--- library_name: transformers license: bigscience-openrail-m base_model: ehsanaghaei/SecureBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Securebert-finetuned-LadderHALF results: [] --- # Securebert-finetuned-LadderHALF This model is a fine-tuned version of [ehsanaghaei/SecureBERT](https://huggingface.co/ehsanaghaei/SecureBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1919 - Precision: 0.6547 - Recall: 0.6775 - F1: 0.6659 - Accuracy: 0.9540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 228 | 0.2715 | 0.6274 | 0.4913 | 0.5511 | 0.9315 | | No log | 2.0 | 456 | 0.1988 | 0.6457 | 0.6688 | 0.6571 | 0.9506 | | 0.3276 | 3.0 | 684 | 0.1919 | 0.6547 | 0.6775 | 0.6659 | 0.9540 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1