Upload model
Browse files
README.md
CHANGED
@@ -1,35 +1,9 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
language:
|
4 |
-
- de
|
5 |
---
|
6 |
-
|
7 |
-
===
|
8 |
|
9 |
-
|
10 |
-
```python
|
11 |
-
from peft import AutoPeftModelForCausalLM
|
12 |
-
from transformers import AutoTokenizer
|
13 |
|
14 |
-
model = AutoPeftModelForCausalLM.from_pretrained(
|
15 |
-
"atsuki-yamaguchi/bloom-1b1-random-de"
|
16 |
-
)
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
-
"atsuki-yamaguchi/bloom-1b1-random-de"
|
19 |
-
)
|
20 |
-
```
|
21 |
|
22 |
-
|
23 |
-
```
|
24 |
-
@article{yamaguchi2024empirical,
|
25 |
-
title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference},
|
26 |
-
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
|
27 |
-
journal={ArXiv},
|
28 |
-
year={2024},
|
29 |
-
volume={abs/2402.10712},
|
30 |
-
url={https://arxiv.org/abs/2402.10712}
|
31 |
-
}
|
32 |
-
```
|
33 |
-
|
34 |
-
## Link
|
35 |
-
For more details, please visit https://github.com/gucci-j/llm-cva
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
|
|
|
|
3 |
---
|
4 |
+
## Training procedure
|
|
|
5 |
|
6 |
+
### Framework versions
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
- PEFT 0.5.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|