File size: 4,756 Bytes
f24aff8
 
 
 
 
 
bf630ca
f24aff8
 
 
 
 
 
 
 
 
 
628f986
f24aff8
 
 
 
 
628f986
f24aff8
628f986
 
f24aff8
628f986
 
f24aff8
628f986
 
f24aff8
628f986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654993b
 
628f986
654993b
628f986
 
 
654993b
 
628f986
 
 
654993b
628f986
 
 
 
654993b
628f986
 
 
 
654993b
628f986
 
 
 
 
 
 
 
 
654993b
628f986
f24aff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
- autoevaluate/conll2003-sample
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-extraction
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.8862817854414493
      name: Precision
    - type: recall
      value: 0.9084908826490659
      name: Recall
    - type: f1
      value: 0.8972489227709645
      name: F1
    - type: accuracy
      value: 0.9774889986814304
      name: Accuracy
    - type: accuracy
      value: 0.9703231821006837
      name: Accuracy
      verified: true
    - type: precision
      value: 0.9758137392136365
      name: Precision
      verified: true
    - type: recall
      value: 0.9764192759122017
      name: Recall
      verified: true
    - type: f1
      value: 0.9761164136513085
      name: F1 Score
      verified: true
    - type: accuracy
      value: 0.9703231821006837
      name: Accuracy
      verified: true
    - type: precision
      value: 0.9758137392136365
      name: Precision
      verified: true
    - type: recall
      value: 0.9764192759122017
      name: Recall
      verified: true
    - type: f1
      value: 0.9761164136513085
      name: F1 Score
      verified: true
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: autoevaluate/conll2003-sample
      type: autoevaluate/conll2003-sample
      config: autoevaluate--conll2003-sample
      split: test
    metrics:
    - type: accuracy
      value: 0.9680247550283652
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTgzYzIwNTcyNzgxN2JiNGU0Y2RhMmY2YzRhMzUyNGY5NGE2MDA0NTVmYTFjYzdjMWQ2M2UxOTY4YmJkNWI2OCIsInZlcnNpb24iOjF9.TXZVtZoAvkUw_iXjmVwAdPtzhimwv33pA0BqxbKLGP3QSpJAsFbAbDwh2kUaKH4mTtgmcGgmtsywIgV5_ZEFAA
    - type: precision
      value: 0.9708377518557795
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJkYzQ0MzhmNGE4Y2UyMmIzNThmMTdlZjMzODdlOWMzMTg1NTEwNWQ3NDMyNTYxODZiMzZhYTQ5NDU2ZGZlMSIsInZlcnNpb24iOjF9.rFvd0bxUagfktMsv-Q0NJr2WN2MuZ74dR0Opq9_MqjXnhi1wPxRcfbjw2RYUKnRM9PVVkBrb3WyTGYljcJYMCA
    - type: recall
      value: 0.9754928076718167
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjkzMGExNzU3NWY4Y2E0ODgyZTU5MzY1NTYxMDU3M2E3N2RkMmEwNzRmNWRmZDA1N2Y3MDQ5OGE3ZWQ3ZDA0NyIsInZlcnNpb24iOjF9.yAlh4o8i2o4GG6TES8-IoYlvqCh8NS09OeQ8yILRiRo8Uk9u6CdaZAklstD60jyMlanP7c_IP-SQsqokJ41tCg
    - type: f1
      value: 0.9731597129949509
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmFiNDdjODdjNGJhYjNiZGUwNzc2OTQ0NDhhMjk5ZTFlMjM4NTE5MTViYTBlYzI2ZTE4MzQ5MmE3MTBiZWU0ZiIsInZlcnNpb24iOjF9.amNItmETm5mBYgwTYkYEO7L7mlO6xxPJhHfy8X8LidtLir8euAUxoj4gLro9-NETDGaZOLLvvjx7SRyODMwrAg
    - type: loss
      value: 0.1187286302447319
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWFlYThiZGFhYzI4ZjZiNDUyMmQ3ZDVhMGIzZDJhNmU3ZjEwNTU1NTE2YjA3ZjM2NGNlNTA1MmYwNWY4NTdjMiIsInZlcnNpb24iOjF9.qBgBdwqISdVvRHyJQ-8JgqeGGG6J1wrNEcoJiqUgZ8OQIn8FKi6I0xmdBukkoYMapegWqwIGjNVNF4WAsjoyAg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# entity-extraction

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0808
- Precision: 0.8863
- Recall: 0.9085
- F1: 0.8972
- Accuracy: 0.9775

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2552        | 1.0   | 878  | 0.0808          | 0.8863    | 0.9085 | 0.8972 | 0.9775   |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1