atsuki-yamaguchi commited on
Commit
461a592
·
verified ·
1 Parent(s): b44f733

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. added_tokens.json +24 -0
  2. checkpoint-12208/config.json +28 -0
  3. checkpoint-12208/generation_config.json +14 -0
  4. checkpoint-12208/model-00001-of-00007.safetensors +3 -0
  5. checkpoint-12208/model-00002-of-00007.safetensors +3 -0
  6. checkpoint-12208/model-00003-of-00007.safetensors +3 -0
  7. checkpoint-12208/model-00004-of-00007.safetensors +3 -0
  8. checkpoint-12208/model-00005-of-00007.safetensors +3 -0
  9. checkpoint-12208/model-00006-of-00007.safetensors +3 -0
  10. checkpoint-12208/model-00007-of-00007.safetensors +3 -0
  11. checkpoint-12208/model.safetensors.index.json +346 -0
  12. checkpoint-12208/optimizer.pt +3 -0
  13. checkpoint-12208/rng_state.pth +3 -0
  14. checkpoint-12208/scheduler.pt +3 -0
  15. checkpoint-12208/trainer_state.json +2784 -0
  16. checkpoint-12208/training_args.bin +3 -0
  17. checkpoint-15260/config.json +28 -0
  18. checkpoint-15260/generation_config.json +14 -0
  19. checkpoint-15260/model-00001-of-00007.safetensors +3 -0
  20. checkpoint-15260/model-00002-of-00007.safetensors +3 -0
  21. checkpoint-15260/model-00003-of-00007.safetensors +3 -0
  22. checkpoint-15260/model-00004-of-00007.safetensors +3 -0
  23. checkpoint-15260/model-00005-of-00007.safetensors +3 -0
  24. checkpoint-15260/model-00006-of-00007.safetensors +3 -0
  25. checkpoint-15260/model-00007-of-00007.safetensors +3 -0
  26. checkpoint-15260/model.safetensors.index.json +346 -0
  27. checkpoint-15260/optimizer.pt +3 -0
  28. checkpoint-15260/rng_state.pth +3 -0
  29. checkpoint-15260/scheduler.pt +3 -0
  30. checkpoint-15260/trainer_state.json +3477 -0
  31. checkpoint-15260/training_args.bin +3 -0
  32. checkpoint-18312/config.json +28 -0
  33. checkpoint-18312/generation_config.json +14 -0
  34. checkpoint-18312/model-00001-of-00007.safetensors +3 -0
  35. checkpoint-18312/model-00002-of-00007.safetensors +3 -0
  36. checkpoint-18312/model-00003-of-00007.safetensors +3 -0
  37. checkpoint-18312/model-00004-of-00007.safetensors +3 -0
  38. checkpoint-18312/model-00005-of-00007.safetensors +3 -0
  39. checkpoint-18312/model-00006-of-00007.safetensors +3 -0
  40. checkpoint-18312/model-00007-of-00007.safetensors +3 -0
  41. checkpoint-18312/model.safetensors.index.json +346 -0
  42. checkpoint-18312/optimizer.pt +3 -0
  43. checkpoint-18312/rng_state.pth +3 -0
  44. checkpoint-18312/scheduler.pt +3 -0
  45. checkpoint-18312/trainer_state.json +0 -0
  46. checkpoint-18312/training_args.bin +3 -0
  47. checkpoint-21364/config.json +28 -0
  48. checkpoint-21364/generation_config.json +14 -0
  49. checkpoint-21364/model-00001-of-00007.safetensors +3 -0
  50. checkpoint-21364/model-00002-of-00007.safetensors +3 -0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-12208/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-12208/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.44.0.dev0"
14
+ }
checkpoint-12208/model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcbade616042489d898627eb84adda32f52669f370441475a86032a24489a145
3
+ size 4976687216
checkpoint-12208/model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edb205482e80b5d03e63693e387d459b0cb9c97948cde971ff025ba98f1396d
3
+ size 4778622352
checkpoint-12208/model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222b40c6fea7def1d5911b059ab36bf97b9328e0251689f78a0a9ebd98cd18d
3
+ size 4932743960
checkpoint-12208/model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc2c86e34819a46908bfe3ad42f3986e7efdfc34f67e43f40f690f77c7b0672
3
+ size 4932743992
checkpoint-12208/model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:891f86a74d6b1791b98b581ff94cbedb16bfdb78595b9697dc3fd2ecc5974ba2
3
+ size 4998852296
checkpoint-12208/model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3db0510a8f69a31c2dfa9e12ac195733bdd15699c9cae618c7f4523b03ece56e
3
+ size 3662865184
checkpoint-12208/model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc45128258c2b1fb86b3677da7852a878aaecdd1c7430a93d7d37a0ddbbf44a5
3
+ size 2179989632
checkpoint-12208/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30462466048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
344
+ "model.norm.weight": "model-00006-of-00007.safetensors"
345
+ }
346
+ }
checkpoint-12208/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:131fd6c7407733cfe828e6cee13e38e2322e59c74363bb47e422804d000106e3
3
+ size 16177880918
checkpoint-12208/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9cd6a0487226e5bd30d1846894c82af483733ab4381b75bae9c0745e05d405
3
+ size 14244
checkpoint-12208/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abe644ed33a3c4139223f0857a985127f3e6fbaa8c89fa14b57671b49ca52c21
3
+ size 1064
checkpoint-12208/trainer_state.json ADDED
@@ -0,0 +1,2784 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.18316441737121253,
5
+ "eval_steps": 500,
6
+ "global_step": 12208,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.000465112789851539,
13
+ "grad_norm": 2.768016815185547,
14
+ "learning_rate": 1.0157273918741808e-06,
15
+ "loss": 1.3097,
16
+ "step": 31
17
+ },
18
+ {
19
+ "epoch": 0.000930225579703078,
20
+ "grad_norm": 1.7586184740066528,
21
+ "learning_rate": 2.0314547837483616e-06,
22
+ "loss": 1.2415,
23
+ "step": 62
24
+ },
25
+ {
26
+ "epoch": 0.001395338369554617,
27
+ "grad_norm": 1.6319445371627808,
28
+ "learning_rate": 3.0471821756225426e-06,
29
+ "loss": 1.1785,
30
+ "step": 93
31
+ },
32
+ {
33
+ "epoch": 0.001860451159406156,
34
+ "grad_norm": 1.667987585067749,
35
+ "learning_rate": 4.062909567496723e-06,
36
+ "loss": 1.165,
37
+ "step": 124
38
+ },
39
+ {
40
+ "epoch": 0.002325563949257695,
41
+ "grad_norm": 1.6823372840881348,
42
+ "learning_rate": 5.078636959370905e-06,
43
+ "loss": 1.1241,
44
+ "step": 155
45
+ },
46
+ {
47
+ "epoch": 0.002790676739109234,
48
+ "grad_norm": 1.7869504690170288,
49
+ "learning_rate": 6.094364351245085e-06,
50
+ "loss": 1.1232,
51
+ "step": 186
52
+ },
53
+ {
54
+ "epoch": 0.003255789528960773,
55
+ "grad_norm": 1.9446443319320679,
56
+ "learning_rate": 7.110091743119267e-06,
57
+ "loss": 1.108,
58
+ "step": 217
59
+ },
60
+ {
61
+ "epoch": 0.003720902318812312,
62
+ "grad_norm": 1.9483426809310913,
63
+ "learning_rate": 8.125819134993446e-06,
64
+ "loss": 1.118,
65
+ "step": 248
66
+ },
67
+ {
68
+ "epoch": 0.004186015108663851,
69
+ "grad_norm": 1.837703824043274,
70
+ "learning_rate": 9.141546526867629e-06,
71
+ "loss": 1.091,
72
+ "step": 279
73
+ },
74
+ {
75
+ "epoch": 0.00465112789851539,
76
+ "grad_norm": 1.9819648265838623,
77
+ "learning_rate": 1.015727391874181e-05,
78
+ "loss": 1.075,
79
+ "step": 310
80
+ },
81
+ {
82
+ "epoch": 0.005116240688366929,
83
+ "grad_norm": 1.9136595726013184,
84
+ "learning_rate": 1.117300131061599e-05,
85
+ "loss": 1.0668,
86
+ "step": 341
87
+ },
88
+ {
89
+ "epoch": 0.005581353478218468,
90
+ "grad_norm": 1.720566987991333,
91
+ "learning_rate": 1.218872870249017e-05,
92
+ "loss": 1.0769,
93
+ "step": 372
94
+ },
95
+ {
96
+ "epoch": 0.006046466268070007,
97
+ "grad_norm": 1.9698255062103271,
98
+ "learning_rate": 1.3204456094364351e-05,
99
+ "loss": 1.0543,
100
+ "step": 403
101
+ },
102
+ {
103
+ "epoch": 0.006511579057921546,
104
+ "grad_norm": 1.665868878364563,
105
+ "learning_rate": 1.4220183486238533e-05,
106
+ "loss": 1.0524,
107
+ "step": 434
108
+ },
109
+ {
110
+ "epoch": 0.006976691847773085,
111
+ "grad_norm": 1.9344353675842285,
112
+ "learning_rate": 1.5235910878112714e-05,
113
+ "loss": 1.0518,
114
+ "step": 465
115
+ },
116
+ {
117
+ "epoch": 0.007441804637624624,
118
+ "grad_norm": 2.173403024673462,
119
+ "learning_rate": 1.6251638269986893e-05,
120
+ "loss": 1.0476,
121
+ "step": 496
122
+ },
123
+ {
124
+ "epoch": 0.007906917427476163,
125
+ "grad_norm": 2.1878745555877686,
126
+ "learning_rate": 1.7267365661861077e-05,
127
+ "loss": 1.0385,
128
+ "step": 527
129
+ },
130
+ {
131
+ "epoch": 0.008372030217327702,
132
+ "grad_norm": 1.8220405578613281,
133
+ "learning_rate": 1.8283093053735257e-05,
134
+ "loss": 1.0374,
135
+ "step": 558
136
+ },
137
+ {
138
+ "epoch": 0.00883714300717924,
139
+ "grad_norm": 2.0194647312164307,
140
+ "learning_rate": 1.9298820445609438e-05,
141
+ "loss": 1.0408,
142
+ "step": 589
143
+ },
144
+ {
145
+ "epoch": 0.00930225579703078,
146
+ "grad_norm": 1.9656147956848145,
147
+ "learning_rate": 2.031454783748362e-05,
148
+ "loss": 1.0252,
149
+ "step": 620
150
+ },
151
+ {
152
+ "epoch": 0.009767368586882319,
153
+ "grad_norm": 1.6676087379455566,
154
+ "learning_rate": 2.13302752293578e-05,
155
+ "loss": 1.0209,
156
+ "step": 651
157
+ },
158
+ {
159
+ "epoch": 0.010232481376733858,
160
+ "grad_norm": 1.8552638292312622,
161
+ "learning_rate": 2.234600262123198e-05,
162
+ "loss": 1.0077,
163
+ "step": 682
164
+ },
165
+ {
166
+ "epoch": 0.010697594166585398,
167
+ "grad_norm": 1.7905389070510864,
168
+ "learning_rate": 2.336173001310616e-05,
169
+ "loss": 1.0099,
170
+ "step": 713
171
+ },
172
+ {
173
+ "epoch": 0.011162706956436936,
174
+ "grad_norm": 1.8298577070236206,
175
+ "learning_rate": 2.437745740498034e-05,
176
+ "loss": 1.01,
177
+ "step": 744
178
+ },
179
+ {
180
+ "epoch": 0.011627819746288475,
181
+ "grad_norm": 1.6317881345748901,
182
+ "learning_rate": 2.5393184796854525e-05,
183
+ "loss": 1.003,
184
+ "step": 775
185
+ },
186
+ {
187
+ "epoch": 0.012092932536140013,
188
+ "grad_norm": 1.9337595701217651,
189
+ "learning_rate": 2.6408912188728702e-05,
190
+ "loss": 1.005,
191
+ "step": 806
192
+ },
193
+ {
194
+ "epoch": 0.012558045325991554,
195
+ "grad_norm": 1.655259132385254,
196
+ "learning_rate": 2.7424639580602886e-05,
197
+ "loss": 0.992,
198
+ "step": 837
199
+ },
200
+ {
201
+ "epoch": 0.013023158115843092,
202
+ "grad_norm": 1.6854184865951538,
203
+ "learning_rate": 2.8440366972477066e-05,
204
+ "loss": 0.9922,
205
+ "step": 868
206
+ },
207
+ {
208
+ "epoch": 0.01348827090569463,
209
+ "grad_norm": 1.7627979516983032,
210
+ "learning_rate": 2.9456094364351244e-05,
211
+ "loss": 0.9828,
212
+ "step": 899
213
+ },
214
+ {
215
+ "epoch": 0.01395338369554617,
216
+ "grad_norm": 1.7015711069107056,
217
+ "learning_rate": 3.0471821756225428e-05,
218
+ "loss": 0.9896,
219
+ "step": 930
220
+ },
221
+ {
222
+ "epoch": 0.01441849648539771,
223
+ "grad_norm": 1.6730037927627563,
224
+ "learning_rate": 3.148754914809961e-05,
225
+ "loss": 0.9847,
226
+ "step": 961
227
+ },
228
+ {
229
+ "epoch": 0.014883609275249248,
230
+ "grad_norm": 1.7218660116195679,
231
+ "learning_rate": 3.2503276539973785e-05,
232
+ "loss": 0.9912,
233
+ "step": 992
234
+ },
235
+ {
236
+ "epoch": 0.015348722065100786,
237
+ "grad_norm": 1.5981271266937256,
238
+ "learning_rate": 3.351900393184797e-05,
239
+ "loss": 0.9791,
240
+ "step": 1023
241
+ },
242
+ {
243
+ "epoch": 0.015813834854952327,
244
+ "grad_norm": 2.0253615379333496,
245
+ "learning_rate": 3.453473132372215e-05,
246
+ "loss": 0.9693,
247
+ "step": 1054
248
+ },
249
+ {
250
+ "epoch": 0.016278947644803865,
251
+ "grad_norm": 1.62104070186615,
252
+ "learning_rate": 3.555045871559633e-05,
253
+ "loss": 0.9708,
254
+ "step": 1085
255
+ },
256
+ {
257
+ "epoch": 0.016744060434655404,
258
+ "grad_norm": 1.465540885925293,
259
+ "learning_rate": 3.6566186107470514e-05,
260
+ "loss": 0.9603,
261
+ "step": 1116
262
+ },
263
+ {
264
+ "epoch": 0.017209173224506942,
265
+ "grad_norm": 1.3695433139801025,
266
+ "learning_rate": 3.7581913499344695e-05,
267
+ "loss": 0.9643,
268
+ "step": 1147
269
+ },
270
+ {
271
+ "epoch": 0.01767428601435848,
272
+ "grad_norm": 1.5520803928375244,
273
+ "learning_rate": 3.8597640891218876e-05,
274
+ "loss": 0.9652,
275
+ "step": 1178
276
+ },
277
+ {
278
+ "epoch": 0.018139398804210023,
279
+ "grad_norm": 1.5043976306915283,
280
+ "learning_rate": 3.9613368283093056e-05,
281
+ "loss": 0.9609,
282
+ "step": 1209
283
+ },
284
+ {
285
+ "epoch": 0.01860451159406156,
286
+ "grad_norm": 1.5582523345947266,
287
+ "learning_rate": 4.062909567496724e-05,
288
+ "loss": 0.9549,
289
+ "step": 1240
290
+ },
291
+ {
292
+ "epoch": 0.0190696243839131,
293
+ "grad_norm": 1.5340025424957275,
294
+ "learning_rate": 4.164482306684142e-05,
295
+ "loss": 0.9596,
296
+ "step": 1271
297
+ },
298
+ {
299
+ "epoch": 0.019534737173764638,
300
+ "grad_norm": 1.2499620914459229,
301
+ "learning_rate": 4.26605504587156e-05,
302
+ "loss": 0.9499,
303
+ "step": 1302
304
+ },
305
+ {
306
+ "epoch": 0.019999849963616177,
307
+ "grad_norm": 1.3684868812561035,
308
+ "learning_rate": 4.367627785058978e-05,
309
+ "loss": 0.9499,
310
+ "step": 1333
311
+ },
312
+ {
313
+ "epoch": 0.020464962753467715,
314
+ "grad_norm": 1.3685338497161865,
315
+ "learning_rate": 4.469200524246396e-05,
316
+ "loss": 0.942,
317
+ "step": 1364
318
+ },
319
+ {
320
+ "epoch": 0.020930075543319254,
321
+ "grad_norm": 1.4686026573181152,
322
+ "learning_rate": 4.570773263433814e-05,
323
+ "loss": 0.9416,
324
+ "step": 1395
325
+ },
326
+ {
327
+ "epoch": 0.021395188333170796,
328
+ "grad_norm": 1.495653510093689,
329
+ "learning_rate": 4.672346002621232e-05,
330
+ "loss": 0.9439,
331
+ "step": 1426
332
+ },
333
+ {
334
+ "epoch": 0.021860301123022334,
335
+ "grad_norm": 1.2068424224853516,
336
+ "learning_rate": 4.77391874180865e-05,
337
+ "loss": 0.9509,
338
+ "step": 1457
339
+ },
340
+ {
341
+ "epoch": 0.022325413912873873,
342
+ "grad_norm": 1.6636161804199219,
343
+ "learning_rate": 4.875491480996068e-05,
344
+ "loss": 0.9343,
345
+ "step": 1488
346
+ },
347
+ {
348
+ "epoch": 0.02279052670272541,
349
+ "grad_norm": 1.2870069742202759,
350
+ "learning_rate": 4.977064220183487e-05,
351
+ "loss": 0.9407,
352
+ "step": 1519
353
+ },
354
+ {
355
+ "epoch": 0.02325563949257695,
356
+ "grad_norm": 1.5109976530075073,
357
+ "learning_rate": 4.9999915451558777e-05,
358
+ "loss": 0.9395,
359
+ "step": 1550
360
+ },
361
+ {
362
+ "epoch": 0.023720752282428488,
363
+ "grad_norm": 1.5145201683044434,
364
+ "learning_rate": 4.999955597496219e-05,
365
+ "loss": 0.9293,
366
+ "step": 1581
367
+ },
368
+ {
369
+ "epoch": 0.024185865072280027,
370
+ "grad_norm": 1.4048824310302734,
371
+ "learning_rate": 4.9998914381774255e-05,
372
+ "loss": 0.929,
373
+ "step": 1612
374
+ },
375
+ {
376
+ "epoch": 0.02465097786213157,
377
+ "grad_norm": 1.3233039379119873,
378
+ "learning_rate": 4.999799067923527e-05,
379
+ "loss": 0.9169,
380
+ "step": 1643
381
+ },
382
+ {
383
+ "epoch": 0.025116090651983107,
384
+ "grad_norm": 1.3225436210632324,
385
+ "learning_rate": 4.999678487776908e-05,
386
+ "loss": 0.9301,
387
+ "step": 1674
388
+ },
389
+ {
390
+ "epoch": 0.025581203441834646,
391
+ "grad_norm": 1.5295816659927368,
392
+ "learning_rate": 4.9995296990983006e-05,
393
+ "loss": 0.9245,
394
+ "step": 1705
395
+ },
396
+ {
397
+ "epoch": 0.026046316231686184,
398
+ "grad_norm": 1.202820062637329,
399
+ "learning_rate": 4.999352703566763e-05,
400
+ "loss": 0.916,
401
+ "step": 1736
402
+ },
403
+ {
404
+ "epoch": 0.026511429021537723,
405
+ "grad_norm": 1.0473875999450684,
406
+ "learning_rate": 4.999147503179668e-05,
407
+ "loss": 0.9144,
408
+ "step": 1767
409
+ },
410
+ {
411
+ "epoch": 0.02697654181138926,
412
+ "grad_norm": 1.1044714450836182,
413
+ "learning_rate": 4.998914100252672e-05,
