 |
+
|
77 |
+
|
78 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
79 |
+
|
80 |
+
def __init__(self, config: BertConfig):
|
81 |
+
super().__init__(config)
|
82 |
+
self.num_labels = config.num_labels
|
83 |
+
|
84 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
85 |
+
classifier_dropout = (
|
86 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
87 |
+
)
|
88 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
89 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
90 |
+
|
91 |
+
# Initialize weights and apply final processing
|
92 |
+
self.post_init()
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
input_ids: Optional[torch.Tensor] = None,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
99 |
+
position_ids: Optional[torch.Tensor] = None,
|
100 |
+
head_mask: Optional[torch.Tensor] = None,
|
101 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
102 |
+
labels: Optional[torch.Tensor] = None,
|
103 |
+
output_attentions: Optional[bool] = None,
|
104 |
+
output_hidden_states: Optional[bool] = None,
|
105 |
+
return_dict: Optional[bool] = None,
|
106 |
+
num_items_in_batch: Optional[torch.Tensor] = None,
|
107 |
+
ignore_index: int = -100,
|
108 |
+
**kwargs,
|
109 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
110 |
+
r"""
|
111 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
112 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
113 |
+
"""
|
114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
115 |
+
|
116 |
+
outputs = self.bert(
|
117 |
+
input_ids,
|
118 |
+
attention_mask=attention_mask,
|
119 |
+
token_type_ids=token_type_ids,
|
120 |
+
position_ids=position_ids,
|
121 |
+
head_mask=head_mask,
|
122 |
+
inputs_embeds=inputs_embeds,
|
123 |
+
output_attentions=output_attentions,
|
124 |
+
output_hidden_states=output_hidden_states,
|
125 |
+
return_dict=return_dict,
|
126 |
+
)
|
127 |
+
|
128 |
+
sequence_output = outputs[0]
|
129 |
+
|
130 |
+
sequence_output = self.dropout(sequence_output)
|
131 |
+
logits = self.classifier(sequence_output)
|
132 |
+
|
133 |
+
loss = None
|
134 |
+
if labels is not None:
|
135 |
+
logits = logits.view(-1, self.num_labels)
|
136 |
+
labels = labels.view(-1).to(logits.device)
|
137 |
+
logits = logits.float()
|
138 |
+
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
|
139 |
+
|
140 |
+
if not return_dict:
|
141 |
+
output = (logits,) + outputs[2:]
|
142 |
+
return ((loss,) + output) if loss is not None else output
|
143 |
+
|
144 |
+
return TokenClassifierOutput(
|
145 |
+
loss=loss,
|
146 |
+
logits=logits,
|
147 |
+
hidden_states=outputs.hidden_states,
|
148 |
+
attentions=outputs.attentions,
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
class CRF(nn.Module):
|
153 |
+
"""條件隨機場(CRF)層,基於更穩定的實現"""
|
154 |
+
|
155 |
+
def __init__(self, num_labels: int):
|
156 |
+
super().__init__()
|
157 |
+
self.num_labels = num_labels
|
158 |
+
|
159 |
+
# 轉移矩陣和起始/結束轉移參數
|
160 |
+
self.start_transitions = nn.Parameter(torch.empty(num_labels))
|
161 |
+
self.end_transitions = nn.Parameter(torch.empty(num_labels))
|
162 |
+
self.transitions = nn.Parameter(torch.empty(num_labels, num_labels))
|
163 |
+
|
164 |
+
# 用均勻分布初始化參數
|
165 |
+
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
|
166 |
+
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
|
167 |
+
nn.init.uniform_(self.transitions, -0.1, 0.1)
|
168 |
+
|
169 |
+
def _compute_log_denominator(self, features: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
170 |
+
"""計算配分函數的對數(log of the partition function)"""
|
171 |
+
seq_len, batch_size, _ = features.shape
|
172 |
+
|
173 |
+
# 初始化得分為起始轉移得分 + 第一個時間步的特征
|
174 |
+
log_score = self.start_transitions + features[0] # [batch_size, num_labels]
|
175 |
+
|
176 |
+
# 逐時間步計算得分
|
177 |
+
for i in range(1, seq_len):
|
178 |
+
# 計算所有可能的轉移得分:前一時間步得分 + 轉移得分 + 當前時間步特征
|
179 |
+
# [batch_size, num_labels, 1] + [num_labels, num_labels] + [batch_size, 1, num_labels]
|
180 |
+
# -> [batch_size, num_labels, num_labels]
|
181 |
+
next_score = (
|
182 |
+
log_score.unsqueeze(2) + # [batch_size, num_labels, 1]
|
183 |
+
self.transitions + # [num_labels, num_labels]
|
184 |
+
features[i].unsqueeze(1) # [batch_size, 1, num_labels]
|
185 |
+
)
|
186 |
+
|
187 |
+
# 對所有可能的前一個標籤取logsumexp
|
188 |
+
next_score = torch.logsumexp(next_score, dim=1)
|
189 |
+
|
190 |
+
# 根據mask更新得分
|
191 |
+
log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
|
192 |
+
|
193 |
+
# 加上到結束標籤的轉移得分
|
194 |
+
log_score += self.end_transitions
|
195 |
+
|
196 |
+
# 對所有可能的最終標籤取logsumexp
|
197 |
+
return torch.logsumexp(log_score, dim=1)
|
198 |
+
|
199 |
+
def _compute_log_numerator(self, features: torch.Tensor, labels: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
200 |
+
"""計算給定標籤序列的得分"""
|
201 |
+
seq_len, batch_size, _ = features.shape
|
202 |
+
|
203 |
+
# 初始化得分
|
204 |
+
score = self.start_transitions[labels[0]] + features[0, torch.arange(batch_size), labels[0]]
