Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,103 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Watari 7B (V2)
|
7 |
|
8 |
+
- [EN]
|
9 |
+
Qwen2.5-based model, adapted for russian text generation tasks.
|
10 |
+
This is a base SFT version for further reasoning development and alignment.
|
11 |
+
- [RU]
|
12 |
+
Finetune версия Qwen2.5, адаптированная для генерации русского текста.
|
13 |
+
Является SFT базой для дальнейших ризонинг-оптимизаций с GRPO и алайнмента.
|
14 |
|
15 |
+
### Huge thanks to mradermacher for converting all models to GGUF format!
|
16 |
+
The further conversions/upgrade are much appreciated and welcomed, feel free to join.
|
17 |
+
[https://huggingface.co/mradermacher/Watari-7b-v0-GGUF]
|
18 |
+
[https://huggingface.co/mradermacher/Watari-7b-v0.5-GGUF]
|
19 |
+
**Repo id:** mradermacher/Watari-7b-v0-GGUF
|
20 |
+
**Repo id:** mradermacher/Watari-7b-v0.5-GGUF
|
21 |
|
22 |
+
### Previous model states (considering epoch %):
|
23 |
+
- Watari-7b-v0
|
24 |
+
- Watari-7b-v0.5
|
25 |
|
26 |
+
## Model Details / Детализация модели
|
27 |
+
- [EN]
|
28 |
+
Full supervised finetuning was performed on 2xA100 NVIDIA GPUs for ~7 days for 1 epoch on dataset:
|
29 |
+
GrandMaster [Vikhrmodels/GrandMaster-PRO-MAX]
|
30 |
+
- [RU]
|
31 |
+
Полный SFT цикл (bfloat16, без низкоранговых адаптеров LoRa) был выполнен на двух NVIDIA A100, обучение длилось около 7 дней.
|
32 |
+
Прогон полной эпохи датасета GrandMaster [Vikhrmodels/GrandMaster-PRO-MAX]
|
33 |
|
34 |
+
### Model Description / Описание модели
|
35 |
|
36 |
+
- **Developed by:** [Reisen Raumberg (Attention Signs team)]
|
37 |
+
- **Language(s) (NLP):** [RU/EN]
|
38 |
+
- **Finetuned from model:** [Qwen2.5]
|
39 |
|
40 |
+
Utilized DeepSpeed (Stage 3), HF.Accelerator for distributed training and fused AdamW.
|
41 |
+
**GPU hours**: 336h of NVIDIA A100
|
42 |
|
43 |
+
Для обучения использовались HuggingFace Accelerator с Microsoft DeepSpeed (Stage 3) для распределения параметров и стейта оптимизатора, а так же зафьюженный AdamW
|
44 |
+
**GPU часы**: 336 часов NVIDIA A100
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
### Using the model / Как запустить?
|
47 |
|
48 |
+
```python
|
49 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
50 |
|
51 |
+
repo = 'attn-signs/Watari-7b-v1'
|
|
|
|
|
52 |
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(repo)
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(repo)
|
55 |
|
56 |
+
model.to('cuda')
|
57 |
|
58 |
+
prompt = 'Что такое чёрная дыра? Напиши мне её уравнение'
|
59 |
+
messages = [
|
60 |
+
{"role": "system", "content": "Ты Ватари, ассистент и помощник в решении различных задач. Отвечай на вопросы пользователя, рассуждая."},
|
61 |
+
{"role": "user", "content": prompt}
|
62 |
+
]
|
63 |
+
text = tokenizer.apply_chat_template(
|
64 |
+
messages,
|
65 |
+
tokenize=False,
|
66 |
+
add_generation_prompt=True
|
67 |
+
)
|
68 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
69 |
|
70 |
+
generated_ids = model.generate(
|
71 |
+
**model_inputs,
|
72 |
+
max_new_tokens=1024
|
73 |
+
)
|
74 |
+
generated_ids = [
|
75 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
76 |
+
]
|
77 |
|
78 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
79 |
|
80 |
+
print(response)
|
81 |
+
```
|
82 |
|
83 |
+
```
|
84 |
+
Тензор Риччи — это тензорная величина в дифференциальной геометрии, которая описывает кривизну многообразия. Он играет важную роль в общей теории относительности и других областях математики.
|
85 |
|
86 |
+
В общем виде тензор Риччи \( R_{ij} \) опред��ляется через тензор Римана \( R^k_{ijkj} \) следующим образом:
|
87 |
|
88 |
+
\[ R_{ij} = R^k_{ijkj} \]
|
89 |
|
90 |
+
Это уравнение показывает, что тензор Риччи является суммированием по индексу \( k \) компонент тензора Римана, которые соответствуют компонентам метрического тензора \( g_{ij} \). Таким образом, тензор Риччи учитывает информацию о кривизне во всех направлениях в каждой точке многообразия.
|
91 |
|
92 |
+
Тензор Риччи также связан с скалярной кривизной \( R \), которая получается путем дальнейшего суммирования:
|
93 |
|
94 |
+
\[ R = g^{ij}R_{ij} \]
|
95 |
|
96 |
+
Скалярная кривизна является мерой того, насколько многообразие отличается от плоского (плоское многообразие имеет скалярную кривизну равную нулю).
|
97 |
|
98 |
+
В контексте общей теории относительности, тензор Риччи связывает массу и энергию (описываемые тензором энергии-импульса) с геометрией пространства-времени (описываемой метрикой). Это выражается уравнением Эйнштейна:
|
99 |
|
100 |
+
\[ G_{ij} = 8\pi T_{ij} \]
|
101 |
|
102 |
+
где \( G_{ij} \) — тензор Эйнштейна, который является тензором Риччи, уменьшенным на константу, а \( T_{ij} \) — тензор энергии-импульса.
|
103 |
|
104 |
+
Таким образом, тензор Риччи является ключевым понятием в изучении геометрии многообразий и их взаимодействия с материей и энергией.
|
105 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|