414
+ "loss": 0.9098,
415
+ "step": 1798
416
+ },
417
+ {
418
+ "epoch": 0.0274416546012408,
419
+ "grad_norm": 1.2836365699768066,
420
+ "learning_rate": 4.998652497419696e-05,
421
+ "loss": 0.9127,
422
+ "step": 1829
423
+ },
424
+ {
425
+ "epoch": 0.02790676739109234,
426
+ "grad_norm": 1.2214583158493042,
427
+ "learning_rate": 4.9983626976328927e-05,
428
+ "loss": 0.9075,
429
+ "step": 1860
430
+ },
431
+ {
432
+ "epoch": 0.02837188018094388,
433
+ "grad_norm": 1.2603243589401245,
434
+ "learning_rate": 4.998044704162613e-05,
435
+ "loss": 0.8953,
436
+ "step": 1891
437
+ },
438
+ {
439
+ "epoch": 0.02883699297079542,
440
+ "grad_norm": 1.2945584058761597,
441
+ "learning_rate": 4.9976985205973705e-05,
442
+ "loss": 0.903,
443
+ "step": 1922
444
+ },
445
+ {
446
+ "epoch": 0.029302105760646957,
447
+ "grad_norm": 1.0437217950820923,
448
+ "learning_rate": 4.997324150843799e-05,
449
+ "loss": 0.9013,
450
+ "step": 1953
451
+ },
452
+ {
453
+ "epoch": 0.029767218550498496,
454
+ "grad_norm": 1.5020360946655273,
455
+ "learning_rate": 4.99692159912661e-05,
456
+ "loss": 0.9078,
457
+ "step": 1984
458
+ },
459
+ {
460
+ "epoch": 0.030232331340350034,
461
+ "grad_norm": 1.097151517868042,
462
+ "learning_rate": 4.996490869988546e-05,
463
+ "loss": 0.9061,
464
+ "step": 2015
465
+ },
466
+ {
467
+ "epoch": 0.030697444130201573,
468
+ "grad_norm": 1.043756365776062,
469
+ "learning_rate": 4.996031968290326e-05,
470
+ "loss": 0.9005,
471
+ "step": 2046
472
+ },
473
+ {
474
+ "epoch": 0.031162556920053115,
475
+ "grad_norm": 1.3543506860733032,
476
+ "learning_rate": 4.995544899210594e-05,
477
+ "loss": 0.9024,
478
+ "step": 2077
479
+ },
480
+ {
481
+ "epoch": 0.03162766970990465,
482
+ "grad_norm": 2.175954818725586,
483
+ "learning_rate": 4.9950296682458583e-05,
484
+ "loss": 0.89,
485
+ "step": 2108
486
+ },
487
+ {
488
+ "epoch": 0.03209278249975619,
489
+ "grad_norm": 3.4427719116210938,
490
+ "learning_rate": 4.994486281210429e-05,
491
+ "loss": 0.9204,
492
+ "step": 2139
493
+ },
494
+ {
495
+ "epoch": 0.03255789528960773,
496
+ "grad_norm": 4.699759006500244,
497
+ "learning_rate": 4.9939147442363566e-05,
498
+ "loss": 0.9871,
499
+ "step": 2170
500
+ },
501
+ {
502
+ "epoch": 0.03302300807945927,
503
+ "grad_norm": 16.819217681884766,
504
+ "learning_rate": 4.9933150637733574e-05,
505
+ "loss": 1.9176,
506
+ "step": 2201
507
+ },
508
+ {
509
+ "epoch": 0.03348812086931081,
510
+ "grad_norm": 3.4251508712768555,
511
+ "learning_rate": 4.992687246588743e-05,
512
+ "loss": 1.9154,
513
+ "step": 2232
514
+ },
515
+ {
516
+ "epoch": 0.03395323365916235,
517
+ "grad_norm": 1.1965570449829102,
518
+ "learning_rate": 4.992031299767347e-05,
519
+ "loss": 0.9446,
520
+ "step": 2263
521
+ },
522
+ {
523
+ "epoch": 0.034418346449013884,
524
+ "grad_norm": 5.077923774719238,
525
+ "learning_rate": 4.9913472307114386e-05,
526
+ "loss": 0.9097,
527
+ "step": 2294
528
+ },
529
+ {
530
+ "epoch": 0.034883459238865426,
531
+ "grad_norm": 1.3503797054290771,
532
+ "learning_rate": 4.9906350471406446e-05,
533
+ "loss": 0.9086,
534
+ "step": 2325
535
+ },
536
+ {
537
+ "epoch": 0.03534857202871696,
538
+ "grad_norm": 19.319576263427734,
539
+ "learning_rate": 4.989894757091861e-05,
540
+ "loss": 0.9072,
541
+ "step": 2356
542
+ },
543
+ {
544
+ "epoch": 0.0358136848185685,
545
+ "grad_norm": 1.2770804166793823,
546
+ "learning_rate": 4.989126368919158e-05,
547
+ "loss": 0.9093,
548
+ "step": 2387
549
+ },
550
+ {
551
+ "epoch": 0.036278797608420045,
552
+ "grad_norm": 1.0560117959976196,
553
+ "learning_rate": 4.988329891293693e-05,
554
+ "loss": 0.9032,
555
+ "step": 2418
556
+ },
557
+ {
558
+ "epoch": 0.03674391039827158,
559
+ "grad_norm": 1.1471630334854126,
560
+ "learning_rate": 4.987505333203608e-05,
561
+ "loss": 0.9002,
562
+ "step": 2449
563
+ },
564
+ {
565
+ "epoch": 0.03720902318812312,
566
+ "grad_norm": 1.1387799978256226,
567
+ "learning_rate": 4.9866527039539276e-05,
568
+ "loss": 0.8875,
569
+ "step": 2480
570
+ },
571
+ {
572
+ "epoch": 0.03767413597797466,
573
+ "grad_norm": 2.4223828315734863,
574
+ "learning_rate": 4.9857720131664594e-05,
575
+ "loss": 0.891,
576
+ "step": 2511
577
+ },
578
+ {
579
+ "epoch": 0.0381392487678262,
580
+ "grad_norm": 1.2967392206192017,
581
+ "learning_rate": 4.9848632707796773e-05,
582
+ "loss": 0.8886,
583
+ "step": 2542
584
+ },
585
+ {
586
+ "epoch": 0.038604361557677734,
587
+ "grad_norm": 1.3206738233566284,
588
+ "learning_rate": 4.9839264870486155e-05,
589
+ "loss": 0.8888,
590
+ "step": 2573
591
+ },
592
+ {
593
+ "epoch": 0.039069474347529276,
594
+ "grad_norm": 1.1495088338851929,
595
+ "learning_rate": 4.9829616725447526e-05,
596
+ "loss": 0.8853,
597
+ "step": 2604
598
+ },
599
+ {
600
+ "epoch": 0.03953458713738082,
601
+ "grad_norm": 1.116990089416504,
602
+ "learning_rate": 4.981968838155888e-05,
603
+ "loss": 0.8776,
604
+ "step": 2635
605
+ },
606
+ {
607
+ "epoch": 0.03999969992723235,
608
+ "grad_norm": 1.0922496318817139,
609
+ "learning_rate": 4.980947995086024e-05,
610
+ "loss": 0.8921,
611
+ "step": 2666
612
+ },
613
+ {
614
+ "epoch": 0.040464812717083895,
615
+ "grad_norm": 1.0340460538864136,
616
+ "learning_rate": 4.979899154855234e-05,
617
+ "loss": 0.8782,
618
+ "step": 2697
619
+ },
620
+ {
621
+ "epoch": 0.04092992550693543,
622
+ "grad_norm": 1.066490888595581,
623
+ "learning_rate": 4.9788223292995386e-05,
624
+ "loss": 0.8945,
625
+ "step": 2728
626
+ },
627
+ {
628
+ "epoch": 0.04139503829678697,
629
+ "grad_norm": 0.9310857057571411,
630
+ "learning_rate": 4.977717530570768e-05,
631
+ "loss": 0.8791,
632
+ "step": 2759
633
+ },
634
+ {
635
+ "epoch": 0.04186015108663851,
636
+ "grad_norm": 1.0934898853302002,
637
+ "learning_rate": 4.976584771136425e-05,
638
+ "loss": 0.8802,
639
+ "step": 2790
640
+ },
641
+ {
642
+ "epoch": 0.04232526387649005,
643
+ "grad_norm": 1.0999833345413208,
644
+ "learning_rate": 4.975424063779547e-05,
645
+ "loss": 0.8742,
646
+ "step": 2821
647
+ },
648
+ {
649
+ "epoch": 0.04279037666634159,
650
+ "grad_norm": 1.1188342571258545,
651
+ "learning_rate": 4.974235421598557e-05,
652
+ "loss": 0.8793,
653
+ "step": 2852
654
+ },
655
+ {
656
+ "epoch": 0.043255489456193126,
657
+ "grad_norm": 3.3688652515411377,
658
+ "learning_rate": 4.973018858007122e-05,
659
+ "loss": 0.8777,
660
+ "step": 2883
661
+ },
662
+ {
663
+ "epoch": 0.04372060224604467,
664
+ "grad_norm": 1.2814080715179443,
665
+ "learning_rate": 4.9717743867339963e-05,
666
+ "loss": 0.8654,
667
+ "step": 2914
668
+ },
669
+ {
670
+ "epoch": 0.0441857150358962,
671
+ "grad_norm": 0.9839452505111694,
672
+ "learning_rate": 4.9705020218228695e-05,
673
+ "loss": 0.8662,
674
+ "step": 2945
675
+ },
676
+ {
677
+ "epoch": 0.044650827825747745,
678
+ "grad_norm": 1.0929216146469116,
679
+ "learning_rate": 4.969201777632205e-05,
680
+ "loss": 0.8709,
681
+ "step": 2976
682
+ },
683
+ {
684
+ "epoch": 0.04511594061559928,
685
+ "grad_norm": 1.228953242301941,
686
+ "learning_rate": 4.9678736688350846e-05,
687
+ "loss": 0.8618,
688
+ "step": 3007
689
+ },
690
+ {
691
+ "epoch": 0.04558105340545082,
692
+ "grad_norm": 0.9897522926330566,
693
+ "learning_rate": 4.966517710419033e-05,
694
+ "loss": 0.8671,
695
+ "step": 3038
696
+ },
697
+ {
698
+ "epoch": 0.046046166195302364,
699
+ "grad_norm": 1.0972915887832642,
700
+ "learning_rate": 4.965133917685858e-05,
701
+ "loss": 0.8629,
702
+ "step": 3069
703
+ },
704
+ {
705
+ "epoch": 0.0465112789851539,
706
+ "grad_norm": 1.1006323099136353,
707
+ "learning_rate": 4.9637223062514714e-05,
708
+ "loss": 0.8613,
709
+ "step": 3100
710
+ },
711
+ {
712
+ "epoch": 0.04697639177500544,
713
+ "grad_norm": 1.2656612396240234,
714
+ "learning_rate": 4.962282892045718e-05,
715
+ "loss": 0.8852,
716
+ "step": 3131
717
+ },
718
+ {
719
+ "epoch": 0.047441504564856976,
720
+ "grad_norm": 0.9964312314987183,
721
+ "learning_rate": 4.9608156913121904e-05,
722
+ "loss": 0.8767,
723
+ "step": 3162
724
+ },
725
+ {
726
+ "epoch": 0.04790661735470852,
727
+ "grad_norm": 0.9271666407585144,
728
+ "learning_rate": 4.959320720608049e-05,
729
+ "loss": 0.8542,
730
+ "step": 3193
731
+ },
732
+ {
733
+ "epoch": 0.04837173014456005,
734
+ "grad_norm": 1.241882562637329,
735
+ "learning_rate": 4.9577979968038354e-05,
736
+ "loss": 0.8578,
737
+ "step": 3224
738
+ },
739
+ {
740
+ "epoch": 0.048836842934411595,
741
+ "grad_norm": 0.9396510720252991,
742
+ "learning_rate": 4.956247537083282e-05,
743
+ "loss": 0.8645,
744
+ "step": 3255
745
+ },
746
+ {
747
+ "epoch": 0.04930195572426314,
748
+ "grad_norm": 0.987626850605011,
749
+ "learning_rate": 4.9546693589431145e-05,
750
+ "loss": 0.8613,
751
+ "step": 3286
752
+ },
753
+ {
754
+ "epoch": 0.04976706851411467,
755
+ "grad_norm": 0.9133639931678772,
756
+ "learning_rate": 4.9530634801928595e-05,
757
+ "loss": 0.8601,
758
+ "step": 3317
759
+ },
760
+ {
761
+ "epoch": 0.050232181303966214,
762
+ "grad_norm": 0.784701943397522,
763
+ "learning_rate": 4.9514299189546395e-05,
764
+ "loss": 0.849,
765
+ "step": 3348
766
+ },
767
+ {
768
+ "epoch": 0.05069729409381775,
769
+ "grad_norm": 0.9144874811172485,
770
+ "learning_rate": 4.949768693662973e-05,
771
+ "loss": 0.8591,
772
+ "step": 3379
773
+ },
774
+ {
775
+ "epoch": 0.05116240688366929,
776
+ "grad_norm": 0.8831948041915894,
777
+ "learning_rate": 4.948079823064559e-05,
778
+ "loss": 0.8579,
779
+ "step": 3410
780
+ },
781
+ {
782
+ "epoch": 0.051627519673520826,
783
+ "grad_norm": 0.9127451181411743,
784
+ "learning_rate": 4.946363326218074e-05,
785
+ "loss": 0.8632,
786
+ "step": 3441
787
+ },
788
+ {
789
+ "epoch": 0.05209263246337237,
790
+ "grad_norm": 0.939115047454834,
791
+ "learning_rate": 4.9446192224939525e-05,
792
+ "loss": 0.8526,
793
+ "step": 3472
794
+ },
795
+ {
796
+ "epoch": 0.05255774525322391,
797
+ "grad_norm": 0.9380930066108704,
798
+ "learning_rate": 4.942847531574167e-05,
799
+ "loss": 0.8684,
800
+ "step": 3503
801
+ },
802
+ {
803
+ "epoch": 0.053022858043075445,
804
+ "grad_norm": 0.9686013460159302,
805
+ "learning_rate": 4.941048273452008e-05,
806
+ "loss": 0.8443,
807
+ "step": 3534
808
+ },
809
+ {
810
+ "epoch": 0.05348797083292699,
811
+ "grad_norm": 1.1282305717468262,
812
+ "learning_rate": 4.9392214684318605e-05,
813
+ "loss": 0.8612,
814
+ "step": 3565
815
+ },
816
+ {
817
+ "epoch": 0.05395308362277852,
818
+ "grad_norm": 0.9129716753959656,
819
+ "learning_rate": 4.93736713712897e-05,
820
+ "loss": 0.8535,
821
+ "step": 3596
822
+ },
823
+ {
824
+ "epoch": 0.054418196412630064,
825
+ "grad_norm": 1.0998603105545044,
826
+ "learning_rate": 4.9354853004692124e-05,
827
+ "loss": 0.8578,
828
+ "step": 3627
829
+ },
830
+ {
831
+ "epoch": 0.0548833092024816,
832
+ "grad_norm": 0.9199731945991516,
833
+ "learning_rate": 4.93357597968886e-05,
834
+ "loss": 0.8487,
835
+ "step": 3658
836
+ },
837
+ {
838
+ "epoch": 0.05534842199233314,
839
+ "grad_norm": 0.8940901160240173,
840
+ "learning_rate": 4.931639196334338e-05,
841
+ "loss": 0.8438,
842
+ "step": 3689
843
+ },
844
+ {
845
+ "epoch": 0.05581353478218468,
846
+ "grad_norm": 0.7387672066688538,
847
+ "learning_rate": 4.9296749722619826e-05,
848
+ "loss": 0.848,
849
+ "step": 3720
850
+ },
851
+ {
852
+ "epoch": 0.05627864757203622,
853
+ "grad_norm": 1.0379717350006104,
854
+ "learning_rate": 4.9276833296377966e-05,
855
+ "loss": 0.8433,
856
+ "step": 3751
857
+ },
858
+ {
859
+ "epoch": 0.05674376036188776,
860
+ "grad_norm": 1.020926594734192,
861
+ "learning_rate": 4.925664290937196e-05,
862
+ "loss": 0.8505,
863
+ "step": 3782
864
+ },
865
+ {
866
+ "epoch": 0.057208873151739295,
867
+ "grad_norm": 0.9726930856704712,
868
+ "learning_rate": 4.9236178789447576e-05,
869
+ "loss": 0.8533,
870
+ "step": 3813
871
+ },
872
+ {
873
+ "epoch": 0.05767398594159084,
874
+ "grad_norm": 2.112886905670166,
875
+ "learning_rate": 4.921544116753962e-05,
876
+ "loss": 0.8416,
877
+ "step": 3844
878
+ },
879
+ {
880
+ "epoch": 0.05813909873144237,
881
+ "grad_norm": 0.9767888188362122,
882
+ "learning_rate": 4.919443027766935e-05,
883
+ "loss": 0.8453,
884
+ "step": 3875
885
+ },
886
+ {
887
+ "epoch": 0.058604211521293914,
888
+ "grad_norm": 1.101620078086853,
889
+ "learning_rate": 4.91731463569418e-05,
890
+ "loss": 0.8509,
891
+ "step": 3906
892
+ },
893
+ {
894
+ "epoch": 0.059069324311145456,
895
+ "grad_norm": 0.8144866824150085,
896
+ "learning_rate": 4.915158964554312e-05,
897
+ "loss": 0.847,
898
+ "step": 3937
899
+ },
900
+ {
901
+ "epoch": 0.05953443710099699,
902
+ "grad_norm": 0.9438722729682922,
903
+ "learning_rate": 4.912976038673786e-05,
904
+ "loss": 0.8319,
905
+ "step": 3968
906
+ },
907
+ {
908
+ "epoch": 0.05999954989084853,
909
+ "grad_norm": 1.0541943311691284,
910
+ "learning_rate": 4.9107658826866254e-05,
911
+ "loss": 0.838,
912
+ "step": 3999
913
+ },
914
+ {
915
+ "epoch": 0.06046466268070007,
916
+ "grad_norm": 0.9656486511230469,
917
+ "learning_rate": 4.908528521534139e-05,
918
+ "loss": 0.8334,
919
+ "step": 4030
920
+ },
921
+ {
922
+ "epoch": 0.06092977547055161,
923
+ "grad_norm": 0.8693748116493225,
924
+ "learning_rate": 4.906263980464644e-05,
925
+ "loss": 0.8332,
926
+ "step": 4061
927
+ },
928
+ {
929
+ "epoch": 0.061394888260403145,
930
+ "grad_norm": 0.8312646746635437,
931
+ "learning_rate": 4.903972285033178e-05,
932
+ "loss": 0.8364,
933
+ "step": 4092
934
+ },
935
+ {
936
+ "epoch": 0.06186000105025469,
937
+ "grad_norm": 0.9871633648872375,
938
+ "learning_rate": 4.901653461101213e-05,
939
+ "loss": 0.8344,
940
+ "step": 4123
941
+ },
942
+ {
943
+ "epoch": 0.06232511384010623,
944
+ "grad_norm": 1.1861239671707153,
945
+ "learning_rate": 4.8993075348363626e-05,
946
+ "loss": 0.8386,
947
+ "step": 4154
948
+ },
949
+ {
950
+ "epoch": 0.06279022662995777,
951
+ "grad_norm": 0.7850369215011597,
952
+ "learning_rate": 4.896934532712084e-05,
953
+ "loss": 0.8361,
954
+ "step": 4185
955
+ },
956
+ {
957
+ "epoch": 0.0632553394198093,
958
+ "grad_norm": 0.888320803642273,
959
+ "learning_rate": 4.8945344815073846e-05,
960
+ "loss": 0.8309,
961
+ "step": 4216
962
+ },
963
+ {
964
+ "epoch": 0.06372045220966084,
965
+ "grad_norm": 1.0985304117202759,
966
+ "learning_rate": 4.892107408306516e-05,
967
+ "loss": 0.8289,
968
+ "step": 4247
969
+ },
970
+ {
971
+ "epoch": 0.06418556499951238,
972
+ "grad_norm": 0.980798065662384,
973
+ "learning_rate": 4.889653340498669e-05,
974
+ "loss": 0.8232,
975
+ "step": 4278
976
+ },
977
+ {
978
+ "epoch": 0.06465067778936393,
979
+ "grad_norm": 0.7904775142669678,
980
+ "learning_rate": 4.8871723057776664e-05,
981
+ "loss": 0.8253,
982
+ "step": 4309
983
+ },
984
+ {
985
+ "epoch": 0.06511579057921546,
986
+ "grad_norm": 0.9444935321807861,
987
+ "learning_rate": 4.8846643321416476e-05,
988
+ "loss": 0.8409,
989
+ "step": 4340
990
+ },
991
+ {
992
+ "epoch": 0.065580903369067,
993
+ "grad_norm": 0.9295307993888855,
994
+ "learning_rate": 4.882129447892753e-05,
995
+ "loss": 0.8429,
996
+ "step": 4371
997
+ },
998
+ {
999
+ "epoch": 0.06604601615891854,
1000
+ "grad_norm": 0.9563235640525818,
1001
+ "learning_rate": 4.8795676816368076e-05,
1002
+ "loss": 0.8203,
1003
+ "step": 4402
1004
+ },
1005
+ {
1006
+ "epoch": 0.06651112894877008,
1007
+ "grad_norm": 0.7902786135673523,
1008