|
205 |
+
|
206 |
+
# 逐時間步累加得分
|
207 |
+
for i in range(1, seq_len):
|
208 |
+
# 計算轉移得分和發射得分
|
209 |
+
score += (
|
210 |
+
self.transitions[labels[i-1], labels[i]] + # 轉移得分
|
211 |
+
features[i, torch.arange(batch_size), labels[i]] # 發射得分
|
212 |
+
) * mask[i] # 只對有效位置計算
|
213 |
+
|
214 |
+
# 計算序列長度(減去1是因為索引從0開始)
|
215 |
+
seq_lens = mask.sum(dim=0) - 1
|
216 |
+
|
217 |
+
# 獲取每個序列的最後一個有效標籤
|
218 |
+
last_tags = labels[seq_lens.long(), torch.arange(batch_size)]
|
219 |
+
|
220 |
+
# 加上到結束標籤的轉移得分
|
221 |
+
score += self.end_transitions[last_tags]
|
222 |
+
|
223 |
+
return score
|
224 |
+
|
225 |
+
def forward(self, emissions: torch.Tensor, tags: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
226 |
+
"""
|
227 |
+
計算CRF負對數似然損失
|
228 |
+
|
229 |
+
參數:
|
230 |
+
emissions: (seq_len, batch_size, num_labels) 發射得分
|
231 |
+
tags: (seq_len, batch_size) 真實標籤
|
232 |
+
mask: (seq_len, batch_size) 用於處理變長序列的遮罩
|
233 |
+
|
234 |
+
返回:
|
235 |
+
CRF負對數似然損失
|
236 |
+
"""
|
237 |
+
# 計算分子(numerator)和分母(denominator)的對數
|
238 |
+
log_numerator = self._compute_log_numerator(emissions, tags, mask)
|
239 |
+
log_denominator = self._compute_log_denominator(emissions, mask)
|
240 |
+
|
241 |
+
# 損失是分母減分子
|
242 |
+
loss = torch.mean(log_denominator - log_numerator)
|
243 |
+
|
244 |
+
return loss
|
245 |
+
|
246 |
+
def _viterbi_decode(self, features: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
|
247 |
+
"""Viterbi算法解碼,找出最可能的標籤序列"""
|
248 |
+
seq_len, batch_size, _ = features.shape
|
249 |
+
|
250 |
+
# 初始化Viterbi變量
|
251 |
+
log_score = self.start_transitions + features[0] # [batch_size, num_labels]
|
252 |
+
backpointers = torch.zeros((seq_len, batch_size, self.num_labels), dtype=torch.long, device=features.device)
|
253 |
+
|
254 |
+
# 逐時間步填充
|
255 |
+
for i in range(1, seq_len):
|
256 |
+
# 計算所有可能的轉移得分
|
257 |
+
next_score = log_score.unsqueeze(2) + self.transitions + features[i].unsqueeze(1)
|
258 |
+
|
259 |
+
# 找出每個當前標籤的最佳前一個標籤
|
260 |
+
next_score, indices = next_score.max(dim=1)
|
261 |
+
|
262 |
+
# 記錄回溯指針
|
263 |
+
backpointers[i] = indices
|
264 |
+
|
265 |
+
# 根據mask更新得分
|
266 |
+
log_score = torch.where(mask[i].unsqueeze(1), next_score, log_score)
|
267 |
+
|
268 |
+
# 加上到結束標籤的轉移得分
|
269 |
+
log_score += self.end_transitions
|
270 |
+
|
271 |
+
# 找出每個序列的最後一個標籤
|
272 |
+
seq_lens = mask.sum(dim=0).long() - 1 # 序列長度
|
273 |
+
|
274 |
+
# 回溯獲取最佳路徑
|
275 |
+
best_paths = []
|
276 |
+
for seq_idx in range(batch_size):
|
277 |
+
# 找出得分最高的最終標籤
|
278 |
+
best_label = torch.argmax(log_score[seq_idx]).item()
|
279 |
+
best_path = [best_label]
|
280 |
+
|
281 |
+
# 從後向前回溯
|
282 |
+
for i in range(seq_lens[seq_idx], 0, -1):
|
283 |
+
best_label = backpointers[i, seq_idx, best_label].item()
|
284 |
+
best_path.insert(0, best_label)
|
285 |
+
|
286 |
+
best_paths.append(best_path)
|
287 |
+
|
288 |
+
return best_paths
|
289 |
+
|
290 |
+
def decode(self, emissions: torch.Tensor, mask: torch.Tensor) -> List[List[int]]:
|
291 |
+
"""使用Viterbi解碼找出最可能的標籤序列"""
|
292 |
+
# 確保mask是bool類型
|
293 |
+
if mask.dtype != torch.bool:
|
294 |
+
mask = mask.bool()
|
295 |
+
|
296 |
+
with torch.no_grad():
|
297 |
+
return self._viterbi_decode(emissions, mask)
|
298 |
+
|
299 |
+
|
300 |
+
class BertCRFForTokenClassification(BertPreTrainedModel):
|
301 |
+
"""BERT模型與CRF層結合用於token分類"""
|
302 |
+
|
303 |
+
def __init__(self, config: BertConfig):
|
304 |
+
super().__init__(config)
|
305 |
+
self.num_labels = config.num_labels
|
306 |
+
|
307 |
+
# BERT層
|
308 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
309 |
+
|
310 |
+
# Dropout和分類器
|
311 |
+
classifier_dropout = (
|
312 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
313 |
+
)
|
314 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
315 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
316 |
+
|
317 |
+
# CRF層
|
318 |
+
self.crf = CRF(config.num_labels)
|
319 |
+
|
320 |
+
# 初始化權重
|
321 |
+
self.post_init()
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
input_ids: Optional[torch.Tensor] = None,
|
326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
327 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
328 |
+
position_ids: Optional[torch.Tensor] = None,
|
329 |
+
head_mask: Optional[torch.Tensor] = None,
|
330 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
331 |
+
labels: Optional[torch.Tensor] = None,
|
332 |
+
output_attentions: Optional[bool] = None,
|
333 |
+
output_hidden_states: Optional[bool] = None,
|
334 |
+
return_dict: Optional[bool] = None,
|
335 |
+
ignore_index: int = -100,
|
336 |
+
**kwargs,
|
337 |
+
) -> Union[Tuple[torch.Tensor], Dict[str, torch.Tensor]]:
|
338 |
+
"""
|
339 |
+
使用CRF進行序列標注的前向傳播
|
340 |
+
|
341 |
+
參數:
|
342 |
+
labels: 標籤序列,用於計算損失
|
343 |
+
ignore_index: 忽略的標籤值,通常為-100
|
344 |
+
"""
|
345 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
346 |
+
|
347 |
+
# BERT前向傳播
|
