attn-signs commited on
Commit
0b52b2f
·
verified ·
1 Parent(s): 619e9dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -166
README.md CHANGED
@@ -3,197 +3,103 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
9
 
 
 
 
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
 
 
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Watari 7B (V2)
7
 
8
+ - [EN]
9
+ Qwen2.5-based model, adapted for russian text generation tasks.
10
+ This is a base SFT version for further reasoning development and alignment.
11
+ - [RU]
12
+ Finetune версия Qwen2.5, адаптированная для генерации русского текста.
13
+ Является SFT базой для дальнейших ризонинг-оптимизаций с GRPO и алайнмента.
14
 
15
+ ### Huge thanks to mradermacher for converting all models to GGUF format!
16
+ The further conversions/upgrade are much appreciated and welcomed, feel free to join.
17
+ [https://huggingface.co/mradermacher/Watari-7b-v0-GGUF]
18
+ [https://huggingface.co/mradermacher/Watari-7b-v0.5-GGUF]
19
+ **Repo id:** mradermacher/Watari-7b-v0-GGUF
20
+ **Repo id:** mradermacher/Watari-7b-v0.5-GGUF
21
 
22
+ ### Previous model states (considering epoch %):
23
+ - Watari-7b-v0
24
+ - Watari-7b-v0.5
25
 
26
+ ## Model Details / Детализация модели
27
+ - [EN]
28
+ Full supervised finetuning was performed on 2xA100 NVIDIA GPUs for ~7 days for 1 epoch on dataset:
29
+ GrandMaster [Vikhrmodels/GrandMaster-PRO-MAX]
30
+ - [RU]
31
+ Полный SFT цикл (bfloat16, без низкоранговых адаптеров LoRa) был выполнен на двух NVIDIA A100, обучение длилось около 7 дней.
32
+ Прогон полной эпохи датасета GrandMaster [Vikhrmodels/GrandMaster-PRO-MAX]
33
 
34
+ ### Model Description / Описание модели
35
 
36
+ - **Developed by:** [Reisen Raumberg (Attention Signs team)]
37
+ - **Language(s) (NLP):** [RU/EN]
38
+ - **Finetuned from model:** [Qwen2.5]
39
 
40
+ Utilized DeepSpeed (Stage 3), HF.Accelerator for distributed training and fused AdamW.
41
+ **GPU hours**: 336h of NVIDIA A100
42
 
43
+ Для обучения использовались HuggingFace Accelerator с Microsoft DeepSpeed (Stage 3) для распределения параметров и стейта оптимизатора, а так же зафьюженный AdamW
44
+ **GPU часы**: 336 часов NVIDIA A100
 
 
 
 
 
45
 
46
+ ### Using the model / Как запустить?
47
 
48
+ ```python
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM
50
 
51
+ repo = 'attn-signs/Watari-7b-v1'
 
 
52
 
53
+ model = AutoModelForCausalLM.from_pretrained(repo)
54
+ tokenizer = AutoTokenizer.from_pretrained(repo)
55
 
56
+ model.to('cuda')
57
 
58
+ prompt = 'Что такое чёрная дыра? Напиши мне её уравнение'
59
+ messages = [
60
+ {"role": "system", "content": "Ты Ватари, ассистент и помощник в решении различных задач. Отвечай на вопросы пользователя, рассуждая."},
61
+ {"role": "user", "content": prompt}
62
+ ]
63
+ text = tokenizer.apply_chat_template(
64
+ messages,
65
+ tokenize=False,
66
+ add_generation_prompt=True
67
+ )
68
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
69
 
70
+ generated_ids = model.generate(
71
+ **model_inputs,
72
+ max_new_tokens=1024
73
+ )
74
+ generated_ids = [
75
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
76
+ ]
77
 
78
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
79
 
80
+ print(response)
81
+ ```
82
 
83
+ ```
84
+ Тензор Риччи — это тензорная величина в дифференциальной геометрии, которая описывает кривизну многообразия. Он играет важную роль в общей теории относительности и других областях математики.
85
 
86
+ В общем виде тензор Риччи \( R_{ij} \) опред��ляется через тензор Римана \( R^k_{ijkj} \) следующим образом:
87
 
88
+ \[ R_{ij} = R^k_{ijkj} \]
89
 
90
+ Это уравнение показывает, что тензор Риччи является суммированием по индексу \( k \) компонент тензора Римана, которые соответствуют компонентам метрического тензора \( g_{ij} \). Таким образом, тензор Риччи учитывает информацию о кривизне во всех направлениях в каждой точке многообразия.
91
 
92
+ Тензор Риччи также связан с скалярной кривизной \( R \), которая получается путем дальнейшего суммирования:
93
 
94
+ \[ R = g^{ij}R_{ij} \]
95
 
96
+ Скалярная кривизна является мерой того, насколько многообразие отличается от плоского (плоское многообразие имеет скалярную кривизну равную нулю).
97
 
98
+ В контексте общей теории относительности, тензор Риччи связывает массу и энергию (описываемые тензором энергии-импульса) с геометрией пространства-времени (описываемой метрикой). Это выражается уравнением Эйнштейна:
99
 
100
+ \[ G_{ij} = 8\pi T_{ij} \]
101
 
102
+ где \( G_{ij} \) тензор Эйнштейна, который является тензором Риччи, уменьшенным на константу, а \( T_{ij} \) — тензор энергии-импульса.
103
 
104
+ Таким образом, тензор Риччи является ключевым понятием в изучении геометрии многообразий и их взаимодействия с материей и энергией.
105
+ ```