+ "learning_rate": 4.876979062282995e-05,
1009
+ "loss": 0.823,
1010
+ "step": 4433
1011
+ },
1012
+ {
1013
+ "epoch": 0.06697624173862161,
1014
+ "grad_norm": 0.9005814790725708,
1015
+ "learning_rate": 4.8743636190435325e-05,
1016
+ "loss": 0.8262,
1017
+ "step": 4464
1018
+ },
1019
+ {
1020
+ "epoch": 0.06744135452847315,
1021
+ "grad_norm": 0.9644972085952759,
1022
+ "learning_rate": 4.871721381433344e-05,
1023
+ "loss": 0.8505,
1024
+ "step": 4495
1025
+ },
1026
+ {
1027
+ "epoch": 0.0679064673183247,
1028
+ "grad_norm": 0.8087597489356995,
1029
+ "learning_rate": 4.869052379269719e-05,
1030
+ "loss": 0.8303,
1031
+ "step": 4526
1032
+ },
1033
+ {
1034
+ "epoch": 0.06837158010817623,
1035
+ "grad_norm": 1.06015145778656,
1036
+ "learning_rate": 4.866356642671985e-05,
1037
+ "loss": 0.841,
1038
+ "step": 4557
1039
+ },
1040
+ {
1041
+ "epoch": 0.06883669289802777,
1042
+ "grad_norm": 0.9413964152336121,
1043
+ "learning_rate": 4.8636342020611634e-05,
1044
+ "loss": 0.8297,
1045
+ "step": 4588
1046
+ },
1047
+ {
1048
+ "epoch": 0.06930180568787932,
1049
+ "grad_norm": 0.7894837260246277,
1050
+ "learning_rate": 4.860885088159626e-05,
1051
+ "loss": 0.8313,
1052
+ "step": 4619
1053
+ },
1054
+ {
1055
+ "epoch": 0.06976691847773085,
1056
+ "grad_norm": 1.7959920167922974,
1057
+ "learning_rate": 4.858109331990751e-05,
1058
+ "loss": 0.8343,
1059
+ "step": 4650
1060
+ },
1061
+ {
1062
+ "epoch": 0.07023203126758239,
1063
+ "grad_norm": 0.9917001128196716,
1064
+ "learning_rate": 4.855306964878567e-05,
1065
+ "loss": 0.8324,
1066
+ "step": 4681
1067
+ },
1068
+ {
1069
+ "epoch": 0.07069714405743392,
1070
+ "grad_norm": 0.8763757944107056,
1071
+ "learning_rate": 4.8524780184474084e-05,
1072
+ "loss": 0.8245,
1073
+ "step": 4712
1074
+ },
1075
+ {
1076
+ "epoch": 0.07116225684728547,
1077
+ "grad_norm": 0.7827804684638977,
1078
+ "learning_rate": 4.8496225246215496e-05,
1079
+ "loss": 0.8135,
1080
+ "step": 4743
1081
+ },
1082
+ {
1083
+ "epoch": 0.071627369637137,
1084
+ "grad_norm": 0.7496729493141174,
1085
+ "learning_rate": 4.8467405156248505e-05,
1086
+ "loss": 0.8218,
1087
+ "step": 4774
1088
+ },
1089
+ {
1090
+ "epoch": 0.07209248242698854,
1091
+ "grad_norm": 0.9856346249580383,
1092
+ "learning_rate": 4.843832023980392e-05,
1093
+ "loss": 0.8206,
1094
+ "step": 4805
1095
+ },
1096
+ {
1097
+ "epoch": 0.07255759521684009,
1098
+ "grad_norm": 0.8173674941062927,
1099
+ "learning_rate": 4.840897082510106e-05,
1100
+ "loss": 0.8174,
1101
+ "step": 4836
1102
+ },
1103
+ {
1104
+ "epoch": 0.07302270800669163,
1105
+ "grad_norm": 0.943686842918396,
1106
+ "learning_rate": 4.8379357243344084e-05,
1107
+ "loss": 0.8297,
1108
+ "step": 4867
1109
+ },
1110
+ {
1111
+ "epoch": 0.07348782079654316,
1112
+ "grad_norm": 0.8119473457336426,
1113
+ "learning_rate": 4.8349479828718236e-05,
1114
+ "loss": 0.8255,
1115
+ "step": 4898
1116
+ },
1117
+ {
1118
+ "epoch": 0.0739529335863947,
1119
+ "grad_norm": 2.7093794345855713,
1120
+ "learning_rate": 4.8319338918386075e-05,
1121
+ "loss": 0.8145,
1122
+ "step": 4929
1123
+ },
1124
+ {
1125
+ "epoch": 0.07441804637624624,
1126
+ "grad_norm": 0.9842637777328491,
1127
+ "learning_rate": 4.828893485248369e-05,
1128
+ "loss": 0.8116,
1129
+ "step": 4960
1130
+ },
1131
+ {
1132
+ "epoch": 0.07488315916609778,
1133
+ "grad_norm": 0.9502723813056946,
1134
+ "learning_rate": 4.825826797411682e-05,
1135
+ "loss": 0.8222,
1136
+ "step": 4991
1137
+ },
1138
+ {
1139
+ "epoch": 0.07534827195594931,
1140
+ "grad_norm": 0.8006568551063538,
1141
+ "learning_rate": 4.822733862935702e-05,
1142
+ "loss": 0.8303,
1143
+ "step": 5022
1144
+ },
1145
+ {
1146
+ "epoch": 0.07581338474580086,
1147
+ "grad_norm": 0.7108177542686462,
1148
+ "learning_rate": 4.819614716723775e-05,
1149
+ "loss": 0.8202,
1150
+ "step": 5053
1151
+ },
1152
+ {
1153
+ "epoch": 0.0762784975356524,
1154
+ "grad_norm": 0.7464533448219299,
1155
+ "learning_rate": 4.8164693939750425e-05,
1156
+ "loss": 0.8035,
1157
+ "step": 5084
1158
+ },
1159
+ {
1160
+ "epoch": 0.07674361032550393,
1161
+ "grad_norm": 0.815014123916626,
1162
+ "learning_rate": 4.813297930184042e-05,
1163
+ "loss": 0.8161,
1164
+ "step": 5115
1165
+ },
1166
+ {
1167
+ "epoch": 0.07720872311535547,
1168
+ "grad_norm": 0.8991546034812927,
1169
+ "learning_rate": 4.810100361140314e-05,
1170
+ "loss": 0.8013,
1171
+ "step": 5146
1172
+ },
1173
+ {
1174
+ "epoch": 0.07767383590520702,
1175
+ "grad_norm": 1.0259745121002197,
1176
+ "learning_rate": 4.8068767229279885e-05,
1177
+ "loss": 0.8069,
1178
+ "step": 5177
1179
+ },
1180
+ {
1181
+ "epoch": 0.07813894869505855,
1182
+ "grad_norm": 0.8683953285217285,
1183
+ "learning_rate": 4.8036270519253854e-05,
1184
+ "loss": 0.8053,
1185
+ "step": 5208
1186
+ },
1187
+ {
1188
+ "epoch": 0.07860406148491009,
1189
+ "grad_norm": 0.6831669211387634,
1190
+ "learning_rate": 4.8003513848046e-05,
1191
+ "loss": 0.8183,
1192
+ "step": 5239
1193
+ },
1194
+ {
1195
+ "epoch": 0.07906917427476164,
1196
+ "grad_norm": 1.005091667175293,
1197
+ "learning_rate": 4.79704975853109e-05,
1198
+ "loss": 0.8145,
1199
+ "step": 5270
1200
+ },
1201
+ {
1202
+ "epoch": 0.07953428706461317,
1203
+ "grad_norm": 1.0526143312454224,
1204
+ "learning_rate": 4.793722210363262e-05,
1205
+ "loss": 0.8179,
1206
+ "step": 5301
1207
+ },
1208
+ {
1209
+ "epoch": 0.0799993998544647,
1210
+ "grad_norm": 0.9000487327575684,
1211
+ "learning_rate": 4.7903687778520414e-05,
1212
+ "loss": 0.8191,
1213
+ "step": 5332
1214
+ },
1215
+ {
1216
+ "epoch": 0.08046451264431624,
1217
+ "grad_norm": 0.7542000412940979,
1218
+ "learning_rate": 4.7869894988404593e-05,
1219
+ "loss": 0.8129,
1220
+ "step": 5363
1221
+ },
1222
+ {
1223
+ "epoch": 0.08092962543416779,
1224
+ "grad_norm": 0.7871935963630676,
1225
+ "learning_rate": 4.783584411463221e-05,
1226
+ "loss": 0.8008,
1227
+ "step": 5394
1228
+ },
1229
+ {
1230
+ "epoch": 0.08139473822401933,
1231
+ "grad_norm": 0.9389820098876953,
1232
+ "learning_rate": 4.780153554146274e-05,
1233
+ "loss": 0.8084,
1234
+ "step": 5425
1235
+ },
1236
+ {
1237
+ "epoch": 0.08185985101387086,
1238
+ "grad_norm": 0.8348682522773743,
1239
+ "learning_rate": 4.7766969656063766e-05,
1240
+ "loss": 0.8098,
1241
+ "step": 5456
1242
+ },
1243
+ {
1244
+ "epoch": 0.08232496380372241,
1245
+ "grad_norm": 0.7959926724433899,
1246
+ "learning_rate": 4.773214684850662e-05,
1247
+ "loss": 0.8092,
1248
+ "step": 5487
1249
+ },
1250
+ {
1251
+ "epoch": 0.08279007659357394,
1252
+ "grad_norm": 0.8719795346260071,
1253
+ "learning_rate": 4.769706751176193e-05,
1254
+ "loss": 0.812,
1255
+ "step": 5518
1256
+ },
1257
+ {
1258
+ "epoch": 0.08325518938342548,
1259
+ "grad_norm": 0.7396957278251648,
1260
+ "learning_rate": 4.7661732041695264e-05,
1261
+ "loss": 0.8052,
1262
+ "step": 5549
1263
+ },
1264
+ {
1265
+ "epoch": 0.08372030217327701,
1266
+ "grad_norm": 0.7120716571807861,
1267
+ "learning_rate": 4.762614083706258e-05,
1268
+ "loss": 0.8198,
1269
+ "step": 5580
1270
+ },
1271
+ {
1272
+ "epoch": 0.08418541496312856,
1273
+ "grad_norm": 0.6915568113327026,
1274
+ "learning_rate": 4.759029429950581e-05,
1275
+ "loss": 0.8167,
1276
+ "step": 5611
1277
+ },
1278
+ {
1279
+ "epoch": 0.0846505277529801,
1280
+ "grad_norm": 0.7923029661178589,
1281
+ "learning_rate": 4.7554192833548235e-05,
1282
+ "loss": 0.8102,
1283
+ "step": 5642
1284
+ },
1285
+ {
1286
+ "epoch": 0.08511564054283163,
1287
+ "grad_norm": 0.9134017825126648,
1288
+ "learning_rate": 4.751783684659e-05,
1289
+ "loss": 0.8044,
1290
+ "step": 5673
1291
+ },
1292
+ {
1293
+ "epoch": 0.08558075333268318,
1294
+ "grad_norm": 0.6910101771354675,
1295
+ "learning_rate": 4.748122674890348e-05,
1296
+ "loss": 0.8033,
1297
+ "step": 5704
1298
+ },
1299
+ {
1300
+ "epoch": 0.08604586612253472,
1301
+ "grad_norm": 1.0083701610565186,
1302
+ "learning_rate": 4.7444362953628654e-05,
1303
+ "loss": 0.7984,
1304
+ "step": 5735
1305
+ },
1306
+ {
1307
+ "epoch": 0.08651097891238625,
1308
+ "grad_norm": 0.7578200697898865,
1309
+ "learning_rate": 4.7407245876768424e-05,
1310
+ "loss": 0.8028,
1311
+ "step": 5766
1312
+ },
1313
+ {
1314
+ "epoch": 0.08697609170223779,
1315
+ "grad_norm": 0.6932199001312256,
1316
+ "learning_rate": 4.736987593718397e-05,
1317
+ "loss": 0.7913,
1318
+ "step": 5797
1319
+ },
1320
+ {
1321
+ "epoch": 0.08744120449208934,
1322
+ "grad_norm": 0.8898211717605591,
1323
+ "learning_rate": 4.733225355658999e-05,
1324
+ "loss": 0.8087,
1325
+ "step": 5828
1326
+ },
1327
+ {
1328
+ "epoch": 0.08790631728194087,
1329
+ "grad_norm": 0.8452892303466797,
1330
+ "learning_rate": 4.7294379159549926e-05,
1331
+ "loss": 0.798,
1332
+ "step": 5859
1333
+ },
1334
+ {
1335
+ "epoch": 0.0883714300717924,
1336
+ "grad_norm": 0.7200170159339905,
1337
+ "learning_rate": 4.725625317347119e-05,
1338
+ "loss": 0.8033,
1339
+ "step": 5890
1340
+ },
1341
+ {
1342
+ "epoch": 0.08883654286164396,
1343
+ "grad_norm": 0.9801698923110962,
1344
+ "learning_rate": 4.7217876028600374e-05,
1345
+ "loss": 0.801,
1346
+ "step": 5921
1347
+ },
1348
+ {
1349
+ "epoch": 0.08930165565149549,
1350
+ "grad_norm": 0.6971285939216614,
1351
+ "learning_rate": 4.717924815801832e-05,
1352
+ "loss": 0.8004,
1353
+ "step": 5952
1354
+ },
1355
+ {
1356
+ "epoch": 0.08976676844134703,
1357
+ "grad_norm": 0.6692901253700256,
1358
+ "learning_rate": 4.714036999763532e-05,
1359
+ "loss": 0.8079,
1360
+ "step": 5983
1361
+ },
1362
+ {
1363
+ "epoch": 0.09023188123119856,
1364
+ "grad_norm": 0.7357479929924011,
1365
+ "learning_rate": 4.7101241986186116e-05,
1366
+ "loss": 0.8047,
1367
+ "step": 6014
1368
+ },
1369
+ {
1370
+ "epoch": 0.09069699402105011,
1371
+ "grad_norm": 0.9808568358421326,
1372
+ "learning_rate": 4.7061864565225e-05,
1373
+ "loss": 0.7943,
1374
+ "step": 6045
1375
+ },
1376
+ {
1377
+ "epoch": 0.09116210681090164,
1378
+ "grad_norm": 0.8038450479507446,
1379
+ "learning_rate": 4.702223817912081e-05,
1380
+ "loss": 0.7962,
1381
+ "step": 6076
1382
+ },
1383
+ {
1384
+ "epoch": 0.09162721960075318,
1385
+ "grad_norm": 1.1002798080444336,
1386
+ "learning_rate": 4.698236327505195e-05,
1387
+ "loss": 0.8133,
1388
+ "step": 6107
1389
+ },
1390
+ {
1391
+ "epoch": 0.09209233239060473,
1392
+ "grad_norm": 0.8928295373916626,
1393
+ "learning_rate": 4.694224030300127e-05,
1394
+ "loss": 0.7968,
1395
+ "step": 6138
1396
+ },
1397
+ {
1398
+ "epoch": 0.09255744518045626,
1399
+ "grad_norm": 0.8596677184104919,
1400
+ "learning_rate": 4.690186971575107e-05,
1401
+ "loss": 0.8087,
1402
+ "step": 6169
1403
+ },
1404
+ {
1405
+ "epoch": 0.0930225579703078,
1406
+ "grad_norm": 1.0481047630310059,
1407
+ "learning_rate": 4.6861251968877916e-05,
1408
+ "loss": 0.7874,
1409
+ "step": 6200
1410
+ },
1411
+ {
1412
+ "epoch": 0.09348767076015933,
1413
+ "grad_norm": 0.7633193731307983,
1414
+ "learning_rate": 4.68203875207476e-05,
1415
+ "loss": 0.7945,
1416
+ "step": 6231
1417
+ },
1418
+ {
1419
+ "epoch": 0.09395278355001088,
1420
+ "grad_norm": 0.6666761040687561,
1421
+ "learning_rate": 4.677927683250983e-05,
1422
+ "loss": 0.7999,
1423
+ "step": 6262
1424
+ },
1425
+ {
1426
+ "epoch": 0.09441789633986242,
1427
+ "grad_norm": 0.7834581732749939,
1428
+ "learning_rate": 4.6737920368093156e-05,
1429
+ "loss": 0.8004,
1430
+ "step": 6293
1431
+ },
1432
+ {
1433
+ "epoch": 0.09488300912971395,
1434
+ "grad_norm": 0.8548229932785034,
1435
+ "learning_rate": 4.669631859419965e-05,
1436
+ "loss": 0.7983,
1437
+ "step": 6324
1438
+ },
1439
+ {
1440
+ "epoch": 0.0953481219195655,
1441
+ "grad_norm": 0.8321638703346252,
1442
+ "learning_rate": 4.6654471980299676e-05,
1443
+ "loss": 0.8103,
1444
+ "step": 6355
1445
+ },
1446
+ {
1447
+ "epoch": 0.09581323470941704,
1448
+ "grad_norm": 0.8134599924087524,
1449
+ "learning_rate": 4.661238099862658e-05,
1450
+ "loss": 0.8042,
1451
+ "step": 6386
1452
+ },
1453
+ {
1454
+ "epoch": 0.09627834749926857,
1455
+ "grad_norm": 0.9421968460083008,
1456
+ "learning_rate": 4.657004612417138e-05,
1457
+ "loss": 0.8028,
1458
+ "step": 6417
1459
+ },
1460
+ {
1461
+ "epoch": 0.0967434602891201,
1462
+ "grad_norm": 0.6998574137687683,
1463
+ "learning_rate": 4.6527467834677374e-05,
1464
+ "loss": 0.809,
1465
+ "step": 6448
1466
+ },
1467
+ {
1468
+ "epoch": 0.09720857307897166,
1469
+ "grad_norm": 0.7347880005836487,
1470
+ "learning_rate": 4.648464661063478e-05,
1471
+ "loss": 0.8115,
1472
+ "step": 6479
1473
+ },
1474
+ {
1475
+ "epoch": 0.09767368586882319,
1476
+ "grad_norm": 0.8895875811576843,
1477
+ "learning_rate": 4.6441582935275264e-05,
1478
+ "loss": 0.8023,
1479
+ "step": 6510
1480
+ },
1481
+ {
1482
+ "epoch": 0.09813879865867473,
1483
+ "grad_norm": 0.588324785232544,
1484
+ "learning_rate": 4.6398277294566586e-05,
1485
+ "loss": 0.7958,
1486
+ "step": 6541
1487
+ },
1488
+ {
1489
+ "epoch": 0.09860391144852627,
1490
+ "grad_norm": 0.8145986199378967,
1491
+ "learning_rate": 4.6354730177207e-05,
1492
+ "loss": 0.8018,
1493
+ "step": 6572
1494
+ },
1495
+ {
1496
+ "epoch": 0.09906902423837781,
1497
+ "grad_norm": 0.659679651260376,
1498
+ "learning_rate": 4.6310942074619787e-05,
1499
+ "loss": 0.7904,
1500
+ "step": 6603
1501
+ },
1502
+ {
1503
+ "epoch": 0.09953413702822934,
1504
+ "grad_norm": 0.7664335370063782,
1505
+ "learning_rate": 4.626691348094777e-05,
1506
+ "loss": 0.7953,
1507
+ "step": 6634
1508
+ },
1509
+ {
1510
+ "epoch": 0.09999924981808088,
1511
+ "grad_norm": 0.630374550819397,
1512
+ "learning_rate": 4.622264489304762e-05,
1513
+ "loss": 0.7834,
1514
+ "step": 6665
1515
+ },
1516
+ {
1517
+ "epoch": 0.10046436260793243,
1518
+ "grad_norm": 0.8089181780815125,
1519
+ "learning_rate": 4.617813681048434e-05,
1520
+ "loss": 0.7939,
1521
+ "step": 6696
1522
+ },
1523
+ {
1524
+ "epoch": 0.10092947539778396,
1525
+ "grad_norm": 0.7410175204277039,
1526
+ "learning_rate": 4.61333897355256e-05,
1527
+ "loss": 0.7997,
1528
+ "step": 6727
1529
+ },
1530
+ {
1531
+ "epoch": 0.1013945881876355,
1532
+ "grad_norm": 0.8867741823196411,
1533
+ "learning_rate": 4.608840417313604e-05,
1534
+ "loss": 0.7876,
1535
+ "step": 6758
1536
+ },
1537
+ {
1538
+ "epoch": 0.10185970097748705,
1539
+ "grad_norm": 0.8592618107795715,
1540
+ "learning_rate": 4.6043180630971646e-05,
1541
+ "loss": 0.7915,
1542
+ "step": 6789
1543
+ },
1544
+ {
1545
+ "epoch": 0.10232481376733858,
1546
+ "grad_norm": 0.7498304843902588,
1547
+ "learning_rate": 4.599771961937391e-05,
1548
+ "loss": 0.7953,
1549
+ "step": 6820
1550
+ },
1551
+ {
1552
+ "epoch": 0.10278992655719012,
1553
+ "grad_norm": 0.7439833879470825,
1554
+ "learning_rate": 4.5952021651364204e-05,
1555
+ "loss": 0.7932,
1556
+ "step": 6851
1557
+ },
1558
+ {
1559
+ "epoch": 0.10325503934704165,
1560
+ "grad_norm": 0.7184897065162659,
1561
+ "learning_rate": 4.590608724263786e-05,
1562
+ "loss": 0.7905,
1563
+ "step": 6882
1564
+ },
1565
+ {
1566
+ "epoch": 0.1037201521368932,
1567
+ "grad_norm": 0.7455788254737854,
1568
+ "learning_rate": 4.585991691155845e-05,
1569
+ "loss": 0.7822,
1570
+ "step": 6913
1571
+ },
1572
+ {
1573
+ "epoch": 0.10418526492674474,
1574
+ "grad_norm": 0.7429169416427612,
1575
+ "learning_rate": 4.581351117915188e-05,
1576
+ "loss": 0.7895,
1577
+ "step": 6944
1578
+ },
1579
+ {
1580
+ "epoch": 0.10465037771659627,
1581
+ "grad_norm": 0.708569347858429,