348 |
+
outputs = self.bert(
|
349 |
+
input_ids=input_ids,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
token_type_ids=token_type_ids,
|
352 |
+
position_ids=position_ids,
|
353 |
+
head_mask=head_mask,
|
354 |
+
inputs_embeds=inputs_embeds,
|
355 |
+
output_attentions=output_attentions,
|
356 |
+
output_hidden_states=output_hidden_states,
|
357 |
+
return_dict=return_dict,
|
358 |
+
)
|
359 |
+
|
360 |
+
sequence_output = outputs[0]
|
361 |
+
sequence_output = self.dropout(sequence_output)
|
362 |
+
|
363 |
+
# 獲取發射分數
|
364 |
+
logits = self.classifier(sequence_output) # [batch_size, seq_len, num_labels]
|
365 |
+
|
366 |
+
loss = None
|
367 |
+
if labels is not None:
|
368 |
+
# 準備CRF所需的輸入格式
|
369 |
+
# 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
|
370 |
+
emissions = logits.transpose(0, 1)
|
371 |
+
|
372 |
+
# 交換維度:[batch_size, seq_len] -> [seq_len, batch_size]
|
373 |
+
if attention_mask is not None:
|
374 |
+
attention_mask_t = attention_mask.transpose(0, 1).bool()
|
375 |
+
else:
|
376 |
+
attention_mask_t = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
|
377 |
+
|
378 |
+
# 處理ignore_index
|
379 |
+
if ignore_index is not None:
|
380 |
+
labels_mask = (labels != ignore_index)
|
381 |
+
attention_mask_t = attention_mask_t & labels_mask.transpose(0, 1)
|
382 |
+
|
383 |
+
# 創建一個不包含ignore_index的標籤tensor
|
384 |
+
crf_labels = labels.clone()
|
385 |
+
crf_labels[~labels_mask] = 0 # 將ignore的位置臨時設為0,��免其影響CRF計算
|
386 |
+
crf_labels_t = crf_labels.transpose(0, 1)
|
387 |
+
else:
|
388 |
+
crf_labels_t = labels.transpose(0, 1)
|
389 |
+
|
390 |
+
# 計算CRF損失
|
391 |
+
loss = self.crf(
|
392 |
+
emissions=emissions,
|
393 |
+
tags=crf_labels_t,
|
394 |
+
mask=attention_mask_t
|
395 |
+
)
|
396 |
+
|
397 |
+
if not return_dict:
|
398 |
+
output = (logits,) + outputs[2:]
|
399 |
+
return ((loss,) + output) if loss is not None else output
|
400 |
+
|
401 |
+
return TokenClassifierOutput(
|
402 |
+
loss=loss,
|
403 |
+
logits=logits,
|
404 |
+
hidden_states=outputs.hidden_states,
|
405 |
+
attentions=outputs.attentions,
|
406 |
+
)
|
407 |
+
|
408 |
+
def decode(
|
409 |
+
self,
|
410 |
+
input_ids: Optional[torch.Tensor] = None,
|
411 |
+
attention_mask: Optional[torch.Tensor] = None,
|
412 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
413 |
+
**kwargs,
|
414 |
+
) -> List[List[int]]:
|
415 |
+
"""
|
416 |
+
解碼最可能的標籤序列
|
417 |
+
"""
|
418 |
+
# 不計算梯度
|
419 |
+
with torch.no_grad():
|
420 |
+
# BERT前向傳播
|
421 |
+
outputs = self.bert(
|
422 |
+
input_ids=input_ids,
|
423 |
+
attention_mask=attention_mask,
|
424 |
+
token_type_ids=token_type_ids,
|
425 |
+
return_dict=True,
|
426 |
+
**kwargs,
|
427 |
+
)
|
428 |
+
|
429 |
+
sequence_output = outputs[0]
|
430 |
+
sequence_output = self.dropout(sequence_output)
|
431 |
+
|
432 |
+
# 獲取發射分數
|
433 |
+
logits = self.classifier(sequence_output) # [batch_size, seq_len, num_labels]
|
434 |
+
|
435 |
+
# 交換維度:[batch_size, seq_len, num_labels] -> [seq_len, batch_size, num_labels]
|
436 |
+
emissions = logits.transpose(0, 1)
|
437 |
+
|
438 |
+
# 準備遮罩
|
439 |
+
if attention_mask is not None:
|
440 |
+
mask = attention_mask.transpose(0, 1).bool()
|
441 |
+
else:
|
442 |
+
mask = torch.ones(emissions.shape[:2], dtype=torch.bool, device=emissions.device)
|
443 |
+
|
444 |
+
# 使用Viterbi算法解碼
|
445 |
+
best_tags = self.crf.decode(emissions, mask)
|
446 |
+
|
447 |
+
return best_tags
|
448 |
+
|
449 |
+
|
450 |
+
class RobertaForTokenClassification(RobertaPreTrainedModel):
|
451 |
+
|
452 |
+
def __init__(self, config: RobertaConfig):
|
453 |
+
super().__init__(config)
|
454 |
+
self.num_labels = config.num_labels
|
455 |
+
|
456 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
457 |
+
classifier_dropout = (
|
458 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
459 |
+
)
|
460 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
461 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
462 |
+
|
463 |
+
# Initialize weights and apply final processing
|
464 |
+
self.post_init()
|
465 |
+
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
input_ids: Optional[torch.LongTensor] = None,
|
469 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
470 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
471 |
+
position_ids: Optional[torch.LongTensor] = None,
|
472 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
473 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
474 |
+
labels: Optional[torch.LongTensor] = None,
|
475 |
+
output_attentions: Optional[bool] = None,
|
476 |
+
output_hidden_states: Optional[bool] = None,
|
477 |
+
return_dict: Optional[bool] = None,
|
478 |
+
num_items_in_batch: Optional[torch.Tensor] = None,
|
479 |
+
ignore_index: int = -100,
|
480 |
+
**kwargs,
|
481 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
482 |
+
r"""
|
483 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
