File size: 5,307 Bytes
a9cafe2 eb51eff 1501da3 a9cafe2 eb51eff 1501da3 eb51eff 1501da3 eb51eff 261cda6 eb51eff a0d3833 eb51eff 97b3ae5 eb51eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
library_name: transformers
tags:
- reasoning
license: apache-2.0
datasets:
- d0rj/gsm8k-ru
language:
- ru
base_model:
- attn-signs/GPTR-8b-base
---
# GPT Reasoner (V1)
- [EN]
Reasoning model adapted for russian text generation.
**Based on YandexGPT-pretrain -> GPTR-8b-base**
- [RU]
Модель рассуждений, адаптированная для генерации русскоязычного текста.
**Построена на YandexGPT-pretrain -> GPTR-8b-base**
## Model Details / Детализация модели
- [EN]
**Reinforced GRPO version** to invoke general reasoning capabilities.
This model can generate conditional and coherent chain-of-thought
- [RU]
**Версия RL GRPO** для возможностей размышления и глубокого понимания запроса.
Модель может генерировать когерентный текст русского языка на этой итерации.
### Important:
- [EN]
This is the first stage of reinforcement learning, don't expect the model to solve every mathematical problem.
The training is ongoing. Still, this model is stable and can solve something now.
- [RU]
Это первая стадия RL обучения, поэтому не стоит возлагать надежды на решения любой математической проблемы данной моделью.
Обучение продолжается, данная версия модели скорее proof-of-concept, чем готовый математический ассистент.
Несмотря на это, модель стабильна.
### Further development
- GRPO on Gromov dataset series
### Model Description / Описание модели
- **Developed by:** [Reisen Raumberg (Attention Signs team)]
- **Language(s) (NLP):** [RU/EN]
- **SFT from model:** [YandexGPT-5-lite-8B-pretrain]
Utilized HF.Accelerator
**GPU hours**: ~24h of NVIDIA A100
Для обучения использовался HuggingFace Accelerator
**GPU часы**: ~24h часа NVIDIA A100
### Training Framework
**GPTR was trained using MyLLM framework (by Attention Signs):**
--==[MyLLM](https://github.com/Raumberg/myllm)==--
### Model configuration (MyLLM Framework)
```toml
[model]
model_name_or_path = "attn-signs/GPTR-8-base"
[datasets]
dataset = "d0rj/gsm8k-ru"
problem_field = "question"
solution_field = "answer"
dataloader_num_workers = 2
test_size = 0.1
extract_hash = true
[run]
run_name = "rl-gptr-8"
report_to = "wandb"
logging_first_step = true
logging_steps = 1
save_strategy = "steps"
save_steps = 500
save_total_limit = 5
output_dir = "models/attn-signs-gptr-8-grpo"
project_name = "rl-gptr"
[training]
num_train_epochs = 1
per_device_train_batch_size = 2
learning_rate = 0.00001
bf16 = true
seed = 42
use_peft = true
[grpo]
use_vllm = true
num_generations = 2
max_completion_length = 2048
num_iterations = 1 # https://github.com/huggingface/trl/releases/tag/v0.16.0
scale_rewards = false # should be default var
beta = 0.04 # reference model beta in vllm
epsilon_high = 0.28 # Increasing upper bound epsilon leads to higher entropy during generation, promoting better exploration
preload_rm = false
[lora]
lora_target_modules = [
"k_proj",
"v_proj",
"q_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
lora_r = 32
lora_alpha = 64
[fusion]
use_liger = false
attn_implementation = "flash_attention_2"
[tokenizer]
eos_token = "</s>"
pad_token = "<unk>"
chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<s>' + message['role'] + '\n' + message['content'] + '</s>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<s>assistant\n' }}{% endif %}"
force_chat_template = true
added_special_tokens = [
"<think>",
"</think>"
]
system_prompt = """
[MODE: Reflection]
"""
```
### Rewards:
- Equation structure reward
- Correctness reward
- Multilingual coherence reward
- Strict chinese penalty
- Format reward
- Russian purity reward
### Using the model / Как запустить?
```python
repo = 'attn-signs/GPTR-8-v1'
model = AutoModelForCausalLM.from_pretrained(repo)
tokenizer = AutoTokenizer.from_pretrained(repo)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
user_prompt = '''
У уравнений x**2 + 2019ax + b = 0 и x**2 + 2019bx + a = 0 есть один общий корень. Чему может быть равен этот корень, если известно, что a != b?
'''
system_prompt = "[MODE: Reflection]"
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
``` |