1582
+ "learning_rate": 4.5766870569100534e-05,
1583
+ "loss": 0.7922,
1584
+ "step": 6975
1585
+ },
1586
+ {
1587
+ "epoch": 0.10511549050644782,
1588
+ "grad_norm": 0.6906721591949463,
1589
+ "learning_rate": 4.571999560773736e-05,
1590
+ "loss": 0.7932,
1591
+ "step": 7006
1592
+ },
1593
+ {
1594
+ "epoch": 0.10558060329629936,
1595
+ "grad_norm": 0.7495471835136414,
1596
+ "learning_rate": 4.5672886824039915e-05,
1597
+ "loss": 0.7849,
1598
+ "step": 7037
1599
+ },
1600
+ {
1601
+ "epoch": 0.10604571608615089,
1602
+ "grad_norm": 0.7219502329826355,
1603
+ "learning_rate": 4.5625544749624435e-05,
1604
+ "loss": 0.7842,
1605
+ "step": 7068
1606
+ },
1607
+ {
1608
+ "epoch": 0.10651082887600243,
1609
+ "grad_norm": 0.7211415767669678,
1610
+ "learning_rate": 4.5577969918739794e-05,
1611
+ "loss": 0.7822,
1612
+ "step": 7099
1613
+ },
1614
+ {
1615
+ "epoch": 0.10697594166585397,
1616
+ "grad_norm": 0.7900408506393433,
1617
+ "learning_rate": 4.5530162868261486e-05,
1618
+ "loss": 0.7956,
1619
+ "step": 7130
1620
+ },
1621
+ {
1622
+ "epoch": 0.10744105445570551,
1623
+ "grad_norm": 0.8071913123130798,
1624
+ "learning_rate": 4.548212413768558e-05,
1625
+ "loss": 0.7884,
1626
+ "step": 7161
1627
+ },
1628
+ {
1629
+ "epoch": 0.10790616724555704,
1630
+ "grad_norm": 0.6667525172233582,
1631
+ "learning_rate": 4.543385426912261e-05,
1632
+ "loss": 0.7815,
1633
+ "step": 7192
1634
+ },
1635
+ {
1636
+ "epoch": 0.1083712800354086,
1637
+ "grad_norm": 0.8470203280448914,
1638
+ "learning_rate": 4.53853538072915e-05,
1639
+ "loss": 0.793,
1640
+ "step": 7223
1641
+ },
1642
+ {
1643
+ "epoch": 0.10883639282526013,
1644
+ "grad_norm": 0.7718335390090942,
1645
+ "learning_rate": 4.533662329951336e-05,
1646
+ "loss": 0.787,
1647
+ "step": 7254
1648
+ },
1649
+ {
1650
+ "epoch": 0.10930150561511166,
1651
+ "grad_norm": 0.67174232006073,
1652
+ "learning_rate": 4.528766329570536e-05,
1653
+ "loss": 0.7859,
1654
+ "step": 7285
1655
+ },
1656
+ {
1657
+ "epoch": 0.1097666184049632,
1658
+ "grad_norm": 0.9030664563179016,
1659
+ "learning_rate": 4.523847434837447e-05,
1660
+ "loss": 0.785,
1661
+ "step": 7316
1662
+ },
1663
+ {
1664
+ "epoch": 0.11023173119481475,
1665
+ "grad_norm": 0.6775389313697815,
1666
+ "learning_rate": 4.518905701261128e-05,
1667
+ "loss": 0.7835,
1668
+ "step": 7347
1669
+ },
1670
+ {
1671
+ "epoch": 0.11069684398466628,
1672
+ "grad_norm": 0.6373648643493652,
1673
+ "learning_rate": 4.5139411846083715e-05,
1674
+ "loss": 0.7816,
1675
+ "step": 7378
1676
+ },
1677
+ {
1678
+ "epoch": 0.11116195677451782,
1679
+ "grad_norm": 0.7260624170303345,
1680
+ "learning_rate": 4.508953940903073e-05,
1681
+ "loss": 0.7878,
1682
+ "step": 7409
1683
+ },
1684
+ {
1685
+ "epoch": 0.11162706956436937,
1686
+ "grad_norm": 0.7170141935348511,
1687
+ "learning_rate": 4.5039440264255994e-05,
1688
+ "loss": 0.7754,
1689
+ "step": 7440
1690
+ },
1691
+ {
1692
+ "epoch": 0.1120921823542209,
1693
+ "grad_norm": 0.7276513576507568,
1694
+ "learning_rate": 4.498911497712155e-05,
1695
+ "loss": 0.7854,
1696
+ "step": 7471
1697
+ },
1698
+ {
1699
+ "epoch": 0.11255729514407244,
1700
+ "grad_norm": 0.7349756956100464,
1701
+ "learning_rate": 4.493856411554142e-05,
1702
+ "loss": 0.791,
1703
+ "step": 7502
1704
+ },
1705
+ {
1706
+ "epoch": 0.11302240793392397,
1707
+ "grad_norm": 0.8739349246025085,
1708
+ "learning_rate": 4.4887788249975206e-05,
1709
+ "loss": 0.7926,
1710
+ "step": 7533
1711
+ },
1712
+ {
1713
+ "epoch": 0.11348752072377552,
1714
+ "grad_norm": 0.7612133622169495,
1715
+ "learning_rate": 4.4836787953421656e-05,
1716
+ "loss": 0.7954,
1717
+ "step": 7564
1718
+ },
1719
+ {
1720
+ "epoch": 0.11395263351362706,
1721
+ "grad_norm": 0.7819641828536987,
1722
+ "learning_rate": 4.478556380141218e-05,
1723
+ "loss": 0.7813,
1724
+ "step": 7595
1725
+ },
1726
+ {
1727
+ "epoch": 0.11441774630347859,
1728
+ "grad_norm": 0.789462685585022,
1729
+ "learning_rate": 4.4734116372004375e-05,
1730
+ "loss": 0.7982,
1731
+ "step": 7626
1732
+ },
1733
+ {
1734
+ "epoch": 0.11488285909333014,
1735
+ "grad_norm": 0.677481472492218,
1736
+ "learning_rate": 4.4682446245775477e-05,
1737
+ "loss": 0.778,
1738
+ "step": 7657
1739
+ },
1740
+ {
1741
+ "epoch": 0.11534797188318167,
1742
+ "grad_norm": 0.8899239301681519,
1743
+ "learning_rate": 4.463055400581586e-05,
1744
+ "loss": 0.7841,
1745
+ "step": 7688
1746
+ },
1747
+ {
1748
+ "epoch": 0.11581308467303321,
1749
+ "grad_norm": 0.9114879369735718,
1750
+ "learning_rate": 4.4578440237722374e-05,
1751
+ "loss": 0.7962,
1752
+ "step": 7719
1753
+ },
1754
+ {
1755
+ "epoch": 0.11627819746288474,
1756
+ "grad_norm": 0.7342079877853394,
1757
+ "learning_rate": 4.452610552959183e-05,
1758
+ "loss": 0.784,
1759
+ "step": 7750
1760
+ },
1761
+ {
1762
+ "epoch": 0.1167433102527363,
1763
+ "grad_norm": 0.7678495049476624,
1764
+ "learning_rate": 4.447355047201428e-05,
1765
+ "loss": 0.7831,
1766
+ "step": 7781
1767
+ },
1768
+ {
1769
+ "epoch": 0.11720842304258783,
1770
+ "grad_norm": 0.8216970562934875,
1771
+ "learning_rate": 4.4420775658066414e-05,
1772
+ "loss": 0.7782,
1773
+ "step": 7812
1774
+ },
1775
+ {
1776
+ "epoch": 0.11767353583243936,
1777
+ "grad_norm": 0.8297589421272278,
1778
+ "learning_rate": 4.436778168330484e-05,
1779
+ "loss": 0.7851,
1780
+ "step": 7843
1781
+ },
1782
+ {
1783
+ "epoch": 0.11813864862229091,
1784
+ "grad_norm": 0.6707519292831421,
1785
+ "learning_rate": 4.4314569145759353e-05,
1786
+ "loss": 0.7801,
1787
+ "step": 7874
1788
+ },
1789
+ {
1790
+ "epoch": 0.11860376141214245,
1791
+ "grad_norm": 0.6816626787185669,
1792
+ "learning_rate": 4.42611386459262e-05,
1793
+ "loss": 0.7872,
1794
+ "step": 7905
1795
+ },
1796
+ {
1797
+ "epoch": 0.11906887420199398,
1798
+ "grad_norm": 0.9005252122879028,
1799
+ "learning_rate": 4.420749078676133e-05,
1800
+ "loss": 0.7936,
1801
+ "step": 7936
1802
+ },
1803
+ {
1804
+ "epoch": 0.11953398699184552,
1805
+ "grad_norm": 0.8328778147697449,
1806
+ "learning_rate": 4.4153626173673516e-05,
1807
+ "loss": 0.7786,
1808
+ "step": 7967
1809
+ },
1810
+ {
1811
+ "epoch": 0.11999909978169707,
1812
+ "grad_norm": 0.8410969376564026,
1813
+ "learning_rate": 4.409954541451762e-05,
1814
+ "loss": 0.7848,
1815
+ "step": 7998
1816
+ },
1817
+ {
1818
+ "epoch": 0.1204642125715486,
1819
+ "grad_norm": 0.7608590722084045,
1820
+ "learning_rate": 4.404524911958764e-05,
1821
+ "loss": 0.7834,
1822
+ "step": 8029
1823
+ },
1824
+ {
1825
+ "epoch": 0.12092932536140014,
1826
+ "grad_norm": 0.8817543983459473,
1827
+ "learning_rate": 4.399073790160989e-05,
1828
+ "loss": 0.7852,
1829
+ "step": 8060
1830
+ },
1831
+ {
1832
+ "epoch": 0.12139443815125169,
1833
+ "grad_norm": 0.7609240412712097,
1834
+ "learning_rate": 4.393601237573607e-05,
1835
+ "loss": 0.7766,
1836
+ "step": 8091
1837
+ },
1838
+ {
1839
+ "epoch": 0.12185955094110322,
1840
+ "grad_norm": 1.1703492403030396,
1841
+ "learning_rate": 4.388107315953628e-05,
1842
+ "loss": 0.7844,
1843
+ "step": 8122
1844
+ },
1845
+ {
1846
+ "epoch": 0.12232466373095476,
1847
+ "grad_norm": 0.7617055773735046,
1848
+ "learning_rate": 4.382592087299212e-05,
1849
+ "loss": 0.7806,
1850
+ "step": 8153
1851
+ },
1852
+ {
1853
+ "epoch": 0.12278977652080629,
1854
+ "grad_norm": 0.7049508690834045,
1855
+ "learning_rate": 4.377055613848964e-05,
1856
+ "loss": 0.7807,
1857
+ "step": 8184
1858
+ },
1859
+ {
1860
+ "epoch": 0.12325488931065784,
1861
+ "grad_norm": 0.7807313203811646,
1862
+ "learning_rate": 4.3714979580812355e-05,
1863
+ "loss": 0.7825,
1864
+ "step": 8215
1865
+ },
1866
+ {
1867
+ "epoch": 0.12372000210050937,
1868
+ "grad_norm": 0.9308986067771912,
1869
+ "learning_rate": 4.365919182713416e-05,
1870
+ "loss": 0.7803,
1871
+ "step": 8246
1872
+ },
1873
+ {
1874
+ "epoch": 0.12418511489036091,
1875
+ "grad_norm": 0.7101467251777649,
1876
+ "learning_rate": 4.360319350701226e-05,
1877
+ "loss": 0.7762,
1878
+ "step": 8277
1879
+ },
1880
+ {
1881
+ "epoch": 0.12465022768021246,
1882
+ "grad_norm": 0.6804013252258301,
1883
+ "learning_rate": 4.3546985252380115e-05,
1884
+ "loss": 0.7892,
1885
+ "step": 8308
1886
+ },
1887
+ {
1888
+ "epoch": 0.12511534047006398,
1889
+ "grad_norm": 0.6824433207511902,
1890
+ "learning_rate": 4.349056769754021e-05,
1891
+ "loss": 0.7802,
1892
+ "step": 8339
1893
+ },
1894
+ {
1895
+ "epoch": 0.12558045325991554,
1896
+ "grad_norm": 1.468239188194275,
1897
+ "learning_rate": 4.3433941479156994e-05,
1898
+ "loss": 0.7869,
1899
+ "step": 8370
1900
+ },
1901
+ {
1902
+ "epoch": 0.12604556604976708,
1903
+ "grad_norm": 0.5719156861305237,
1904
+ "learning_rate": 4.3377107236249647e-05,
1905
+ "loss": 0.778,
1906
+ "step": 8401
1907
+ },
1908
+ {
1909
+ "epoch": 0.1265106788396186,
1910
+ "grad_norm": 0.6709131002426147,
1911
+ "learning_rate": 4.332006561018488e-05,
1912
+ "loss": 0.7732,
1913
+ "step": 8432
1914
+ },
1915
+ {
1916
+ "epoch": 0.12697579162947015,
1917
+ "grad_norm": 0.7485822439193726,
1918
+ "learning_rate": 4.3262817244669683e-05,
1919
+ "loss": 0.7838,
1920
+ "step": 8463
1921
+ },
1922
+ {
1923
+ "epoch": 0.12744090441932168,
1924
+ "grad_norm": 0.6957044005393982,
1925
+ "learning_rate": 4.3205362785744083e-05,
1926
+ "loss": 0.7871,
1927
+ "step": 8494
1928
+ },
1929
+ {
1930
+ "epoch": 0.12790601720917322,
1931
+ "grad_norm": 1.0035358667373657,
1932
+ "learning_rate": 4.314770288177384e-05,
1933
+ "loss": 0.7743,
1934
+ "step": 8525
1935
+ },
1936
+ {
1937
+ "epoch": 0.12837112999902475,
1938
+ "grad_norm": 0.5898587107658386,
1939
+ "learning_rate": 4.308983818344313e-05,
1940
+ "loss": 0.7826,
1941
+ "step": 8556
1942
+ },
1943
+ {
1944
+ "epoch": 0.12883624278887632,
1945
+ "grad_norm": 3.798095226287842,
1946
+ "learning_rate": 4.3031769343747206e-05,
1947
+ "loss": 0.7808,
1948
+ "step": 8587
1949
+ },
1950
+ {
1951
+ "epoch": 0.12930135557872785,
1952
+ "grad_norm": 0.6663601398468018,
1953
+ "learning_rate": 4.297349701798505e-05,
1954
+ "loss": 0.7849,
1955
+ "step": 8618
1956
+ },
1957
+ {
1958
+ "epoch": 0.12976646836857939,
1959
+ "grad_norm": 0.7356058955192566,
1960
+ "learning_rate": 4.2915021863751916e-05,
1961
+ "loss": 0.7798,
1962
+ "step": 8649
1963
+ },
1964
+ {
1965
+ "epoch": 0.13023158115843092,
1966
+ "grad_norm": 0.6421476006507874,
1967
+ "learning_rate": 4.285634454093198e-05,
1968
+ "loss": 0.7704,
1969
+ "step": 8680
1970
+ },
1971
+ {
1972
+ "epoch": 0.13069669394828246,
1973
+ "grad_norm": 0.5868635177612305,
1974
+ "learning_rate": 4.279746571169086e-05,
1975
+ "loss": 0.7759,
1976
+ "step": 8711
1977
+ },
1978
+ {
1979
+ "epoch": 0.131161806738134,
1980
+ "grad_norm": 0.6703419089317322,
1981
+ "learning_rate": 4.2738386040468136e-05,
1982
+ "loss": 0.781,
1983
+ "step": 8742
1984
+ },
1985
+ {
1986
+ "epoch": 0.13162691952798553,
1987
+ "grad_norm": 0.751116931438446,
1988
+ "learning_rate": 4.2679106193969866e-05,
1989
+ "loss": 0.768,
1990
+ "step": 8773
1991
+ },
1992
+ {
1993
+ "epoch": 0.1320920323178371,
1994
+ "grad_norm": 0.9944510459899902,
1995
+ "learning_rate": 4.261962684116106e-05,
1996
+ "loss": 0.7783,
1997
+ "step": 8804
1998
+ },
1999
+ {
2000
+ "epoch": 0.13255714510768862,
2001
+ "grad_norm": 0.6739645600318909,
2002
+ "learning_rate": 4.2559948653258145e-05,
2003
+ "loss": 0.7745,
2004
+ "step": 8835
2005
+ },
2006
+ {
2007
+ "epoch": 0.13302225789754016,
2008
+ "grad_norm": 0.612147867679596,
2009
+ "learning_rate": 4.250007230372134e-05,
2010
+ "loss": 0.7778,
2011
+ "step": 8866
2012
+ },
2013
+ {
2014
+ "epoch": 0.1334873706873917,
2015
+ "grad_norm": 0.7233457565307617,
2016
+ "learning_rate": 4.2439998468247126e-05,
2017
+ "loss": 0.7799,
2018
+ "step": 8897
2019
+ },
2020
+ {
2021
+ "epoch": 0.13395248347724323,
2022
+ "grad_norm": 0.6210694909095764,
2023
+ "learning_rate": 4.2379727824760566e-05,
2024
+ "loss": 0.7764,
2025
+ "step": 8928
2026
+ },
2027
+ {
2028
+ "epoch": 0.13441759626709476,
2029
+ "grad_norm": 0.7104094624519348,
2030
+ "learning_rate": 4.231926105340768e-05,
2031
+ "loss": 0.776,
2032
+ "step": 8959
2033
+ },
2034
+ {
2035
+ "epoch": 0.1348827090569463,
2036
+ "grad_norm": 0.6815863251686096,
2037
+ "learning_rate": 4.225859883654776e-05,
2038
+ "loss": 0.7799,
2039
+ "step": 8990
2040
+ },
2041
+ {
2042
+ "epoch": 0.13534782184679786,
2043
+ "grad_norm": 0.660565972328186,
2044
+ "learning_rate": 4.219774185874569e-05,
2045
+ "loss": 0.7856,
2046
+ "step": 9021
2047
+ },
2048
+ {
2049
+ "epoch": 0.1358129346366494,
2050
+ "grad_norm": 0.8271650671958923,
2051
+ "learning_rate": 4.213669080676418e-05,
2052
+ "loss": 0.7758,
2053
+ "step": 9052
2054
+ },
2055
+ {
2056
+ "epoch": 0.13627804742650093,
2057
+ "grad_norm": 0.6217832565307617,
2058
+ "learning_rate": 4.2075446369556056e-05,
2059
+ "loss": 0.7736,
2060
+ "step": 9083
2061
+ },
2062
+ {
2063
+ "epoch": 0.13674316021635247,
2064
+ "grad_norm": 0.6582239270210266,
2065
+ "learning_rate": 4.201400923825648e-05,
2066
+ "loss": 0.7765,
2067
+ "step": 9114
2068
+ },
2069
+ {
2070
+ "epoch": 0.137208273006204,
2071
+ "grad_norm": 0.758140504360199,
2072
+ "learning_rate": 4.195238010617511e-05,
2073
+ "loss": 0.7696,
2074
+ "step": 9145
2075
+ },
2076
+ {
2077
+ "epoch": 0.13767338579605554,
2078
+ "grad_norm": 0.7370248436927795,
2079
+ "learning_rate": 4.1890559668788344e-05,
2080
+ "loss": 0.7751,
2081
+ "step": 9176
2082
+ },
2083
+ {
2084
+ "epoch": 0.13813849858590707,
2085
+ "grad_norm": 0.667799711227417,
2086
+ "learning_rate": 4.1828548623731405e-05,
2087
+ "loss": 0.7686,
2088
+ "step": 9207
2089
+ },
2090
+ {
2091
+ "epoch": 0.13860361137575863,
2092
+ "grad_norm": 0.6749032139778137,
2093
+ "learning_rate": 4.1766347670790506e-05,
2094
+ "loss": 0.7656,
2095
+ "step": 9238
2096
+ },
2097
+ {
2098
+ "epoch": 0.13906872416561017,
2099
+ "grad_norm": 0.7389397025108337,
2100
+ "learning_rate": 4.170395751189495e-05,
2101
+ "loss": 0.7733,
2102
+ "step": 9269
2103
+ },
2104
+ {
2105
+ "epoch": 0.1395338369554617,
2106
+ "grad_norm": 0.8019024133682251,
2107
+ "learning_rate": 4.164137885110921e-05,
2108
+ "loss": 0.7704,
2109
+ "step": 9300
2110
+ },
2111
+ {
2112
+ "epoch": 0.13999894974531324,
2113
+ "grad_norm": 0.6880025863647461,
2114
+ "learning_rate": 4.157861239462495e-05,
2115
+ "loss": 0.7745,
2116
+ "step": 9331
2117
+ },
2118
+ {
2119
+ "epoch": 0.14046406253516477,
2120
+ "grad_norm": 0.7543455362319946,
2121
+ "learning_rate": 4.1515658850753114e-05,
2122
+ "loss": 0.7616,
2123
+ "step": 9362
2124
+ },
2125
+ {
2126
+ "epoch": 0.1409291753250163,
2127
+ "grad_norm": 0.6550135612487793,
2128
+ "learning_rate": 4.145251892991588e-05,
2129
+ "loss": 0.7698,
2130
+ "step": 9393
2131
+ },
2132
+ {
2133
+ "epoch": 0.14139428811486784,
2134
+ "grad_norm": 0.7469960451126099,
2135
+ "learning_rate": 4.138919334463868e-05,
2136
+ "loss": 0.764,
2137
+ "step": 9424
2138
+ },
2139
+ {
2140
+ "epoch": 0.1418594009047194,
2141
+ "grad_norm": 0.65736323595047,
2142
+ "learning_rate": 4.1325682809542124e-05,
2143
+ "loss": 0.7625,
2144
+ "step": 9455
2145
+ },
2146
+ {
2147
+ "epoch": 0.14232451369457094,
2148
+ "grad_norm": 0.7517855167388916,
2149
+ "learning_rate": 4.126198804133398e-05,
2150
+ "loss": 0.7727,
2151
+ "step": 9486
2152
+ },
2153
+ {
2154
+ "epoch": 0.14278962648442248,
2155