484 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
|
485 |
+
|
486 |
+
- 0 corresponds to a *sentence A* token,
|
487 |
+
- 1 corresponds to a *sentence B* token.
|
488 |
+
This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
|
489 |
+
>= 2. All the value in this tensor should be always < type_vocab_size.
|
490 |
+
|
491 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
492 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
493 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
494 |
+
"""
|
495 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
496 |
+
|
497 |
+
outputs = self.roberta(
|
498 |
+
input_ids,
|
499 |
+
attention_mask=attention_mask,
|
500 |
+
token_type_ids=token_type_ids,
|
501 |
+
position_ids=position_ids,
|
502 |
+
head_mask=head_mask,
|
503 |
+
inputs_embeds=inputs_embeds,
|
504 |
+
output_attentions=output_attentions,
|
505 |
+
output_hidden_states=output_hidden_states,
|
506 |
+
return_dict=return_dict,
|
507 |
+
)
|
508 |
+
|
509 |
+
sequence_output = outputs[0]
|
510 |
+
|
511 |
+
sequence_output = self.dropout(sequence_output)
|
512 |
+
logits = self.classifier(sequence_output)
|
513 |
+
|
514 |
+
loss = None
|
515 |
+
if labels is not None:
|
516 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
517 |
+
logits = logits.view(-1, self.num_labels)
|
518 |
+
labels = labels.view(-1).to(logits.device)
|
519 |
+
logits = logits.float()
|
520 |
+
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
|
521 |
+
|
522 |
+
if not return_dict:
|
523 |
+
output = (logits,) + outputs[2:]
|
524 |
+
return ((loss,) + output) if loss is not None else output
|
525 |
+
|
526 |
+
return TokenClassifierOutput(
|
527 |
+
loss=loss,
|
528 |
+
logits=logits,
|
529 |
+
hidden_states=outputs.hidden_states,
|
530 |
+
attentions=outputs.attentions,
|
531 |
+
)
|
532 |
+
|
533 |
+
|
534 |
+
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
535 |
+
|
536 |
+
def __init__(self, config: DebertaV2Config):
|
537 |
+
super().__init__(config)
|
538 |
+
self.num_labels = config.num_labels
|
539 |
+
|
540 |
+
self.deberta = DebertaV2Model(config)
|
541 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
542 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
543 |
+
|
544 |
+
# Initialize weights and apply final processing
|
545 |
+
self.post_init()
|
546 |
+
|
547 |
+
def forward(
|
548 |
+
self,
|
549 |
+
input_ids: Optional[torch.Tensor] = None,
|
550 |
+
attention_mask: Optional[torch.Tensor] = None,
|
551 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
552 |
+
position_ids: Optional[torch.Tensor] = None,
|
553 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
554 |
+
labels: Optional[torch.Tensor] = None,
|
555 |
+
output_attentions: Optional[bool] = None,
|
556 |
+
output_hidden_states: Optional[bool] = None,
|
557 |
+
return_dict: Optional[bool] = None,
|
558 |
+
num_items_in_batch: Optional[torch.Tensor] = None,
|
559 |
+
ignore_index: int = -100,
|
560 |
+
**kwargs,
|
561 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
562 |
+
r"""
|
563 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
564 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
565 |
+
"""
|
566 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
567 |
+
|
568 |
+
outputs = self.deberta(
|
569 |
+
input_ids,
|
570 |
+
attention_mask=attention_mask,
|
571 |
+
token_type_ids=token_type_ids,
|
572 |
+
position_ids=position_ids,
|
573 |
+
inputs_embeds=inputs_embeds,
|
574 |
+
output_attentions=output_attentions,
|
575 |
+
output_hidden_states=output_hidden_states,
|
576 |
+
return_dict=return_dict,
|
577 |
+
)
|
578 |
+
|
579 |
+
sequence_output = outputs[0]
|
580 |
+
|
581 |
+
sequence_output = self.dropout(sequence_output)
|
582 |
+
logits = self.classifier(sequence_output)
|
583 |
+
|
584 |
+
loss = None
|
585 |
+
if labels is not None:
|
586 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
587 |
+
logits = logits.view(-1, self.num_labels)
|
588 |
+
labels = labels.view(-1).to(logits.device)
|
589 |
+
logits = logits.float()
|
590 |
+
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
output = (logits,) + outputs[1:]
|
594 |
+
return ((loss,) + output) if loss is not None else output
|
595 |
+
|
596 |
+
return TokenClassifierOutput(
|
597 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
598 |
+
)
|
599 |
+
|
600 |
+
|
601 |
+
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
|
602 |
+
|
603 |
+
def __init__(self, config: ModernBertConfig):
|
604 |
+
super().__init__(config)
|
605 |
+
self.num_labels = config.num_labels
|
606 |
+
|
607 |
+
self.model = ModernBertModel(config)
|
608 |
+
self.head = ModernBertPredictionHead(config)
|
609 |
+
self.drop = torch.nn.Dropout(config.classifier_dropout)
|
610 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
611 |
+
|
612 |
+
# Initialize weights and apply final processing
|
613 |
+
self.post_init()
|
614 |
+
|
615 |
+
def forward(
|
616 |
+
self,
|
617 |
+
input_ids: Optional[torch.LongTensor] = None,
|
618 |
+
attention_mask: Optional[torch.Tensor] = None,
|
619 |
+
sliding_window_mask: Optional[torch.Tensor] = None,
|
620 |
+
position_ids: Optional[torch.Tensor] = None,
|
621 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
622 |
+
labels: Optional[torch.Tensor] = None,
|
623 |
+
indices: Optional[torch.Tensor] = None,
|
624 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
625 |
+
max_seqlen: Optional[int] = None,
|
626 |
+
batch_size: Optional[int] = None,
|
627 |
+
seq_len: Optional[int] = None,
|
628 |
+
output_attentions: Optional[bool] = None,
|
629 |
+
output_hidden_states: Optional[bool] = None,
|
630 |
+
return_dict: Optional[bool] = None,
|
631 |
+
num_items_in_batch: Optional[torch.Tensor] = None,
|
632 |
+
ignore_index: int = -100,
|
633 |
+
**kwargs,
|
634 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
635 |
+
r"""
|
636 |
+
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
637 |
+
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
|
638 |
+
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
|
639 |
+
far-away tokens in the local attention layers when not using Flash Attention.
|
640 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
641 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
642 |
+
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
|
643 |
+
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
|
644 |
+
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
|
645 |
+
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
|
646 |
+
max_seqlen (`int`, *optional*):
|
647 |
+
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
|
648 |
+
batch_size (`int`, *optional*):
|
649 |
+
Batch size of the input sequences. Used to pad the output tensors.
|
650 |
+
seq_len (`int`, *optional*):
|
651 |
+
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
|
652 |
+
"""
|
653 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
654 |
+
self._maybe_set_compile()
|
655 |
+
|
656 |
+
outputs = self.model(
|
657 |
+
input_ids=input_ids,
|
658 |
+
attention_mask=attention_mask,
|
659 |
+
sliding_window_mask=sliding_window_mask,
|
660 |
+
position_ids=position_ids,
|
661 |
+
inputs_embeds=inputs_embeds,
|
662 |
+
indices=indices,
|
663 |
+
cu_seqlens=cu_seqlens,
|
664 |
+
max_seqlen=max_seqlen,
|
665 |
+
batch_size=batch_size,
|
666 |
+
seq_len=seq_len,
|
667 |
+
output_attentions=output_attentions,
|
668 |
+
output_hidden_states=output_hidden_states,
|
669 |
+
return_dict=return_dict,
|
670 |
+
)
|
671 |
+
last_hidden_state = outputs[0]
|
672 |
+
|
673 |
+
last_hidden_state = self.head(last_hidden_state)
|
674 |
+
last_hidden_state = self.drop(last_hidden_state)
|
675 |
+
logits = self.classifier(last_hidden_state)
|
676 |
+
|
677 |
+
loss = None
|
678 |
+
if labels is not None:
|
679 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
680 |
+
logits = logits.view(-1, self.num_labels)
|
681 |
+
labels = labels.view(-1).to(logits.device)
|
682 |
+
logits = logits.float()
|
683 |
+
loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index)
|
684 |
+
|
685 |
+
if not return_dict:
|
686 |
+
output = (logits,) + outputs[1:]
|
687 |
+
return ((loss,) + output) if loss is not None else output
|
688 |
+
|
689 |
+
return TokenClassifierOutput(
|
690 |
+
loss=loss,
|
691 |
+
logits=logits,
|
692 |
+
hidden_states=outputs.hidden_states,
|
693 |
+
attentions=outputs.attentions,
|
694 |
+
)
|
695 |
+
|
696 |
+
|
697 |
+
class UnmaskingQwen3Attention(Qwen3Attention):
|
698 |
+
"""Multi-headed attention without causal mask for bidirectional attention"""
|
699 |
+
|
700 |
+
def forward(
|
701 |
+
self,
|
702 |
+
hidden_states: torch.Tensor,
|
703 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
704 |
+
attention_mask: Optional[torch.Tensor],
|
705 |
+
past_key_value: Optional[Cache] = None,
|
706 |
+
cache_position: Optional[torch.LongTensor] = None,
|
707 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
708 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
709 |
+
input_shape = hidden_states.shape[:-1]
|
710 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
711 |
+
|
712 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
713 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
714 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
715 |
+
|
716 |
+
cos, sin = position_embeddings
|
717 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
718 |
+
|
719 |
+
if past_key_value is not None:
|
720 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
721 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
722 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
723 |
+
|
724 |
+
# Use eager attention as default
|
725 |
+
attention_interface: Callable = eager_attention_forward
|
726 |
+
|
727 |
+
# Remove causal mask by setting attention_mask to None or creating a non-causal mask
|