+ "grad_norm": 0.5399331450462341,
2156
+ "learning_rate": 4.1198109758801055e-05,
2157
+ "loss": 0.7625,
2158
+ "step": 9517
2159
+ },
2160
+ {
2161
+ "epoch": 0.143254739274274,
2162
+ "grad_norm": 0.7568219900131226,
2163
+ "learning_rate": 4.113404868280107e-05,
2164
+ "loss": 0.7629,
2165
+ "step": 9548
2166
+ },
2167
+ {
2168
+ "epoch": 0.14371985206412555,
2169
+ "grad_norm": 0.8380396962165833,
2170
+ "learning_rate": 4.106980553625457e-05,
2171
+ "loss": 0.765,
2172
+ "step": 9579
2173
+ },
2174
+ {
2175
+ "epoch": 0.14418496485397708,
2176
+ "grad_norm": 0.657565176486969,
2177
+ "learning_rate": 4.100538104413674e-05,
2178
+ "loss": 0.7617,
2179
+ "step": 9610
2180
+ },
2181
+ {
2182
+ "epoch": 0.14465007764382862,
2183
+ "grad_norm": 0.784701406955719,
2184
+ "learning_rate": 4.09407759334692e-05,
2185
+ "loss": 0.7662,
2186
+ "step": 9641
2187
+ },
2188
+ {
2189
+ "epoch": 0.14511519043368018,
2190
+ "grad_norm": 0.6358653903007507,
2191
+ "learning_rate": 4.087599093331186e-05,
2192
+ "loss": 0.7668,
2193
+ "step": 9672
2194
+ },
2195
+ {
2196
+ "epoch": 0.14558030322353172,
2197
+ "grad_norm": 0.6734030842781067,
2198
+ "learning_rate": 4.081102677475462e-05,
2199
+ "loss": 0.7587,
2200
+ "step": 9703
2201
+ },
2202
+ {
2203
+ "epoch": 0.14604541601338325,
2204
+ "grad_norm": 0.693668007850647,
2205
+ "learning_rate": 4.0745884190909194e-05,
2206
+ "loss": 0.7587,
2207
+ "step": 9734
2208
+ },
2209
+ {
2210
+ "epoch": 0.14651052880323479,
2211
+ "grad_norm": 0.7010748982429504,
2212
+ "learning_rate": 4.0680563916900796e-05,
2213
+ "loss": 0.7729,
2214
+ "step": 9765
2215
+ },
2216
+ {
2217
+ "epoch": 0.14697564159308632,
2218
+ "grad_norm": 0.6210809946060181,
2219
+ "learning_rate": 4.0615066689859815e-05,
2220
+ "loss": 0.7708,
2221
+ "step": 9796
2222
+ },
2223
+ {
2224
+ "epoch": 0.14744075438293786,
2225
+ "grad_norm": 0.6918211579322815,
2226
+ "learning_rate": 4.0549393248913584e-05,
2227
+ "loss": 0.7742,
2228
+ "step": 9827
2229
+ },
2230
+ {
2231
+ "epoch": 0.1479058671727894,
2232
+ "grad_norm": 0.7196410298347473,
2233
+ "learning_rate": 4.048354433517794e-05,
2234
+ "loss": 0.7593,
2235
+ "step": 9858
2236
+ },
2237
+ {
2238
+ "epoch": 0.14837097996264095,
2239
+ "grad_norm": 0.6762074828147888,
2240
+ "learning_rate": 4.0417520691748916e-05,
2241
+ "loss": 0.7601,
2242
+ "step": 9889
2243
+ },
2244
+ {
2245
+ "epoch": 0.1488360927524925,
2246
+ "grad_norm": 0.7633680701255798,
2247
+ "learning_rate": 4.035132306369438e-05,
2248
+ "loss": 0.7684,
2249
+ "step": 9920
2250
+ },
2251
+ {
2252
+ "epoch": 0.14930120554234402,
2253
+ "grad_norm": 0.6944717168807983,
2254
+ "learning_rate": 4.028495219804555e-05,
2255
+ "loss": 0.7554,
2256
+ "step": 9951
2257
+ },
2258
+ {
2259
+ "epoch": 0.14976631833219556,
2260
+ "grad_norm": 0.6295722126960754,
2261
+ "learning_rate": 4.021840884378864e-05,
2262
+ "loss": 0.7584,
2263
+ "step": 9982
2264
+ },
2265
+ {
2266
+ "epoch": 0.1502314311220471,
2267
+ "grad_norm": 0.6174144744873047,
2268
+ "learning_rate": 4.015169375185633e-05,
2269
+ "loss": 0.7626,
2270
+ "step": 10013
2271
+ },
2272
+ {
2273
+ "epoch": 0.15069654391189863,
2274
+ "grad_norm": 0.7596246600151062,
2275
+ "learning_rate": 4.0084807675119396e-05,
2276
+ "loss": 0.7664,
2277
+ "step": 10044
2278
+ },
2279
+ {
2280
+ "epoch": 0.15116165670175016,
2281
+ "grad_norm": 0.6924237012863159,
2282
+ "learning_rate": 4.0017751368378106e-05,
2283
+ "loss": 0.7736,
2284
+ "step": 10075
2285
+ },
2286
+ {
2287
+ "epoch": 0.15162676949160173,
2288
+ "grad_norm": 0.6916103363037109,
2289
+ "learning_rate": 3.995052558835377e-05,
2290
+ "loss": 0.7784,
2291
+ "step": 10106
2292
+ },
2293
+ {
2294
+ "epoch": 0.15209188228145326,
2295
+ "grad_norm": 0.7141834497451782,
2296
+ "learning_rate": 3.988313109368017e-05,
2297
+ "loss": 0.7669,
2298
+ "step": 10137
2299
+ },
2300
+ {
2301
+ "epoch": 0.1525569950713048,
2302
+ "grad_norm": 0.6703450679779053,
2303
+ "learning_rate": 3.981556864489504e-05,
2304
+ "loss": 0.7612,
2305
+ "step": 10168
2306
+ },
2307
+ {
2308
+ "epoch": 0.15302210786115633,
2309
+ "grad_norm": 0.6729284524917603,
2310
+ "learning_rate": 3.974783900443142e-05,
2311
+ "loss": 0.7695,
2312
+ "step": 10199
2313
+ },
2314
+ {
2315
+ "epoch": 0.15348722065100787,
2316
+ "grad_norm": 0.8227813243865967,
2317
+ "learning_rate": 3.9679942936609095e-05,
2318
+ "loss": 0.7573,
2319
+ "step": 10230
2320
+ },
2321
+ {
2322
+ "epoch": 0.1539523334408594,
2323
+ "grad_norm": 0.6902511715888977,
2324
+ "learning_rate": 3.961188120762596e-05,
2325
+ "loss": 0.7603,
2326
+ "step": 10261
2327
+ },
2328
+ {
2329
+ "epoch": 0.15441744623071094,
2330
+ "grad_norm": 0.6204094290733337,
2331
+ "learning_rate": 3.954365458554938e-05,
2332
+ "loss": 0.7612,
2333
+ "step": 10292
2334
+ },
2335
+ {
2336
+ "epoch": 0.1548825590205625,
2337
+ "grad_norm": 0.7256117463111877,
2338
+ "learning_rate": 3.947526384030751e-05,
2339
+ "loss": 0.7635,
2340
+ "step": 10323
2341
+ },
2342
+ {
2343
+ "epoch": 0.15534767181041403,
2344
+ "grad_norm": 0.6088977456092834,
2345
+ "learning_rate": 3.9406709743680624e-05,
2346
+ "loss": 0.7609,
2347
+ "step": 10354
2348
+ },
2349
+ {
2350
+ "epoch": 0.15581278460026557,
2351
+ "grad_norm": 0.6714738607406616,
2352
+ "learning_rate": 3.9337993069292366e-05,
2353
+ "loss": 0.7661,
2354
+ "step": 10385
2355
+ },
2356
+ {
2357
+ "epoch": 0.1562778973901171,
2358
+ "grad_norm": 0.6832950711250305,
2359
+ "learning_rate": 3.926911459260109e-05,
2360
+ "loss": 0.7703,
2361
+ "step": 10416
2362
+ },
2363
+ {
2364
+ "epoch": 0.15674301017996864,
2365
+ "grad_norm": 0.8103564381599426,
2366
+ "learning_rate": 3.920007509089102e-05,
2367
+ "loss": 0.7641,
2368
+ "step": 10447
2369
+ },
2370
+ {
2371
+ "epoch": 0.15720812296982017,
2372
+ "grad_norm": 0.7727939486503601,
2373
+ "learning_rate": 3.913087534326357e-05,
2374
+ "loss": 0.7644,
2375
+ "step": 10478
2376
+ },
2377
+ {
2378
+ "epoch": 0.1576732357596717,
2379
+ "grad_norm": 0.6045538187026978,
2380
+ "learning_rate": 3.9061516130628475e-05,
2381
+ "loss": 0.7603,
2382
+ "step": 10509
2383
+ },
2384
+ {
2385
+ "epoch": 0.15813834854952327,
2386
+ "grad_norm": 0.7199150323867798,
2387
+ "learning_rate": 3.8991998235695025e-05,
2388
+ "loss": 0.7617,
2389
+ "step": 10540
2390
+ },
2391
+ {
2392
+ "epoch": 0.1586034613393748,
2393
+ "grad_norm": 0.6426290273666382,
2394
+ "learning_rate": 3.8922322442963224e-05,
2395
+ "loss": 0.765,
2396
+ "step": 10571
2397
+ },
2398
+ {
2399
+ "epoch": 0.15906857412922634,
2400
+ "grad_norm": 0.6604538559913635,
2401
+ "learning_rate": 3.885248953871491e-05,
2402
+ "loss": 0.7512,
2403
+ "step": 10602
2404
+ },
2405
+ {
2406
+ "epoch": 0.15953368691907788,
2407
+ "grad_norm": 0.6802282333374023,
2408
+ "learning_rate": 3.8782500311004915e-05,
2409
+ "loss": 0.7528,
2410
+ "step": 10633
2411
+ },
2412
+ {
2413
+ "epoch": 0.1599987997089294,
2414
+ "grad_norm": 0.5920473337173462,
2415
+ "learning_rate": 3.871235554965218e-05,
2416
+ "loss": 0.7645,
2417
+ "step": 10664
2418
+ },
2419
+ {
2420
+ "epoch": 0.16046391249878095,
2421
+ "grad_norm": 0.70703125,
2422
+ "learning_rate": 3.864205604623078e-05,
2423
+ "loss": 0.7798,
2424
+ "step": 10695
2425
+ },
2426
+ {
2427
+ "epoch": 0.16092902528863248,
2428
+ "grad_norm": 0.7090973258018494,
2429
+ "learning_rate": 3.857160259406107e-05,
2430
+ "loss": 0.7501,
2431
+ "step": 10726
2432
+ },
2433
+ {
2434
+ "epoch": 0.16139413807848405,
2435
+ "grad_norm": 0.6518564820289612,
2436
+ "learning_rate": 3.8500995988200674e-05,
2437
+ "loss": 0.7646,
2438
+ "step": 10757
2439
+ },
2440
+ {
2441
+ "epoch": 0.16185925086833558,
2442
+ "grad_norm": 0.7883148789405823,
2443
+ "learning_rate": 3.843023702543556e-05,
2444
+ "loss": 0.7464,
2445
+ "step": 10788
2446
+ },
2447
+ {
2448
+ "epoch": 0.16232436365818712,
2449
+ "grad_norm": 0.701317310333252,
2450
+ "learning_rate": 3.8359326504270984e-05,
2451
+ "loss": 0.7629,
2452
+ "step": 10819
2453
+ },
2454
+ {
2455
+ "epoch": 0.16278947644803865,
2456
+ "grad_norm": 0.6755788922309875,
2457
+ "learning_rate": 3.828826522492255e-05,
2458
+ "loss": 0.7524,
2459
+ "step": 10850
2460
+ },
2461
+ {
2462
+ "epoch": 0.16325458923789019,
2463
+ "grad_norm": 0.7258623242378235,
2464
+ "learning_rate": 3.821705398930713e-05,
2465
+ "loss": 0.7681,
2466
+ "step": 10881
2467
+ },
2468
+ {
2469
+ "epoch": 0.16371970202774172,
2470
+ "grad_norm": 0.678916871547699,
2471
+ "learning_rate": 3.814569360103385e-05,
2472
+ "loss": 0.7572,
2473
+ "step": 10912
2474
+ },
2475
+ {
2476
+ "epoch": 0.16418481481759326,
2477
+ "grad_norm": 0.6140801906585693,
2478
+ "learning_rate": 3.807418486539499e-05,
2479
+ "loss": 0.7573,
2480
+ "step": 10943
2481
+ },
2482
+ {
2483
+ "epoch": 0.16464992760744482,
2484
+ "grad_norm": 0.8363719582557678,
2485
+ "learning_rate": 3.80025285893569e-05,
2486
+ "loss": 0.7541,
2487
+ "step": 10974
2488
+ },
2489
+ {
2490
+ "epoch": 0.16511504039729635,
2491
+ "grad_norm": 0.8430968523025513,
2492
+ "learning_rate": 3.793072558155093e-05,
2493
+ "loss": 0.7621,
2494
+ "step": 11005
2495
+ },
2496
+ {
2497
+ "epoch": 0.1655801531871479,
2498
+ "grad_norm": 0.7111339569091797,
2499
+ "learning_rate": 3.785877665226426e-05,
2500
+ "loss": 0.7581,
2501
+ "step": 11036
2502
+ },
2503
+ {
2504
+ "epoch": 0.16604526597699942,
2505
+ "grad_norm": 0.6369599103927612,
2506
+ "learning_rate": 3.778668261343079e-05,
2507
+ "loss": 0.7543,
2508
+ "step": 11067
2509
+ },
2510
+ {
2511
+ "epoch": 0.16651037876685096,
2512
+ "grad_norm": 0.6842892169952393,
2513
+ "learning_rate": 3.771444427862192e-05,
2514
+ "loss": 0.7599,
2515
+ "step": 11098
2516
+ },
2517
+ {
2518
+ "epoch": 0.1669754915567025,
2519
+ "grad_norm": 0.6923761963844299,
2520
+ "learning_rate": 3.7642062463037465e-05,
2521
+ "loss": 0.762,
2522
+ "step": 11129
2523
+ },
2524
+ {
2525
+ "epoch": 0.16744060434655403,
2526
+ "grad_norm": 0.7744085788726807,
2527
+ "learning_rate": 3.7569537983496373e-05,
2528
+ "loss": 0.748,
2529
+ "step": 11160
2530
+ },
2531
+ {
2532
+ "epoch": 0.1679057171364056,
2533
+ "grad_norm": 0.6975285410881042,
2534
+ "learning_rate": 3.749687165842753e-05,
2535
+ "loss": 0.7518,
2536
+ "step": 11191
2537
+ },
2538
+ {
2539
+ "epoch": 0.16837082992625713,
2540
+ "grad_norm": 0.5738661289215088,
2541
+ "learning_rate": 3.7424064307860536e-05,
2542
+ "loss": 0.7508,
2543
+ "step": 11222
2544
+ },
2545
+ {
2546
+ "epoch": 0.16883594271610866,
2547
+ "grad_norm": 0.5840383172035217,
2548
+ "learning_rate": 3.735111675341645e-05,
2549
+ "loss": 0.7591,
2550
+ "step": 11253
2551
+ },
2552
+ {
2553
+ "epoch": 0.1693010555059602,
2554
+ "grad_norm": 0.7805384397506714,
2555
+ "learning_rate": 3.7278029818298524e-05,
2556
+ "loss": 0.7519,
2557
+ "step": 11284
2558
+ },
2559
+ {
2560
+ "epoch": 0.16976616829581173,
2561
+ "grad_norm": 0.7086957693099976,
2562
+ "learning_rate": 3.720480432728287e-05,
2563
+ "loss": 0.7638,
2564
+ "step": 11315
2565
+ },
2566
+ {
2567
+ "epoch": 0.17023128108566327,
2568
+ "grad_norm": 0.7142307758331299,
2569
+ "learning_rate": 3.71314411067092e-05,
2570
+ "loss": 0.7489,
2571
+ "step": 11346
2572
+ },
2573
+ {
2574
+ "epoch": 0.1706963938755148,
2575
+ "grad_norm": 0.6033651232719421,
2576
+ "learning_rate": 3.70579409844715e-05,
2577
+ "loss": 0.762,
2578
+ "step": 11377
2579
+ },
2580
+ {
2581
+ "epoch": 0.17116150666536636,
2582
+ "grad_norm": 0.6250593066215515,
2583
+ "learning_rate": 3.698430479000865e-05,
2584
+ "loss": 0.7552,
2585
+ "step": 11408
2586
+ },
2587
+ {
2588
+ "epoch": 0.1716266194552179,
2589
+ "grad_norm": 0.6813081502914429,
2590
+ "learning_rate": 3.691053335429509e-05,
2591
+ "loss": 0.7556,
2592
+ "step": 11439
2593
+ },
2594
+ {
2595
+ "epoch": 0.17209173224506943,
2596
+ "grad_norm": 0.8393754363059998,
2597
+ "learning_rate": 3.683662750983147e-05,
2598
+ "loss": 0.7569,
2599
+ "step": 11470
2600
+ },
2601
+ {
2602
+ "epoch": 0.17255684503492097,
2603
+ "grad_norm": 1.5094987154006958,
2604
+ "learning_rate": 3.676258809063518e-05,
2605
+ "loss": 0.7561,
2606
+ "step": 11501
2607
+ },
2608
+ {
2609
+ "epoch": 0.1730219578247725,
2610
+ "grad_norm": 0.631462037563324,
2611
+ "learning_rate": 3.6688415932231004e-05,
2612
+ "loss": 0.7558,
2613
+ "step": 11532
2614
+ },
2615
+ {
2616
+ "epoch": 0.17348707061462404,
2617
+ "grad_norm": 0.7486265897750854,
2618
+ "learning_rate": 3.661411187164166e-05,
2619
+ "loss": 0.7569,
2620
+ "step": 11563
2621
+ },
2622
+ {
2623
+ "epoch": 0.17395218340447557,
2624
+ "grad_norm": 0.9510587453842163,
2625
+ "learning_rate": 3.65396767473784e-05,
2626
+ "loss": 0.7503,
2627
+ "step": 11594
2628
+ },
2629
+ {
2630
+ "epoch": 0.17441729619432714,
2631
+ "grad_norm": 0.5841720700263977,
2632
+ "learning_rate": 3.6465111399431465e-05,
2633
+ "loss": 0.7555,
2634
+ "step": 11625
2635
+ },
2636
+ {
2637
+ "epoch": 0.17488240898417867,
2638
+ "grad_norm": 0.5946236848831177,
2639
+ "learning_rate": 3.6390416669260674e-05,
2640
+ "loss": 0.7484,
2641
+ "step": 11656
2642
+ },
2643
+ {
2644
+ "epoch": 0.1753475217740302,
2645
+ "grad_norm": 0.8158132433891296,
2646
+ "learning_rate": 3.63155933997859e-05,
2647
+ "loss": 0.748,
2648
+ "step": 11687
2649
+ },
2650
+ {
2651
+ "epoch": 0.17581263456388174,
2652
+ "grad_norm": 0.6327953338623047,
2653
+ "learning_rate": 3.624064243537758e-05,
2654
+ "loss": 0.7611,
2655
+ "step": 11718
2656
+ },
2657
+ {
2658
+ "epoch": 0.17627774735373328,
2659
+ "grad_norm": 0.7370153069496155,
2660
+ "learning_rate": 3.616556462184716e-05,
2661
+ "loss": 0.7495,
2662
+ "step": 11749
2663
+ },
2664
+ {
2665
+ "epoch": 0.1767428601435848,
2666
+ "grad_norm": 0.911038875579834,
2667
+ "learning_rate": 3.609036080643755e-05,
2668
+ "loss": 0.7604,
2669
+ "step": 11780
2670
+ },
2671
+ {
2672
+ "epoch": 0.17720797293343635,
2673
+ "grad_norm": 0.7187597751617432,
2674
+ "learning_rate": 3.60150318378136e-05,
2675
+ "loss": 0.7448,
2676
+ "step": 11811
2677
+ },
2678
+ {
2679
+ "epoch": 0.1776730857232879,
2680
+ "grad_norm": 0.6611767411231995,
2681
+ "learning_rate": 3.5939578566052465e-05,
2682
+ "loss": 0.7486,
2683
+ "step": 11842
2684
+ },
2685
+ {
2686
+ "epoch": 0.17813819851313945,
2687
+ "grad_norm": 0.725936770439148,
2688
+ "learning_rate": 3.586400184263408e-05,
2689
+ "loss": 0.7585,
2690
+ "step": 11873
2691
+ },
2692
+ {
2693
+ "epoch": 0.17860331130299098,
2694
+ "grad_norm": 0.7662620544433594,
2695
+ "learning_rate": 3.578830252043148e-05,
2696
+ "loss": 0.7489,
2697
+ "step": 11904
2698
+ },
2699
+ {
2700
+ "epoch": 0.17906842409284252,
2701
+ "grad_norm": 0.7236283421516418,
2702
+ "learning_rate": 3.571248145370125e-05,
2703
+ "loss": 0.7571,
2704
+ "step": 11935
2705
+ },
2706
+ {
2707
+ "epoch": 0.17953353688269405,
2708
+ "grad_norm": 0.7157570123672485,
2709
+ "learning_rate": 3.5636539498073794e-05,
2710
+ "loss": 0.7524,
2711
+ "step": 11966
2712
+ },
2713
+ {
2714
+ "epoch": 0.17999864967254559,
2715
+ "grad_norm": 0.7178536653518677,
2716
+ "learning_rate": 3.556047751054378e-05,
2717
+ "loss": 0.7592,
2718
+ "step": 11997
2719
+ },
2720
+ {
2721
+ "epoch": 0.18046376246239712,
2722
+ "grad_norm": 0.5687118768692017,
2723
+ "learning_rate": 3.548429634946039e-05,
2724
+ "loss": 0.7485,
2725
+ "step": 12028
2726
+ },
2727
+ {
2728
+ "epoch": 0.18092887525224868,
2729
+ "grad_norm": 0.853602409362793,
2730
+ "learning_rate": 3.540799687451768e-05,
2731
+ "loss": 0.7578,
2732
+ "step": 12059
2733
+ },
2734
+ {
2735
+ "epoch": 0.18139398804210022,
2736
+ "grad_norm": 0.7728062272071838,
2737
+ "learning_rate": 3.533157994674485e-05,
2738
+ "loss": 0.7463,
2739
+ "step": 12090
2740
+ },
2741
+ {
2742
+ "epoch": 0.18185910083195175,
2743
+ "grad_norm": 0.6808280348777771,
2744
+ "learning_rate": 3.5255046428496546e-05,
2745
+ "loss": 0.7513,
2746
+ "step": 12121
2747
+ },
2748
+ {
2749
+ "epoch": 0.1823242136218033,
2750
+ "grad_norm": 0.730434775352478,
2751
+ "learning_rate": 3.517839718344311e-05,
2752
+ "loss": 0.7459,
2753
+ "step": 12152
2754
+ },
2755
+ {
2756
+ "epoch": 0.18278932641165482,
2757
+ "grad_norm": 0.7605392336845398,
2758
+ "learning_rate": 3.510163307656086e-05,
2759
+ "loss": 0.7428,
2760
+ "step": 12183
2761
+ }
2762
+ ],
2763
+ "logging_steps": 31,
2764
+ "max_steps": 30517,
2765
+ "num_input_tokens_seen": 0,
2766
+ "num_train_epochs": 1,
2767
+ "save_steps": 3052,
2768
+ "stateful_callbacks": {
2769
+ "TrainerControl": {
2770
+ "args": {
2771
+ "should_epoch_stop": false,
2772
+ "should_evaluate": false,
2773
+ "should_log": false,
2774
+ "should_save": true,
2775
+ "should_training_stop": false
2776
+ },
2777
+ "attributes": {}
2778
+ }
2779
+ },
2780
+ "total_flos": 8.48541631240156e+18,
2781
+ "train_batch_size": 16,
2782
+ "trial_name": null,
2783
+ "trial_params": null
2784
+ }
checkpoint-12208/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8c8c4b56f5ef244b7e4deb23b13b2d7ae50fce940e6c0d8a4ec3f3f25fa1a3
3
+ size 5304
checkpoint-15260/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-15260/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.44.0.dev0"
14
+ }
checkpoint-15260/model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd77b33bec3de91bc707e9cfa89950fd7ae1f58ea8382dda5b7de302aff1620
3
+ size 4976687216
checkpoint-15260/model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edb205482e80b5d03e63693e387d459b0cb9c97948cde971ff025ba98f1396d
3
+ size 4778622352
checkpoint-15260/model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222b40c6fea7def1d5911b059ab36bf97b9328e0251689f78a0a9ebd98cd18d
3
+ size 4932743960
checkpoint-15260/model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc2c86e34819a46908bfe3ad42f3986e7efdfc34f67e43f40f690f77c7b0672
3
+ size 4932743992
checkpoint-15260/model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:891f86a74d6b1791b98b581ff94cbedb16bfdb78595b9697dc3fd2ecc5974ba2
3
+ size 4998852296
checkpoint-15260/model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e13b2084c7a2ad41cfd8e3c90cd1075f2e2017af685da1ddae7d664a72c38ac
3
+ size 3662865184
checkpoint-15260/model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f3af77599ad1da09c076f0116eb48314b17c28c4e10e1fad88cea6c9c634a9
3
+ size 2179989632
checkpoint-15260/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30462466048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
344
+ "model.norm.weight": "model-00006-of-00007.safetensors"
345
+ }
346
+ }
checkpoint-15260/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb253ac21ffc094220418a644dde15166c8dae7a18513bb3c7f6bc97754773c
3
+ size 16177880918
checkpoint-15260/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9cd6a0487226e5bd30d1846894c82af483733ab4381b75bae9c0745e05d405
3
+ size 14244
checkpoint-15260/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce335347efaebf038b8915bc0a8d2d587a4a1aa08ad0e015b4bc7cc4fba634e
3
+ size 1064
checkpoint-15260/trainer_state.json ADDED
@@ -0,0 +1,3477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.22895552171401565,
5
+ "eval_steps": 500,
6
+ "global_step": 15260,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.000465112789851539,
13
+ "grad_norm": 2.768016815185547,
14
+ "learning_rate": 1.0157273918741808e-06,
15
+ "loss": 1.3097,
16
+ "step": 31
17
+ },
18
+ {
19
+ "epoch": 0.000930225579703078,
20
+ "grad_norm": 1.7586184740066528,
21
+ "learning_rate": 2.0314547837483616e-06,
22
+ "loss": 1.2415,
23
+ "step": 62
24
+ },
25
+ {
26
+ "epoch": 0.001395338369554617,
27
+ "grad_norm": 1.6319445371627808,
28
+ "learning_rate": 3.0471821756225426e-06,
29
+ "loss": 1.1785,
30
+ "step": 93
31
+ },
32
+ {
33
+ "epoch": 0.001860451159406156,
34
+ "grad_norm": 1.667987585067749,
35
+ "learning_rate": 4.062909567496723e-06,
36
+ "loss": 1.165,
37
+ "step": 124
38
+ },
39
+ {
40
+ "epoch": 0.002325563949257695,
41
+ "grad_norm": 1.6823372840881348,
42
+ "learning_rate": 5.078636959370905e-06,
43
+ "loss": 1.1241,
44
+ "step": 155
45
+ },
46
+ {
47
+ "epoch": 0.002790676739109234,
48
+ "grad_norm": 1.7869504690170288,
49
+ "learning_rate": 6.094364351245085e-06,
50
+ "loss": 1.1232,
51
+ "step": 186
52
+ },
53
+ {
54
+ "epoch": 0.003255789528960773,
55
+ "grad_norm": 1.9446443319320679,
56
+ "learning_rate": 7.110091743119267e-06,
57
+ "loss": 1.108,
58
+ "step": 217
59
+ },
60
+ {
61
+ "epoch": 0.003720902318812312,
62
+ "grad_norm": 1.9483426809310913,
63
+ "learning_rate": 8.125819134993446e-06,
64
+ "loss": 1.118,
65
+ "step": 248
66
+ },
67
+ {
68
+ "epoch": 0.004186015108663851,
69
+ "grad_norm": 1.837703824043274,
70
+ "learning_rate": 9.141546526867629e-06,
71
+ "loss": 1.091,
72
+ "step": 279
73
+ },
74
+ {
75
+ "epoch": 0.00465112789851539,
76
+ "grad_norm": 1.9819648265838623,
77
+ "learning_rate": 1.015727391874181e-05,
78
+ "loss": 1.075,
79
+ "step": 310
80
+ },
81
+ {
82
+ "epoch": 0.005116240688366929,
83
+ "grad_norm": 1.9136595726013184,
84
+ "learning_rate": 1.117300131061599e-05,
85
+ "loss": 1.0668,
86
+ "step": 341
87
+ },
88
+ {
89
+ "epoch": 0.005581353478218468,
90
+ "grad_norm": 1.720566987991333,
91
+ "learning_rate": 1.218872870249017e-05,
92
+ "loss": 1.0769,
93
+ "step": 372
94
+ },
95
+ {
96
+ "epoch": 0.006046466268070007,
97
+ "grad_norm": 1.9698255062103271,
98
+ "learning_rate": 1.3204456094364351e-05,
99
+ "loss": 1.0543,
100
+ "step": 403
101
+ },
102
+ {
103
+ "epoch": 0.006511579057921546,
104
+ "grad_norm": 1.665868878364563,
105
+ "learning_rate": 1.4220183486238533e-05,
106
+ "loss": 1.0524,
107
+ "step": 434
108
+ },
109
+ {
110
+ "epoch": 0.006976691847773085,
111
+ "grad_norm": 1.9344353675842285,
112
+ "learning_rate": 1.5235910878112714e-05,
113
+ "loss": 1.0518,
114
+ "step": 465
115
+ },
116
+ {
117
+ "epoch": 0.007441804637624624,
118
+ "grad_norm": 2.173403024673462,
119
+ "learning_rate": 1.6251638269986893e-05,
120
+ "loss": 1.0476,
121
+ "step": 496
122
+ },
123
+ {
124
+ "epoch": 0.007906917427476163,
125
+ "grad_norm": 2.1878745555877686,
126
+ "learning_rate": 1.7267365661861077e-05,
127
+ "loss": 1.0385,
128
+ "step": 527
129
+ },
130
+ {
131
+ "epoch": 0.008372030217327702,
132
+ "grad_norm": 1.8220405578613281,
133
+ "learning_rate": 1.8283093053735257e-05,
134
+ "loss": 1.0374,
135
+ "step": 558
136
+ },
137
+ {
138
+ "epoch": 0.00883714300717924,
139
+ "grad_norm": 2.0194647312164307,
140
+ "learning_rate": 1.9298820445609438e-05,
141
+ "loss": 1.0408,
142
+ "step": 589
143
+ },
144
+ {
145
+ "epoch": 0.00930225579703078,
146
+ "grad_norm": 1.9656147956848145,
147
+ "learning_rate": 2.031454783748362e-05,
148
+ "loss": 1.0252,
149
+ "step": 620
150
+ },
151
+ {
152
+ "epoch": 0.009767368586882319,
153
+ "grad_norm": 1.6676087379455566,
154
+ "learning_rate": 2.13302752293578e-05,
155
+ "loss": 1.0209,
156
+ "step": 651
157
+ },
158
+ {
159
+ "epoch": 0.010232481376733858,
160
+ "grad_norm": 1.8552638292312622,
161
+ "learning_rate": 2.234600262123198e-05,
162
+ "loss": 1.0077,
163
+ "step": 682
164
+ },
165
+ {
166
+ "epoch": 0.010697594166585398,
167
+ "grad_norm": 1.7905389070510864,
168
+ "learning_rate": 2.336173001310616e-05,
169
+ "loss": 1.0099,
170
+ "step": 713
171
+ },
172
+ {
173
+ "epoch": 0.011162706956436936,
174
+ "grad_norm": 1.8298577070236206,
175
+ "learning_rate": 2.437745740498034e-05,
176
+ "loss": 1.01,
177
+ "step": 744
178
+ },
179
+ {
180
+ "epoch": 0.011627819746288475,
181
+ "grad_norm": 1.6317881345748901,
182
+ "learning_rate": 2.5393184796854525e-05,
183
+ "loss": 1.003,
184
+ "step": 775
185
+ },
186
+ {
187
+ "epoch": 0.012092932536140013,
188
+ "grad_norm": 1.9337595701217651,
189
+ "learning_rate": 2.6408912188728702e-05,
190
+ "loss": 1.005,
191
+ "step": 806
192
+ },
193
+ {
194
+ "epoch": 0.012558045325991554,
195
+ "grad_norm": 1.655259132385254,
196
+ "learning_rate": 2.7424639580602886e-05,
197
+ "loss": 0.992,
198
+ "step": 837
199
+ },
200
+ {
201
+ "epoch": 0.013023158115843092,
202
+ "grad_norm": 1.6854184865951538,
203
+ "learning_rate": 2.8440366972477066e-05,
204
+ "loss": 0.9922,
205
+ "step": 868
206
+ },
207
+ {
208
+ "epoch": 0.01348827090569463,
209
+ "grad_norm": 1.7627979516983032,
210
+ "learning_rate": 2.9456094364351244e-05,
211
+ "loss": 0.9828,
212
+ "step": 899
213
+ },
214
+ {
215
+ "epoch": 0.01395338369554617,
216
+ "grad_norm": 1.7015711069107056,
217
+ "learning_rate": 3.0471821756225428e-05,
218
+ "loss": 0.9896,
219
+ "step": 930
220
+ },
221
+ {
222
+ "epoch": 0.01441849648539771,
223
+ "grad_norm": 1.6730037927627563,
224
+ "learning_rate": 3.148754914809961e-05,
225
+ "loss": 0.9847,
226
+ "step": 961
227
+ },
228
+ {
229
+ "epoch": 0.014883609275249248,
230
+ "grad_norm": 1.7218660116195679,
231
+ "learning_rate": 3.2503276539973785e-05,
232
+ "loss": 0.9912,
233
+ "step": 992
234
+ },
235
+ {
236
+ "epoch": 0.015348722065100786,
237
+ "grad_norm": 1.5981271266937256,
238
+ "learning_rate": 3.351900393184797e-05,
239
+ "loss": 0.9791,
240
+ "step": 1023
241
+ },
242
+ {
243
+ "epoch": 0.015813834854952327,
244
+ "grad_norm": 2.0253615379333496,
245
+ "learning_rate": 3.453473132372215e-05,
246
+ "loss": 0.9693,
247
+ "step": 1054
248
+ },
249
+ {
250
+ "epoch": 0.016278947644803865,
251
+ "grad_norm": 1.62104070186615,
252
+ "learning_rate": 3.555045871559633e-05,
253
+ "loss": 0.9708,
254
+ "step": 1085
255
+ },
256
+ {
257
+ "epoch": 0.016744060434655404,
258
+ "grad_norm": 1.465540885925293,
259
+ "learning_rate": 3.6566186107470514e-05,
260
+ "loss": 0.9603,
261
+ "step": 1116
262
+ },
263
+ {
264
+ "epoch": 0.017209173224506942,
265
+ "grad_norm": 1.3695433139801025,
266
+ "learning_rate": 3.7581913499344695e-05,
267
+ "loss": 0.9643,
268
+ "step": 1147
269
+ },
270
+ {
271
+ "epoch": 0.01767428601435848,
272
+ "grad_norm": 1.5520803928375244,
273
+ "learning_rate": 3.8597640891218876e-05,
274
+ "loss": 0.9652,
275
+ "step": 1178
276
+ },
277
+ {
278
+ "epoch": 0.018139398804210023,
279
+ "grad_norm": 1.5043976306915283,
280
+ "learning_rate": 3.9613368283093056e-05,
281
+ "loss": 0.9609,
282
+ "step": 1209
283
+ },
284
+ {
285
+ "epoch": 0.01860451159406156,
286
+ "grad_norm": 1.5582523345947266,
287
+ "learning_rate": 4.062909567496724e-05,
288
+ "loss": 0.9549,
289
+ "step": 1240
290
+ },
291
+ {
292
+ "epoch": 0.0190696243839131,
293
+ "grad_norm": 1.5340025424957275,
294
+ "learning_rate": 4.164482306684142e-05,
295
+ "loss": 0.9596,
296
+ "step": 1271
297
+ },
298
+ {
299
+ "epoch": 0.019534737173764638,
300
+ "grad_norm": 1.2499620914459229,
301
+ "learning_rate": 4.26605504587156e-05,
302
+ "loss": 0.9499,
303
+ "step": 1302
304
+ },
305
+ {
306
+ "epoch": 0.019999849963616177,
307
+ "grad_norm": 1.3684868812561035,
308
+ "learning_rate": 4.367627785058978e-05,
309
+ "loss": 0.9499,
310
+ "step": 1333
311
+ },
312
+ {
313
+ "epoch": 0.020464962753467715,
314
+ "grad_norm": 1.3685338497161865,
315
+ "learning_rate": 4.469200524246396e-05,
316
+ "loss": 0.942,
317
+ "step": 1364
318
+ },
319
+ {
320
+ "epoch": 0.020930075543319254,
321
+ "grad_norm": 1.4686026573181152,
322
+ "learning_rate": 4.570773263433814e-05,
323
+ "loss": 0.9416,
324
+ "step": 1395
325
+ },
326
+ {
327
+ "epoch": 0.021395188333170796,
328
+ "grad_norm": 1.495653510093689,
329
+ "learning_rate": 4.672346002621232e-05,
330
+ "loss": 0.9439,
331
+ "step": 1426
332
+ },
333
+ {
334
+ "epoch": 0.021860301123022334,
335
+ "grad_norm": 1.2068424224853516,
336
+ "learning_rate": 4.77391874180865e-05,
337
+ "loss": 0.9509,
338
+ "step": 1457
339
+ },
340
+ {
341
+ "epoch": 0.022325413912873873,
342
+ "grad_norm": 1.6636161804199219,
343
+ "learning_rate": 4.875491480996068e-05,
344
+ "loss": 0.9343,
345
+ "step": 1488
346
+ },
347
+ {
348
+ "epoch": 0.02279052670272541,
349
+ "grad_norm": 1.2870069742202759,
350
+ "learning_rate": 4.977064220183487e-05,
351
+ "loss": 0.9407,
352
+ "step": 1519
353
+ },
354
+ {
355
+ "epoch": 0.02325563949257695,
356
+ "grad_norm": 1.5109976530075073,
357
+ "learning_rate": 4.9999915451558777e-05,
358
+ "loss": 0.9395,
359
+ "step": 1550
360
+ },
361
+ {
362
+ "epoch": 0.023720752282428488,
363
+ "grad_norm": 1.5145201683044434,
364
+ "learning_rate": 4.999955597496219e-05,
365
+ "loss": 0.9293,
366
+ "step": 1581
367
+ },
368
+ {
369
+ "epoch": 0.024185865072280027,
370
+ "grad_norm": 1.4048824310302734,
371
+ "learning_rate": 4.9998914381774255e-05,
372
+ "loss": 0.929,
373
+ "step": 1612
374
+ },
375
+ {
376
+ "epoch": 0.02465097786213157,
377
+ "grad_norm": 1.3233039379119873,
378
+ "learning_rate": 4.999799067923527e-05,
379
+ "loss": 0.9169,
380
+ "step": 1643
381
+ },
382
+ {
383
+ "epoch": 0.025116090651983107,
384
+ "grad_norm": 1.3225436210632324,
385
+ "learning_rate": 4.999678487776908e-05,
386
+ "loss": 0.9301,
387
+ "step": 1674
388
+ },
389
+ {
390
+ "epoch": 0.025581203441834646,
391
+ "grad_norm": 1.5295816659927368,
392
+ "learning_rate": 4.9995296990983006e-05,
393
+ "loss": 0.9245,
394
+ "step": 1705
395
+ },
396
+ {
397
+ "epoch": 0.026046316231686184,
398
+ "grad_norm": 1.202820062637329,
399
+ "learning_rate": 4.999352703566763e-05,
400
+ "loss": 0.916,
401
+ "step": 1736
402
+ },
403
+ {
404
+ "epoch": 0.026511429021537723,
405
+ "grad_norm": 1.0473875999450684,
406
+ "learning_rate": 4.999147503179668e-05,
407
+ "loss": 0.9144,
408
+ "step": 1767
409
+ },
410
+ {
411
+ "epoch": 0.02697654181138926,
412
+ "grad_norm": 1.1044714450836182,
413
+ "learning_rate": 4.998914100252672e-05,
414
+ "loss": 0.9098,
415
+ "step": 1798
416
+ },
417
+ {
418
+ "epoch": 0.0274416546012408,
419
+ "grad_norm": 1.2836365699768066,
420
+ "learning_rate": 4.998652497419696e-05,
421
+ "loss": 0.9127,
422
+ "step": 1829
423
+ },
424
+ {
425
+ "epoch": 0.02790676739109234,
426
+ "grad_norm": 1.2214583158493042,
427
+ "learning_rate": 4.9983626976328927e-05,
428
+ "loss": 0.9075,
429
+ "step": 1860
430
+ },
431
+ {
432
+ "epoch": 0.02837188018094388,
433
+ "grad_norm": 1.2603243589401245,
434
+ "learning_rate": 4.998044704162613e-05,
435
+ "loss": 0.8953,
436
+ "step": 1891
437
+ },
438
+ {
439
+ "epoch": 0.02883699297079542,
440
+ "grad_norm": 1.2945584058761597,
441
+ "learning_rate": 4.9976985205973705e-05,
442
+ "loss": 0.903,
443
+ "step": 1922
444
+ },
445
+ {
446
+ "epoch": 0.029302105760646957,
447
+ "grad_norm": 1.0437217950820923,
448
+ "learning_rate": 4.997324150843799e-05,
449
+ "loss": 0.9013,
450
+ "step": 1953
451
+ },
452
+ {
453
+ "epoch": 0.029767218550498496,
454
+ "grad_norm": 1.5020360946655273,
455
+ "learning_rate": 4.99692159912661e-05,
456
+ "loss": 0.9078,
457
+ "step": 1984
458
+ },
459
+ {
460
+ "epoch": 0.030232331340350034,