728 |
+
# For bidirectional attention, we don't want any masking except padding
|
729 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
730 |
+
# Keep only padding mask if it exists, remove causal part
|
731 |
+
# This allows tokens to attend to future tokens
|
732 |
+
pass
|
733 |
+
else:
|
734 |
+
# If there's no padding, we can set attention_mask to None for full attention
|
735 |
+
attention_mask = None
|
736 |
+
|
737 |
+
attn_output, attn_weights = attention_interface(
|
738 |
+
self,
|
739 |
+
query_states,
|
740 |
+
key_states,
|
741 |
+
value_states,
|
742 |
+
attention_mask,
|
743 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
744 |
+
scaling=self.scaling,
|
745 |
+
sliding_window=self.sliding_window,
|
746 |
+
**kwargs,
|
747 |
+
)
|
748 |
+
|
749 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
750 |
+
attn_output = self.o_proj(attn_output)
|
751 |
+
return attn_output, attn_weights
|
752 |
+
|
753 |
+
|
754 |
+
class UnmaskingQwen3DecoderLayer(Qwen3DecoderLayer):
|
755 |
+
|
756 |
+
def __init__(self, config: Qwen3Config, layer_idx: int):
|
757 |
+
super(Qwen3DecoderLayer, self).__init__()
|
758 |
+
self.hidden_size = config.hidden_size
|
759 |
+
self.self_attn = UnmaskingQwen3Attention(config=config, layer_idx=layer_idx)
|
760 |
+
self.mlp = Qwen3MLP(config)
|
761 |
+
self.input_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
762 |
+
self.post_attention_layernorm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
763 |
+
|
764 |
+
|
765 |
+
class UnmaskingQwen3Model(Qwen3Model):
|
766 |
+
|
767 |
+
def __init__(self, config: Qwen3Config):
|
768 |
+
super(Qwen3PreTrainedModel, self).__init__(config)
|
769 |
+
self.padding_idx = config.pad_token_id
|
770 |
+
self.vocab_size = config.vocab_size
|
771 |
+
|
772 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
773 |
+
self.layers = nn.ModuleList(
|
774 |
+
[UnmaskingQwen3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
775 |
+
)
|
776 |
+
self.norm = Qwen3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
777 |
+
self.rotary_emb = Qwen3RotaryEmbedding(config=config)
|
778 |
+
self.gradient_checkpointing = False
|
779 |
+
|
780 |
+
# Initialize weights and apply final processing
|
781 |
+
self.post_init()
|
782 |
+
|
783 |
+
def _update_causal_mask(
|
784 |
+
self,
|
785 |
+
attention_mask: torch.Tensor,
|
786 |
+
input_tensor: torch.Tensor,
|
787 |
+
cache_position: torch.Tensor,
|
788 |
+
past_key_values: Cache,
|
789 |
+
output_attentions: bool = False,
|
790 |
+
):
|
791 |
+
# Override the causal mask creation to create a non-causal mask
|
792 |
+
# This allows bidirectional attention
|
793 |
+
if attention_mask is None:
|
794 |
+
# If no attention mask is provided, return None to allow full attention
|
795 |
+
return None
|
796 |
+
|
797 |
+
# If attention_mask is provided, it's likely for padding
|
798 |
+
# Convert it to the right format but without the causal constraint
|
799 |
+
dtype = input_tensor.dtype
|
800 |
+
min_dtype = torch.finfo(dtype).min
|
801 |
+
batch_size = input_tensor.shape[0]
|
802 |
+
sequence_length = input_tensor.shape[1]
|
803 |
+
|
804 |
+
if isinstance(attention_mask, torch.Tensor) and attention_mask.dim() == 2:
|
805 |
+
# Convert 2D padding mask to 4D attention mask
|
806 |
+
expanded_attn_mask = attention_mask[:, None, None, :]
|
807 |
+
expanded_attn_mask = expanded_attn_mask.to(dtype=dtype)
|
808 |
+
expanded_attn_mask = (1.0 - expanded_attn_mask) * min_dtype
|
809 |
+
return expanded_attn_mask
|
810 |
+
|
811 |
+
# If it's already 4D, return as is
|
812 |
+
return attention_mask
|
813 |
+
|
814 |
+
|
815 |
+
class UnmaskingQwen3ForTokenClassification(Qwen3PreTrainedModel):
|
816 |
+
|
817 |
+
def __init__(self, config):
|
818 |
+
super().__init__(config)
|
819 |
+
self.num_labels = config.num_labels
|
820 |
+
self.model = UnmaskingQwen3Model(config)
|
821 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
822 |
+
classifier_dropout = config.classifier_dropout
|
823 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
824 |
+
classifier_dropout = config.hidden_dropout
|
825 |
+
else:
|
826 |
+
classifier_dropout = 0.1
|
827 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
828 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
829 |
+
|
830 |
+
# Initialize weights and apply final processing
|
831 |
+
self.post_init()
|
832 |
+
|
833 |
+
def get_input_embeddings(self):
|
834 |
+
return self.model.embed_tokens
|
835 |
+
|
836 |
+
def set_input_embeddings(self, value):
|
837 |
+
self.model.embed_tokens = value
|
838 |
+
|
839 |
+
@can_return_tuple
|
840 |
+
def forward(
|
841 |
+
self,
|
842 |
+
input_ids: Optional[torch.LongTensor] = None,
|
843 |
+
attention_mask: Optional[torch.Tensor] = None,
|
844 |
+
position_ids: Optional[torch.LongTensor] = None,
|
845 |
+
past_key_values: Optional[Cache] = None,
|
846 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
847 |
+
labels: Optional[torch.LongTensor] = None,
|
848 |
+
use_cache: Optional[bool] = None,
|
849 |
+
output_attentions: Optional[bool] = None,
|
850 |
+
output_hidden_states: Optional[bool] = None,
|
851 |
+
) -> TokenClassifierOutput:
|
852 |
+
r"""
|
853 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
854 |
+
Labels for computing the token classification loss. Indices should be in `[0, ...,
|
855 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
856 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
857 |
+
"""
|
858 |
+
|
859 |
+
outputs: BaseModelOutputWithPast = self.model(
|
860 |
+
input_ids,
|
861 |
+
attention_mask=attention_mask,
|
862 |
+
position_ids=position_ids,
|
863 |
+
past_key_values=past_key_values,
|
864 |
+
inputs_embeds=inputs_embeds,
|
865 |
+
use_cache=use_cache,
|
866 |
+
output_attentions=output_attentions,
|
867 |
+
output_hidden_states=output_hidden_states,
|
868 |
+
)
|
869 |
+
sequence_output = outputs.last_hidden_state
|
870 |
+
sequence_output = self.dropout(sequence_output)
|
871 |
+
logits = self.score(sequence_output)
|
872 |
+
|
873 |
+
loss = None
|
874 |
+
if labels is not None:
|
875 |
+
loss_fct = nn.CrossEntropyLoss()
|
876 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
877 |
+
|
878 |
+
return TokenClassifierOutput(
|
879 |
+
loss=loss,
|
880 |
+
logits=logits,
|
881 |
+
hidden_states=outputs.hidden_states,
|
882 |
+
attentions=outputs.attentions,
|
883 |
+
)
|
884 |
+
|
885 |
+
|
886 |
+
class UnmaskingQwen2Model(Qwen2Model):
|
887 |
+
"""
|
888 |
+
UnmaskingQwen2Model is a modified version of Qwen2Model that removes the causal mask,
|
889 |
+
allowing bidirectional attention similar to BERT-like models.
|
890 |
+
"""
|
891 |
+
|
892 |
+
def _update_causal_mask(
|
893 |
+
self,
|
894 |
+
attention_mask: torch.Tensor,
|
895 |
+
input_tensor: torch.Tensor,
|
896 |
+
cache_position: torch.Tensor,
|
897 |
+
past_key_values: Cache,
|
898 |
+
output_attentions: bool = False,
|
899 |
+
):
|
900 |
+
"""
|
901 |
+
Override the causal mask creation to create a non-causal (bidirectional) mask.
|
902 |
+
This allows each token to attend to all tokens in the sequence.
|
903 |
+
"""
|
904 |
+
# For flash attention, just return None or the padding mask
|
905 |
+
if self.config._attn_implementation == "flash_attention_2":
|
906 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
907 |
+
return attention_mask
|
908 |
+
return None
|
909 |
+
|
910 |
+
# For flex attention, keep the same behavior but without causality
|
911 |
+
if self.config._attn_implementation == "flex_attention":
|
912 |
+
if isinstance(attention_mask, torch.Tensor):
|
913 |
+
# We don't convert to causal mask here
|
914 |
+
return attention_mask
|
915 |
+
return attention_mask
|
916 |
+
|
917 |
+
# For other attention implementations, create a non-causal mask
|
918 |
+
batch_size = input_tensor.shape[0]
|
919 |
+
sequence_length = input_tensor.shape[1]
|
920 |
+
dtype = input_tensor.dtype
|
921 |
+
|
922 |
+
# For SlidingWindowCache or StaticCache
|
923 |
+
if isinstance(past_key_values, (SlidingWindowCache, StaticCache)):
|
924 |
+
target_length = past_key_values.get_max_cache_shape()
|
925 |
+
else:
|
926 |
+
# For DynamicCache or no cache
|
927 |
+
target_length = (
|
928 |
+
attention_mask.shape[-1]
|
929 |
+
if isinstance(attention_mask, torch.Tensor)
|
930 |
+
else past_key_values.get_seq_length() + sequence_length + 1
|
931 |
+
if past_key_values is not None
|
932 |
+
else sequence_length
|
933 |
+
)
|
934 |
+
|
935 |
+
# Create a non-causal mask (all zeros, allowing full attention)
|
936 |
+
# Instead of using min_dtype to mask out future tokens, we use zeros to allow attention to all positions
|
937 |
+
non_causal_mask = torch.zeros(
|
938 |
+
(batch_size, 1, sequence_length, target_length),
|
939 |
+
dtype=dtype,
|
940 |
+
device=input_tensor.device,
|
941 |
+
)
|
942 |
+
|
943 |
+
# If there's a padding attention mask, apply it
|
944 |
+
if attention_mask is not None:
|
945 |
+
if attention_mask.dim() == 2:
|
946 |
+
# Convert 2D attention mask to 4D
|
947 |
+
expanded_mask = attention_mask[:, None, None, :].expand(
|
948 |
+
batch_size, 1, sequence_length, attention_mask.shape[-1]
|
949 |
+
).to(non_causal_mask.device)
|
950 |
+
|
951 |
+
# Apply padding mask (0 for tokens to attend to, large negative for padded positions)
|
952 |
+
min_dtype = torch.finfo(dtype).min
|
953 |
+
padding_mask = expanded_mask == 0
|
954 |
+
non_causal_mask = non_causal_mask.masked_fill(padding_mask, min_dtype)
|
955 |
+
elif attention_mask.dim() == 4:
|
956 |
+
# If already 4D, use as is
|
957 |
+
non_causal_mask = attention_mask
|
958 |
+
|
959 |
+
return non_causal_mask
|
960 |
+
|
961 |
+
|
962 |
+
class UnmaskingQwen2ForTokenClassification(Qwen2PreTrainedModel):
|
963 |
+
"""
|
964 |
+
Qwen2 model with a token classification head on top, but with bidirectional attention.