461
+ "grad_norm": 1.097151517868042,
462
+ "learning_rate": 4.996490869988546e-05,
463
+ "loss": 0.9061,
464
+ "step": 2015
465
+ },
466
+ {
467
+ "epoch": 0.030697444130201573,
468
+ "grad_norm": 1.043756365776062,
469
+ "learning_rate": 4.996031968290326e-05,
470
+ "loss": 0.9005,
471
+ "step": 2046
472
+ },
473
+ {
474
+ "epoch": 0.031162556920053115,
475
+ "grad_norm": 1.3543506860733032,
476
+ "learning_rate": 4.995544899210594e-05,
477
+ "loss": 0.9024,
478
+ "step": 2077
479
+ },
480
+ {
481
+ "epoch": 0.03162766970990465,
482
+ "grad_norm": 2.175954818725586,
483
+ "learning_rate": 4.9950296682458583e-05,
484
+ "loss": 0.89,
485
+ "step": 2108
486
+ },
487
+ {
488
+ "epoch": 0.03209278249975619,
489
+ "grad_norm": 3.4427719116210938,
490
+ "learning_rate": 4.994486281210429e-05,
491
+ "loss": 0.9204,
492
+ "step": 2139
493
+ },
494
+ {
495
+ "epoch": 0.03255789528960773,
496
+ "grad_norm": 4.699759006500244,
497
+ "learning_rate": 4.9939147442363566e-05,
498
+ "loss": 0.9871,
499
+ "step": 2170
500
+ },
501
+ {
502
+ "epoch": 0.03302300807945927,
503
+ "grad_norm": 16.819217681884766,
504
+ "learning_rate": 4.9933150637733574e-05,
505
+ "loss": 1.9176,
506
+ "step": 2201
507
+ },
508
+ {
509
+ "epoch": 0.03348812086931081,
510
+ "grad_norm": 3.4251508712768555,
511
+ "learning_rate": 4.992687246588743e-05,
512
+ "loss": 1.9154,
513
+ "step": 2232
514
+ },
515
+ {
516
+ "epoch": 0.03395323365916235,
517
+ "grad_norm": 1.1965570449829102,
518
+ "learning_rate": 4.992031299767347e-05,
519
+ "loss": 0.9446,
520
+ "step": 2263
521
+ },
522
+ {
523
+ "epoch": 0.034418346449013884,
524
+ "grad_norm": 5.077923774719238,
525
+ "learning_rate": 4.9913472307114386e-05,
526
+ "loss": 0.9097,
527
+ "step": 2294
528
+ },
529
+ {
530
+ "epoch": 0.034883459238865426,
531
+ "grad_norm": 1.3503797054290771,
532
+ "learning_rate": 4.9906350471406446e-05,
533
+ "loss": 0.9086,
534
+ "step": 2325
535
+ },
536
+ {
537
+ "epoch": 0.03534857202871696,
538
+ "grad_norm": 19.319576263427734,
539
+ "learning_rate": 4.989894757091861e-05,
540
+ "loss": 0.9072,
541
+ "step": 2356
542
+ },
543
+ {
544
+ "epoch": 0.0358136848185685,
545
+ "grad_norm": 1.2770804166793823,
546
+ "learning_rate": 4.989126368919158e-05,
547
+ "loss": 0.9093,
548
+ "step": 2387
549
+ },
550
+ {
551
+ "epoch": 0.036278797608420045,
552
+ "grad_norm": 1.0560117959976196,
553
+ "learning_rate": 4.988329891293693e-05,
554
+ "loss": 0.9032,
555
+ "step": 2418
556
+ },
557
+ {
558
+ "epoch": 0.03674391039827158,
559
+ "grad_norm": 1.1471630334854126,
560
+ "learning_rate": 4.987505333203608e-05,
561
+ "loss": 0.9002,
562
+ "step": 2449
563
+ },
564
+ {
565
+ "epoch": 0.03720902318812312,
566
+ "grad_norm": 1.1387799978256226,
567
+ "learning_rate": 4.9866527039539276e-05,
568
+ "loss": 0.8875,
569
+ "step": 2480
570
+ },
571
+ {
572
+ "epoch": 0.03767413597797466,
573
+ "grad_norm": 2.4223828315734863,
574
+ "learning_rate": 4.9857720131664594e-05,
575
+ "loss": 0.891,
576
+ "step": 2511
577
+ },
578
+ {
579
+ "epoch": 0.0381392487678262,
580
+ "grad_norm": 1.2967392206192017,
581
+ "learning_rate": 4.9848632707796773e-05,
582
+ "loss": 0.8886,
583
+ "step": 2542
584
+ },
585
+ {
586
+ "epoch": 0.038604361557677734,
587
+ "grad_norm": 1.3206738233566284,
588
+ "learning_rate": 4.9839264870486155e-05,
589
+ "loss": 0.8888,
590
+ "step": 2573
591
+ },
592
+ {
593
+ "epoch": 0.039069474347529276,
594
+ "grad_norm": 1.1495088338851929,
595
+ "learning_rate": 4.9829616725447526e-05,
596
+ "loss": 0.8853,
597
+ "step": 2604
598
+ },
599
+ {
600
+ "epoch": 0.03953458713738082,
601
+ "grad_norm": 1.116990089416504,
602
+ "learning_rate": 4.981968838155888e-05,
603
+ "loss": 0.8776,
604
+ "step": 2635
605
+ },
606
+ {
607
+ "epoch": 0.03999969992723235,
608
+ "grad_norm": 1.0922496318817139,
609
+ "learning_rate": 4.980947995086024e-05,
610
+ "loss": 0.8921,
611
+ "step": 2666
612
+ },
613
+ {
614
+ "epoch": 0.040464812717083895,
615
+ "grad_norm": 1.0340460538864136,
616
+ "learning_rate": 4.979899154855234e-05,
617
+ "loss": 0.8782,
618
+ "step": 2697
619
+ },
620
+ {
621
+ "epoch": 0.04092992550693543,
622
+ "grad_norm": 1.066490888595581,
623
+ "learning_rate": 4.9788223292995386e-05,
624
+ "loss": 0.8945,
625
+ "step": 2728
626
+ },
627
+ {
628
+ "epoch": 0.04139503829678697,
629
+ "grad_norm": 0.9310857057571411,
630
+ "learning_rate": 4.977717530570768e-05,
631
+ "loss": 0.8791,
632
+ "step": 2759
633
+ },
634
+ {
635
+ "epoch": 0.04186015108663851,
636
+ "grad_norm": 1.0934898853302002,
637
+ "learning_rate": 4.976584771136425e-05,
638
+ "loss": 0.8802,
639
+ "step": 2790
640
+ },
641
+ {
642
+ "epoch": 0.04232526387649005,
643
+ "grad_norm": 1.0999833345413208,
644
+ "learning_rate": 4.975424063779547e-05,
645
+ "loss": 0.8742,
646
+ "step": 2821
647
+ },
648
+ {
649
+ "epoch": 0.04279037666634159,
650
+ "grad_norm": 1.1188342571258545,
651
+ "learning_rate": 4.974235421598557e-05,
652
+ "loss": 0.8793,
653
+ "step": 2852
654
+ },
655
+ {
656
+ "epoch": 0.043255489456193126,
657
+ "grad_norm": 3.3688652515411377,
658
+ "learning_rate": 4.973018858007122e-05,
659
+ "loss": 0.8777,
660
+ "step": 2883
661
+ },
662
+ {
663
+ "epoch": 0.04372060224604467,
664
+ "grad_norm": 1.2814080715179443,
665
+ "learning_rate": 4.9717743867339963e-05,
666
+ "loss": 0.8654,
667
+ "step": 2914
668
+ },
669
+ {
670
+ "epoch": 0.0441857150358962,
671
+ "grad_norm": 0.9839452505111694,
672
+ "learning_rate": 4.9705020218228695e-05,
673
+ "loss": 0.8662,
674
+ "step": 2945
675
+ },
676
+ {
677
+ "epoch": 0.044650827825747745,
678
+ "grad_norm": 1.0929216146469116,
679
+ "learning_rate": 4.969201777632205e-05,
680
+ "loss": 0.8709,
681
+ "step": 2976
682
+ },
683
+ {
684
+ "epoch": 0.04511594061559928,
685
+ "grad_norm": 1.228953242301941,
686
+ "learning_rate": 4.9678736688350846e-05,
687
+ "loss": 0.8618,
688
+ "step": 3007
689
+ },
690
+ {
691
+ "epoch": 0.04558105340545082,
692
+ "grad_norm": 0.9897522926330566,
693
+ "learning_rate": 4.966517710419033e-05,
694
+ "loss": 0.8671,
695
+ "step": 3038
696
+ },
697
+ {
698
+ "epoch": 0.046046166195302364,
699
+ "grad_norm": 1.0972915887832642,
700
+ "learning_rate": 4.965133917685858e-05,
701
+ "loss": 0.8629,
702
+ "step": 3069
703
+ },
704
+ {
705
+ "epoch": 0.0465112789851539,
706
+ "grad_norm": 1.1006323099136353,
707
+ "learning_rate": 4.9637223062514714e-05,
708
+ "loss": 0.8613,
709
+ "step": 3100
710
+ },
711
+ {
712
+ "epoch": 0.04697639177500544,
713
+ "grad_norm": 1.2656612396240234,
714
+ "learning_rate": 4.962282892045718e-05,
715
+ "loss": 0.8852,
716
+ "step": 3131
717
+ },
718
+ {
719
+ "epoch": 0.047441504564856976,
720
+ "grad_norm": 0.9964312314987183,
721
+ "learning_rate": 4.9608156913121904e-05,
722
+ "loss": 0.8767,
723
+ "step": 3162
724
+ },
725
+ {
726
+ "epoch": 0.04790661735470852,
727
+ "grad_norm": 0.9271666407585144,
728
+ "learning_rate": 4.959320720608049e-05,
729
+ "loss": 0.8542,
730
+ "step": 3193
731
+ },
732
+ {
733
+ "epoch": 0.04837173014456005,
734
+ "grad_norm": 1.241882562637329,
735
+ "learning_rate": 4.9577979968038354e-05,
736
+ "loss": 0.8578,
737
+ "step": 3224
738
+ },
739
+ {
740
+ "epoch": 0.048836842934411595,
741
+ "grad_norm": 0.9396510720252991,
742
+ "learning_rate": 4.956247537083282e-05,
743
+ "loss": 0.8645,
744
+ "step": 3255
745
+ },
746
+ {
747
+ "epoch": 0.04930195572426314,
748
+ "grad_norm": 0.987626850605011,
749
+ "learning_rate": 4.9546693589431145e-05,
750
+ "loss": 0.8613,
751
+ "step": 3286
752
+ },
753
+ {
754
+ "epoch": 0.04976706851411467,
755
+ "grad_norm": 0.9133639931678772,
756
+ "learning_rate": 4.9530634801928595e-05,
757
+ "loss": 0.8601,
758
+ "step": 3317
759
+ },
760
+ {
761
+ "epoch": 0.050232181303966214,
762
+ "grad_norm": 0.784701943397522,
763
+ "learning_rate": 4.9514299189546395e-05,
764
+ "loss": 0.849,
765
+ "step": 3348
766
+ },
767
+ {
768
+ "epoch": 0.05069729409381775,
769
+ "grad_norm": 0.9144874811172485,
770
+ "learning_rate": 4.949768693662973e-05,
771
+ "loss": 0.8591,
772
+ "step": 3379
773
+ },
774
+ {
775
+ "epoch": 0.05116240688366929,
776
+ "grad_norm": 0.8831948041915894,
777
+ "learning_rate": 4.948079823064559e-05,
778
+ "loss": 0.8579,
779
+ "step": 3410
780
+ },
781
+ {
782
+ "epoch": 0.051627519673520826,
783
+ "grad_norm": 0.9127451181411743,
784
+ "learning_rate": 4.946363326218074e-05,
785
+ "loss": 0.8632,
786
+ "step": 3441
787
+ },
788
+ {
789
+ "epoch": 0.05209263246337237,
790
+ "grad_norm": 0.939115047454834,
791
+ "learning_rate": 4.9446192224939525e-05,
792
+ "loss": 0.8526,
793
+ "step": 3472
794
+ },
795
+ {
796
+ "epoch": 0.05255774525322391,
797
+ "grad_norm": 0.9380930066108704,
798
+ "learning_rate": 4.942847531574167e-05,
799
+ "loss": 0.8684,
800
+ "step": 3503
801
+ },
802
+ {
803
+ "epoch": 0.053022858043075445,
804
+ "grad_norm": 0.9686013460159302,
805
+ "learning_rate": 4.941048273452008e-05,
806
+ "loss": 0.8443,
807
+ "step": 3534
808
+ },
809
+ {
810
+ "epoch": 0.05348797083292699,
811
+ "grad_norm": 1.1282305717468262,
812
+ "learning_rate": 4.9392214684318605e-05,
813
+ "loss": 0.8612,
814
+ "step": 3565
815
+ },
816
+ {
817
+ "epoch": 0.05395308362277852,
818
+ "grad_norm": 0.9129716753959656,
819
+ "learning_rate": 4.93736713712897e-05,
820
+ "loss": 0.8535,
821
+ "step": 3596
822
+ },
823
+ {
824
+ "epoch": 0.054418196412630064,
825
+ "grad_norm": 1.0998603105545044,
826
+ "learning_rate": 4.9354853004692124e-05,
827
+ "loss": 0.8578,
828
+ "step": 3627
829
+ },
830
+ {
831
+ "epoch": 0.0548833092024816,
832
+ "grad_norm": 0.9199731945991516,
833
+ "learning_rate": 4.93357597968886e-05,
834
+ "loss": 0.8487,
835
+ "step": 3658
836
+ },
837
+ {
838
+ "epoch": 0.05534842199233314,
839
+ "grad_norm": 0.8940901160240173,
840
+ "learning_rate": 4.931639196334338e-05,
841
+ "loss": 0.8438,
842
+ "step": 3689
843
+ },
844
+ {
845
+ "epoch": 0.05581353478218468,
846
+ "grad_norm": 0.7387672066688538,
847
+ "learning_rate": 4.9296749722619826e-05,
848
+ "loss": 0.848,
849
+ "step": 3720
850
+ },
851
+ {
852
+ "epoch": 0.05627864757203622,
853
+ "grad_norm": 1.0379717350006104,
854
+ "learning_rate": 4.9276833296377966e-05,
855
+ "loss": 0.8433,
856
+ "step": 3751
857
+ },
858
+ {
859
+ "epoch": 0.05674376036188776,
860
+ "grad_norm": 1.020926594734192,
861
+ "learning_rate": 4.925664290937196e-05,
862
+ "loss": 0.8505,
863
+ "step": 3782
864
+ },
865
+ {
866
+ "epoch": 0.057208873151739295,
867
+ "grad_norm": 0.9726930856704712,
868
+ "learning_rate": 4.9236178789447576e-05,
869
+ "loss": 0.8533,
870
+ "step": 3813
871
+ },
872
+ {
873
+ "epoch": 0.05767398594159084,
874
+ "grad_norm": 2.112886905670166,
875
+ "learning_rate": 4.921544116753962e-05,
876
+ "loss": 0.8416,
877
+ "step": 3844
878
+ },
879
+ {
880
+ "epoch": 0.05813909873144237,
881
+ "grad_norm": 0.9767888188362122,
882
+ "learning_rate": 4.919443027766935e-05,
883
+ "loss": 0.8453,
884
+ "step": 3875
885
+ },
886
+ {
887
+ "epoch": 0.058604211521293914,
888
+ "grad_norm": 1.101620078086853,
889
+ "learning_rate": 4.91731463569418e-05,
890
+ "loss": 0.8509,
891
+ "step": 3906
892
+ },
893
+ {
894
+ "epoch": 0.059069324311145456,
895
+ "grad_norm": 0.8144866824150085,
896
+ "learning_rate": 4.915158964554312e-05,
897
+ "loss": 0.847,
898
+ "step": 3937
899
+ },
900
+ {
901
+ "epoch": 0.05953443710099699,
902
+ "grad_norm": 0.9438722729682922,
903
+ "learning_rate": 4.912976038673786e-05,
904
+ "loss": 0.8319,
905
+ "step": 3968
906
+ },
907
+ {
908
+ "epoch": 0.05999954989084853,
909
+ "grad_norm": 1.0541943311691284,
910
+ "learning_rate": 4.9107658826866254e-05,
911
+ "loss": 0.838,
912
+ "step": 3999
913
+ },
914
+ {
915
+ "epoch": 0.06046466268070007,
916
+ "grad_norm": 0.9656486511230469,
917
+ "learning_rate": 4.908528521534139e-05,
918
+ "loss": 0.8334,
919
+ "step": 4030
920
+ },
921
+ {
922
+ "epoch": 0.06092977547055161,
923
+ "grad_norm": 0.8693748116493225,
924
+ "learning_rate": 4.906263980464644e-05,
925
+ "loss": 0.8332,
926
+ "step": 4061
927
+ },
928
+ {
929
+ "epoch": 0.061394888260403145,
930
+ "grad_norm": 0.8312646746635437,
931
+ "learning_rate": 4.903972285033178e-05,
932
+ "loss": 0.8364,
933
+ "step": 4092
934
+ },
935
+ {
936
+ "epoch": 0.06186000105025469,
937
+ "grad_norm": 0.9871633648872375,
938
+ "learning_rate": 4.901653461101213e-05,
939
+ "loss": 0.8344,
940
+ "step": 4123
941
+ },
942
+ {
943
+ "epoch": 0.06232511384010623,
944
+ "grad_norm": 1.1861239671707153,
945
+ "learning_rate": 4.8993075348363626e-05,
946
+ "loss": 0.8386,
947
+ "step": 4154
948
+ },
949
+ {
950
+ "epoch": 0.06279022662995777,
951
+ "grad_norm": 0.7850369215011597,
952
+ "learning_rate": 4.896934532712084e-05,
953
+ "loss": 0.8361,
954
+ "step": 4185
955
+ },
956
+ {
957
+ "epoch": 0.0632553394198093,
958
+ "grad_norm": 0.888320803642273,
959
+ "learning_rate": 4.8945344815073846e-05,
960
+ "loss": 0.8309,
961
+ "step": 4216
962
+ },
963
+ {
964
+ "epoch": 0.06372045220966084,
965
+ "grad_norm": 1.0985304117202759,
966
+ "learning_rate": 4.892107408306516e-05,
967
+ "loss": 0.8289,
968
+ "step": 4247
969
+ },
970
+ {
971
+ "epoch": 0.06418556499951238,
972
+ "grad_norm": 0.980798065662384,
973
+ "learning_rate": 4.889653340498669e-05,
974
+ "loss": 0.8232,
975
+ "step": 4278
976
+ },
977
+ {
978
+ "epoch": 0.06465067778936393,
979
+ "grad_norm": 0.7904775142669678,
980
+ "learning_rate": 4.8871723057776664e-05,
981
+ "loss": 0.8253,
982
+ "step": 4309
983
+ },
984
+ {
985
+ "epoch": 0.06511579057921546,
986
+ "grad_norm": 0.9444935321807861,
987
+ "learning_rate": 4.8846643321416476e-05,
988
+ "loss": 0.8409,
989
+ "step": 4340
990
+ },
991
+ {
992
+ "epoch": 0.065580903369067,
993
+ "grad_norm": 0.9295307993888855,
994
+ "learning_rate": 4.882129447892753e-05,
995
+ "loss": 0.8429,
996
+ "step": 4371
997
+ },
998
+ {
999
+ "epoch": 0.06604601615891854,
1000
+ "grad_norm": 0.9563235640525818,
1001
+ "learning_rate": 4.8795676816368076e-05,
1002
+ "loss": 0.8203,
1003
+ "step": 4402
1004
+ },
1005
+ {
1006
+ "epoch": 0.06651112894877008,
1007
+ "grad_norm": 0.7902786135673523,
1008
+ "learning_rate": 4.876979062282995e-05,
1009
+ "loss": 0.823,
1010
+ "step": 4433
1011
+ },
1012
+ {
1013
+ "epoch": 0.06697624173862161,
1014
+ "grad_norm": 0.9005814790725708,
1015
+ "learning_rate": 4.8743636190435325e-05,
1016
+ "loss": 0.8262,
1017
+ "step": 4464
1018
+ },
1019
+ {
1020
+ "epoch": 0.06744135452847315,
1021
+ "grad_norm": 0.9644972085952759,
1022
+ "learning_rate": 4.871721381433344e-05,
1023
+ "loss": 0.8505,
1024
+ "step": 4495
1025
+ },
1026
+ {
1027
+ "epoch": 0.0679064673183247,
1028
+ "grad_norm": 0.8087597489356995,
1029
+ "learning_rate": 4.869052379269719e-05,
1030
+ "loss": 0.8303,
1031
+ "step": 4526
1032
+ },
1033
+ {
1034
+ "epoch": 0.06837158010817623,
1035
+ "grad_norm": 1.06015145778656,
1036
+ "learning_rate": 4.866356642671985e-05,
1037
+ "loss": 0.841,
1038
+ "step": 4557
1039
+ },
1040
+ {
1041
+ "epoch": 0.06883669289802777,
1042
+ "grad_norm": 0.9413964152336121,
1043
+ "learning_rate": 4.8636342020611634e-05,
1044
+ "loss": 0.8297,
1045
+ "step": 4588
1046
+ },
1047
+ {
1048
+ "epoch": 0.06930180568787932,
1049
+ "grad_norm": 0.7894837260246277,
1050
+ "learning_rate": 4.860885088159626e-05,
1051
+ "loss": 0.8313,
1052