|
965 |
+
This is achieved by using the UnmaskingQwen2Model which removes the causal mask.
|
966 |
+
"""
|
967 |
+
|
968 |
+
def __init__(self, config):
|
969 |
+
super().__init__(config)
|
970 |
+
self.num_labels = config.num_labels
|
971 |
+
|
972 |
+
# Use the UnmaskingQwen2Model instead of the standard Qwen2Model
|
973 |
+
self.model = UnmaskingQwen2Model(config)
|
974 |
+
|
975 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
976 |
+
classifier_dropout = config.classifier_dropout
|
977 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
978 |
+
classifier_dropout = config.hidden_dropout
|
979 |
+
else:
|
980 |
+
classifier_dropout = 0.1
|
981 |
+
|
982 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
983 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
984 |
+
|
985 |
+
# Initialize weights and apply final processing
|
986 |
+
self.post_init()
|
987 |
+
|
988 |
+
def get_input_embeddings(self):
|
989 |
+
return self.model.embed_tokens
|
990 |
+
|
991 |
+
def set_input_embeddings(self, value):
|
992 |
+
self.model.embed_tokens = value
|
993 |
+
|
994 |
+
def forward(
|
995 |
+
self,
|
996 |
+
input_ids: Optional[torch.LongTensor] = None,
|
997 |
+
attention_mask: Optional[torch.Tensor] = None,
|
998 |
+
position_ids: Optional[torch.LongTensor] = None,
|
999 |
+
past_key_values: Optional[Cache] = None,
|
1000 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1001 |
+
labels: Optional[torch.LongTensor] = None,
|
1002 |
+
use_cache: Optional[bool] = None,
|
1003 |
+
output_attentions: Optional[bool] = None,
|
1004 |
+
output_hidden_states: Optional[bool] = None,
|
1005 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
1006 |
+
) -> TokenClassifierOutput:
|
1007 |
+
"""
|
1008 |
+
Forward pass for token classification with bidirectional attention.
|
1009 |
+
|
1010 |
+
Args:
|
1011 |
+
input_ids: Input token IDs
|
1012 |
+
attention_mask: Attention mask
|
1013 |
+
position_ids: Position IDs
|
1014 |
+
past_key_values: Past key values for efficient generation
|
1015 |
+
inputs_embeds: Pre-computed input embeddings
|
1016 |
+
labels: Token classification labels
|
1017 |
+
use_cache: Whether to use cache for efficient generation
|
1018 |
+
output_attentions: Whether to output attention weights
|
1019 |
+
output_hidden_states: Whether to output hidden states
|
1020 |
+
flash_attn_kwargs: Additional arguments for flash attention
|
1021 |
+
|
1022 |
+
Returns:
|
1023 |
+
TokenClassifierOutput with loss, logits, and optional hidden states and attentions
|
1024 |
+
"""
|
1025 |
+
outputs: BaseModelOutputWithPast = self.model(
|
1026 |
+
input_ids,
|
1027 |
+
attention_mask=attention_mask,
|
1028 |
+
position_ids=position_ids,
|
1029 |
+
past_key_values=past_key_values,
|
1030 |
+
inputs_embeds=inputs_embeds,
|
1031 |
+
use_cache=use_cache,
|
1032 |
+
output_attentions=output_attentions,
|
1033 |
+
output_hidden_states=output_hidden_states,
|
1034 |
+
**flash_attn_kwargs,
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
sequence_output = outputs.last_hidden_state
|
1038 |
+
sequence_output = self.dropout(sequence_output)
|
1039 |
+
logits = self.score(sequence_output)
|
1040 |
+
|
1041 |
+
loss = None
|
1042 |
+
if labels is not None:
|
1043 |
+
loss = self.loss_function(logits, labels, self.config)
|
1044 |
+
|
1045 |
+
return TokenClassifierOutput(
|
1046 |
+
loss=loss,
|
1047 |
+
logits=logits,
|
1048 |
+
hidden_states=outputs.hidden_states,
|
1049 |
+
attentions=outputs.attentions,
|
1050 |
+
)
|
1051 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e72410ddfe59d4ec8aeea923685710c76492112d74f5d127b86e2d08d65a3a4
|
3 |
+
size 11422174
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|