+ "step": 4619
1053
+ },
1054
+ {
1055
+ "epoch": 0.06976691847773085,
1056
+ "grad_norm": 1.7959920167922974,
1057
+ "learning_rate": 4.858109331990751e-05,
1058
+ "loss": 0.8343,
1059
+ "step": 4650
1060
+ },
1061
+ {
1062
+ "epoch": 0.07023203126758239,
1063
+ "grad_norm": 0.9917001128196716,
1064
+ "learning_rate": 4.855306964878567e-05,
1065
+ "loss": 0.8324,
1066
+ "step": 4681
1067
+ },
1068
+ {
1069
+ "epoch": 0.07069714405743392,
1070
+ "grad_norm": 0.8763757944107056,
1071
+ "learning_rate": 4.8524780184474084e-05,
1072
+ "loss": 0.8245,
1073
+ "step": 4712
1074
+ },
1075
+ {
1076
+ "epoch": 0.07116225684728547,
1077
+ "grad_norm": 0.7827804684638977,
1078
+ "learning_rate": 4.8496225246215496e-05,
1079
+ "loss": 0.8135,
1080
+ "step": 4743
1081
+ },
1082
+ {
1083
+ "epoch": 0.071627369637137,
1084
+ "grad_norm": 0.7496729493141174,
1085
+ "learning_rate": 4.8467405156248505e-05,
1086
+ "loss": 0.8218,
1087
+ "step": 4774
1088
+ },
1089
+ {
1090
+ "epoch": 0.07209248242698854,
1091
+ "grad_norm": 0.9856346249580383,
1092
+ "learning_rate": 4.843832023980392e-05,
1093
+ "loss": 0.8206,
1094
+ "step": 4805
1095
+ },
1096
+ {
1097
+ "epoch": 0.07255759521684009,
1098
+ "grad_norm": 0.8173674941062927,
1099
+ "learning_rate": 4.840897082510106e-05,
1100
+ "loss": 0.8174,
1101
+ "step": 4836
1102
+ },
1103
+ {
1104
+ "epoch": 0.07302270800669163,
1105
+ "grad_norm": 0.943686842918396,
1106
+ "learning_rate": 4.8379357243344084e-05,
1107
+ "loss": 0.8297,
1108
+ "step": 4867
1109
+ },
1110
+ {
1111
+ "epoch": 0.07348782079654316,
1112
+ "grad_norm": 0.8119473457336426,
1113
+ "learning_rate": 4.8349479828718236e-05,
1114
+ "loss": 0.8255,
1115
+ "step": 4898
1116
+ },
1117
+ {
1118
+ "epoch": 0.0739529335863947,
1119
+ "grad_norm": 2.7093794345855713,
1120
+ "learning_rate": 4.8319338918386075e-05,
1121
+ "loss": 0.8145,
1122
+ "step": 4929
1123
+ },
1124
+ {
1125
+ "epoch": 0.07441804637624624,
1126
+ "grad_norm": 0.9842637777328491,
1127
+ "learning_rate": 4.828893485248369e-05,
1128
+ "loss": 0.8116,
1129
+ "step": 4960
1130
+ },
1131
+ {
1132
+ "epoch": 0.07488315916609778,
1133
+ "grad_norm": 0.9502723813056946,
1134
+ "learning_rate": 4.825826797411682e-05,
1135
+ "loss": 0.8222,
1136
+ "step": 4991
1137
+ },
1138
+ {
1139
+ "epoch": 0.07534827195594931,
1140
+ "grad_norm": 0.8006568551063538,
1141
+ "learning_rate": 4.822733862935702e-05,
1142
+ "loss": 0.8303,
1143
+ "step": 5022
1144
+ },
1145
+ {
1146
+ "epoch": 0.07581338474580086,
1147
+ "grad_norm": 0.7108177542686462,
1148
+ "learning_rate": 4.819614716723775e-05,
1149
+ "loss": 0.8202,
1150
+ "step": 5053
1151
+ },
1152
+ {
1153
+ "epoch": 0.0762784975356524,
1154
+ "grad_norm": 0.7464533448219299,
1155
+ "learning_rate": 4.8164693939750425e-05,
1156
+ "loss": 0.8035,
1157
+ "step": 5084
1158
+ },
1159
+ {
1160
+ "epoch": 0.07674361032550393,
1161
+ "grad_norm": 0.815014123916626,
1162
+ "learning_rate": 4.813297930184042e-05,
1163
+ "loss": 0.8161,
1164
+ "step": 5115
1165
+ },
1166
+ {
1167
+ "epoch": 0.07720872311535547,
1168
+ "grad_norm": 0.8991546034812927,
1169
+ "learning_rate": 4.810100361140314e-05,
1170
+ "loss": 0.8013,
1171
+ "step": 5146
1172
+ },
1173
+ {
1174
+ "epoch": 0.07767383590520702,
1175
+ "grad_norm": 1.0259745121002197,
1176
+ "learning_rate": 4.8068767229279885e-05,
1177
+ "loss": 0.8069,
1178
+ "step": 5177
1179
+ },
1180
+ {
1181
+ "epoch": 0.07813894869505855,
1182
+ "grad_norm": 0.8683953285217285,
1183
+ "learning_rate": 4.8036270519253854e-05,
1184
+ "loss": 0.8053,
1185
+ "step": 5208
1186
+ },
1187
+ {
1188
+ "epoch": 0.07860406148491009,
1189
+ "grad_norm": 0.6831669211387634,
1190
+ "learning_rate": 4.8003513848046e-05,
1191
+ "loss": 0.8183,
1192
+ "step": 5239
1193
+ },
1194
+ {
1195
+ "epoch": 0.07906917427476164,
1196
+ "grad_norm": 1.005091667175293,
1197
+ "learning_rate": 4.79704975853109e-05,
1198
+ "loss": 0.8145,
1199
+ "step": 5270
1200
+ },
1201
+ {
1202
+ "epoch": 0.07953428706461317,
1203
+ "grad_norm": 1.0526143312454224,
1204
+ "learning_rate": 4.793722210363262e-05,
1205
+ "loss": 0.8179,
1206
+ "step": 5301
1207
+ },
1208
+ {
1209
+ "epoch": 0.0799993998544647,
1210
+ "grad_norm": 0.9000487327575684,
1211
+ "learning_rate": 4.7903687778520414e-05,
1212
+ "loss": 0.8191,
1213
+ "step": 5332
1214
+ },
1215
+ {
1216
+ "epoch": 0.08046451264431624,
1217
+ "grad_norm": 0.7542000412940979,
1218
+ "learning_rate": 4.7869894988404593e-05,
1219
+ "loss": 0.8129,
1220
+ "step": 5363
1221
+ },
1222
+ {
1223
+ "epoch": 0.08092962543416779,
1224
+ "grad_norm": 0.7871935963630676,
1225
+ "learning_rate": 4.783584411463221e-05,
1226
+ "loss": 0.8008,
1227
+ "step": 5394
1228
+ },
1229
+ {
1230
+ "epoch": 0.08139473822401933,
1231
+ "grad_norm": 0.9389820098876953,
1232
+ "learning_rate": 4.780153554146274e-05,
1233
+ "loss": 0.8084,
1234
+ "step": 5425
1235
+ },
1236
+ {
1237
+ "epoch": 0.08185985101387086,
1238
+ "grad_norm": 0.8348682522773743,
1239
+ "learning_rate": 4.7766969656063766e-05,
1240
+ "loss": 0.8098,
1241
+ "step": 5456
1242
+ },
1243
+ {
1244
+ "epoch": 0.08232496380372241,
1245
+ "grad_norm": 0.7959926724433899,
1246
+ "learning_rate": 4.773214684850662e-05,
1247
+ "loss": 0.8092,
1248
+ "step": 5487
1249
+ },
1250
+ {
1251
+ "epoch": 0.08279007659357394,
1252
+ "grad_norm": 0.8719795346260071,
1253
+ "learning_rate": 4.769706751176193e-05,
1254
+ "loss": 0.812,
1255
+ "step": 5518
1256
+ },
1257
+ {
1258
+ "epoch": 0.08325518938342548,
1259
+ "grad_norm": 0.7396957278251648,
1260
+ "learning_rate": 4.7661732041695264e-05,
1261
+ "loss": 0.8052,
1262
+ "step": 5549
1263
+ },
1264
+ {
1265
+ "epoch": 0.08372030217327701,
1266
+ "grad_norm": 0.7120716571807861,
1267
+ "learning_rate": 4.762614083706258e-05,
1268
+ "loss": 0.8198,
1269
+ "step": 5580
1270
+ },
1271
+ {
1272
+ "epoch": 0.08418541496312856,
1273
+ "grad_norm": 0.6915568113327026,
1274
+ "learning_rate": 4.759029429950581e-05,
1275
+ "loss": 0.8167,
1276
+ "step": 5611
1277
+ },
1278
+ {
1279
+ "epoch": 0.0846505277529801,
1280
+ "grad_norm": 0.7923029661178589,
1281
+ "learning_rate": 4.7554192833548235e-05,
1282
+ "loss": 0.8102,
1283
+ "step": 5642
1284
+ },
1285
+ {
1286
+ "epoch": 0.08511564054283163,
1287
+ "grad_norm": 0.9134017825126648,
1288
+ "learning_rate": 4.751783684659e-05,
1289
+ "loss": 0.8044,
1290
+ "step": 5673
1291
+ },
1292
+ {
1293
+ "epoch": 0.08558075333268318,
1294
+ "grad_norm": 0.6910101771354675,
1295
+ "learning_rate": 4.748122674890348e-05,
1296
+ "loss": 0.8033,
1297
+ "step": 5704
1298
+ },
1299
+ {
1300
+ "epoch": 0.08604586612253472,
1301
+ "grad_norm": 1.0083701610565186,
1302
+ "learning_rate": 4.7444362953628654e-05,
1303
+ "loss": 0.7984,
1304
+ "step": 5735
1305
+ },
1306
+ {
1307
+ "epoch": 0.08651097891238625,
1308
+ "grad_norm": 0.7578200697898865,
1309
+ "learning_rate": 4.7407245876768424e-05,
1310
+ "loss": 0.8028,
1311
+ "step": 5766
1312
+ },
1313
+ {
1314
+ "epoch": 0.08697609170223779,
1315
+ "grad_norm": 0.6932199001312256,
1316
+ "learning_rate": 4.736987593718397e-05,
1317
+ "loss": 0.7913,
1318
+ "step": 5797
1319
+ },
1320
+ {
1321
+ "epoch": 0.08744120449208934,
1322
+ "grad_norm": 0.8898211717605591,
1323
+ "learning_rate": 4.733225355658999e-05,
1324
+ "loss": 0.8087,
1325
+ "step": 5828
1326
+ },
1327
+ {
1328
+ "epoch": 0.08790631728194087,
1329
+ "grad_norm": 0.8452892303466797,
1330
+ "learning_rate": 4.7294379159549926e-05,
1331
+ "loss": 0.798,
1332
+ "step": 5859
1333
+ },
1334
+ {
1335
+ "epoch": 0.0883714300717924,
1336
+ "grad_norm": 0.7200170159339905,
1337
+ "learning_rate": 4.725625317347119e-05,
1338
+ "loss": 0.8033,
1339
+ "step": 5890
1340
+ },
1341
+ {
1342
+ "epoch": 0.08883654286164396,
1343
+ "grad_norm": 0.9801698923110962,
1344
+ "learning_rate": 4.7217876028600374e-05,
1345
+ "loss": 0.801,
1346
+ "step": 5921
1347
+ },
1348
+ {
1349
+ "epoch": 0.08930165565149549,
1350
+ "grad_norm": 0.6971285939216614,
1351
+ "learning_rate": 4.717924815801832e-05,
1352
+ "loss": 0.8004,
1353
+ "step": 5952
1354
+ },
1355
+ {
1356
+ "epoch": 0.08976676844134703,
1357
+ "grad_norm": 0.6692901253700256,
1358
+ "learning_rate": 4.714036999763532e-05,
1359
+ "loss": 0.8079,
1360
+ "step": 5983
1361
+ },
1362
+ {
1363
+ "epoch": 0.09023188123119856,
1364
+ "grad_norm": 0.7357479929924011,
1365
+ "learning_rate": 4.7101241986186116e-05,
1366
+ "loss": 0.8047,
1367
+ "step": 6014
1368
+ },
1369
+ {
1370
+ "epoch": 0.09069699402105011,
1371
+ "grad_norm": 0.9808568358421326,
1372
+ "learning_rate": 4.7061864565225e-05,
1373
+ "loss": 0.7943,
1374
+ "step": 6045
1375
+ },
1376
+ {
1377
+ "epoch": 0.09116210681090164,
1378
+ "grad_norm": 0.8038450479507446,
1379
+ "learning_rate": 4.702223817912081e-05,
1380
+ "loss": 0.7962,
1381
+ "step": 6076
1382
+ },
1383
+ {
1384
+ "epoch": 0.09162721960075318,
1385
+ "grad_norm": 1.1002798080444336,
1386
+ "learning_rate": 4.698236327505195e-05,
1387
+ "loss": 0.8133,
1388
+ "step": 6107
1389
+ },
1390
+ {
1391
+ "epoch": 0.09209233239060473,
1392
+ "grad_norm": 0.8928295373916626,
1393
+ "learning_rate": 4.694224030300127e-05,
1394
+ "loss": 0.7968,
1395
+ "step": 6138
1396
+ },
1397
+ {
1398
+ "epoch": 0.09255744518045626,
1399
+ "grad_norm": 0.8596677184104919,
1400
+ "learning_rate": 4.690186971575107e-05,
1401
+ "loss": 0.8087,
1402
+ "step": 6169
1403
+ },
1404
+ {
1405
+ "epoch": 0.0930225579703078,
1406
+ "grad_norm": 1.0481047630310059,
1407
+ "learning_rate": 4.6861251968877916e-05,
1408
+ "loss": 0.7874,
1409
+ "step": 6200
1410
+ },
1411
+ {
1412
+ "epoch": 0.09348767076015933,
1413
+ "grad_norm": 0.7633193731307983,
1414
+ "learning_rate": 4.68203875207476e-05,
1415
+ "loss": 0.7945,
1416
+ "step": 6231
1417
+ },
1418
+ {
1419
+ "epoch": 0.09395278355001088,
1420
+ "grad_norm": 0.6666761040687561,
1421
+ "learning_rate": 4.677927683250983e-05,
1422
+ "loss": 0.7999,
1423
+ "step": 6262
1424
+ },
1425
+ {
1426
+ "epoch": 0.09441789633986242,
1427
+ "grad_norm": 0.7834581732749939,
1428
+ "learning_rate": 4.6737920368093156e-05,
1429
+ "loss": 0.8004,
1430
+ "step": 6293
1431
+ },
1432
+ {
1433
+ "epoch": 0.09488300912971395,
1434
+ "grad_norm": 0.8548229932785034,
1435
+ "learning_rate": 4.669631859419965e-05,
1436
+ "loss": 0.7983,
1437
+ "step": 6324
1438
+ },
1439
+ {
1440
+ "epoch": 0.0953481219195655,
1441
+ "grad_norm": 0.8321638703346252,
1442
+ "learning_rate": 4.6654471980299676e-05,
1443
+ "loss": 0.8103,
1444
+ "step": 6355
1445
+ },
1446
+ {
1447
+ "epoch": 0.09581323470941704,
1448
+ "grad_norm": 0.8134599924087524,
1449
+ "learning_rate": 4.661238099862658e-05,
1450
+ "loss": 0.8042,
1451
+ "step": 6386
1452
+ },
1453
+ {
1454
+ "epoch": 0.09627834749926857,
1455
+ "grad_norm": 0.9421968460083008,
1456
+ "learning_rate": 4.657004612417138e-05,
1457
+ "loss": 0.8028,
1458
+ "step": 6417
1459
+ },
1460
+ {
1461
+ "epoch": 0.0967434602891201,
1462
+ "grad_norm": 0.6998574137687683,
1463
+ "learning_rate": 4.6527467834677374e-05,
1464
+ "loss": 0.809,
1465
+ "step": 6448
1466
+ },
1467
+ {
1468
+ "epoch": 0.09720857307897166,
1469
+ "grad_norm": 0.7347880005836487,
1470
+ "learning_rate": 4.648464661063478e-05,
1471
+ "loss": 0.8115,
1472
+ "step": 6479
1473
+ },
1474
+ {
1475
+ "epoch": 0.09767368586882319,
1476
+ "grad_norm": 0.8895875811576843,
1477
+ "learning_rate": 4.6441582935275264e-05,
1478
+ "loss": 0.8023,
1479
+ "step": 6510
1480
+ },
1481
+ {
1482
+ "epoch": 0.09813879865867473,
1483
+ "grad_norm": 0.588324785232544,
1484
+ "learning_rate": 4.6398277294566586e-05,
1485
+ "loss": 0.7958,
1486
+ "step": 6541
1487
+ },
1488
+ {
1489
+ "epoch": 0.09860391144852627,
1490
+ "grad_norm": 0.8145986199378967,
1491
+ "learning_rate": 4.6354730177207e-05,
1492
+ "loss": 0.8018,
1493
+ "step": 6572
1494
+ },
1495
+ {
1496
+ "epoch": 0.09906902423837781,
1497
+ "grad_norm": 0.659679651260376,
1498
+ "learning_rate": 4.6310942074619787e-05,
1499
+ "loss": 0.7904,
1500
+ "step": 6603
1501
+ },
1502
+ {
1503
+ "epoch": 0.09953413702822934,
1504
+ "grad_norm": 0.7664335370063782,
1505
+ "learning_rate": 4.626691348094777e-05,
1506
+ "loss": 0.7953,
1507
+ "step": 6634
1508
+ },
1509
+ {
1510
+ "epoch": 0.09999924981808088,
1511
+ "grad_norm": 0.630374550819397,
1512
+ "learning_rate": 4.622264489304762e-05,
1513
+ "loss": 0.7834,
1514
+ "step": 6665
1515
+ },
1516
+ {
1517
+ "epoch": 0.10046436260793243,
1518
+ "grad_norm": 0.8089181780815125,
1519
+ "learning_rate": 4.617813681048434e-05,
1520
+ "loss": 0.7939,
1521
+ "step": 6696
1522
+ },
1523
+ {
1524
+ "epoch": 0.10092947539778396,
1525
+ "grad_norm": 0.7410175204277039,
1526
+ "learning_rate": 4.61333897355256e-05,
1527
+ "loss": 0.7997,
1528
+ "step": 6727
1529
+ },
1530
+ {
1531
+ "epoch": 0.1013945881876355,
1532
+ "grad_norm": 0.8867741823196411,
1533
+ "learning_rate": 4.608840417313604e-05,
1534
+ "loss": 0.7876,
1535
+ "step": 6758
1536
+ },
1537
+ {
1538
+ "epoch": 0.10185970097748705,
1539
+ "grad_norm": 0.8592618107795715,
1540
+ "learning_rate": 4.6043180630971646e-05,
1541
+ "loss": 0.7915,
1542
+ "step": 6789
1543
+ },
1544
+ {
1545
+ "epoch": 0.10232481376733858,
1546
+ "grad_norm": 0.7498304843902588,
1547
+ "learning_rate": 4.599771961937391e-05,
1548
+ "loss": 0.7953,
1549
+ "step": 6820
1550
+ },
1551
+ {
1552
+ "epoch": 0.10278992655719012,
1553
+ "grad_norm": 0.7439833879470825,
1554
+ "learning_rate": 4.5952021651364204e-05,
1555
+ "loss": 0.7932,
1556
+ "step": 6851
1557
+ },
1558
+ {
1559
+ "epoch": 0.10325503934704165,
1560
+ "grad_norm": 0.7184897065162659,
1561
+ "learning_rate": 4.590608724263786e-05,
1562
+ "loss": 0.7905,
1563
+ "step": 6882
1564
+ },
1565
+ {
1566
+ "epoch": 0.1037201521368932,
1567
+ "grad_norm": 0.7455788254737854,
1568
+ "learning_rate": 4.585991691155845e-05,
1569
+ "loss": 0.7822,
1570
+ "step": 6913
1571
+ },
1572
+ {
1573
+ "epoch": 0.10418526492674474,
1574
+ "grad_norm": 0.7429169416427612,
1575
+ "learning_rate": 4.581351117915188e-05,
1576
+ "loss": 0.7895,
1577
+ "step": 6944
1578
+ },
1579
+ {
1580
+ "epoch": 0.10465037771659627,
1581
+ "grad_norm": 0.708569347858429,
1582
+ "learning_rate": 4.5766870569100534e-05,
1583
+ "loss": 0.7922,
1584
+ "step": 6975
1585
+ },
1586
+ {
1587
+ "epoch": 0.10511549050644782,
1588
+ "grad_norm": 0.6906721591949463,
1589
+ "learning_rate": 4.571999560773736e-05,
1590
+ "loss": 0.7932,
1591
+ "step": 7006
1592
+ },
1593
+ {
1594
+ "epoch": 0.10558060329629936,
1595
+ "grad_norm": 0.7495471835136414,
1596
+ "learning_rate": 4.5672886824039915e-05,
1597
+ "loss": 0.7849,
1598
+ "step": 7037
1599
+ },
1600
+ {
1601
+ "epoch": 0.10604571608615089,
1602
+ "grad_norm": 0.7219502329826355,
1603
+ "learning_rate": 4.5625544749624435e-05,
1604
+ "loss": 0.7842,
1605
+ "step": 7068
1606
+ },
1607
+ {
1608
+ "epoch": 0.10651082887600243,
1609
+ "grad_norm": 0.7211415767669678,
1610
+ "learning_rate": 4.5577969918739794e-05,
1611
+ "loss": 0.7822,
1612
+ "step": 7099
1613
+ },
1614
+ {
1615
+ "epoch": 0.10697594166585397,
1616
+ "grad_norm": 0.7900408506393433,
1617
+ "learning_rate": 4.5530162868261486e-05,
1618
+ "loss": 0.7956,
1619
+ "step": 7130
1620
+ },
1621
+ {
1622
+ "epoch": 0.10744105445570551,
1623
+ "grad_norm": 0.8071913123130798,
1624
+ "learning_rate": 4.548212413768558e-05,
1625
+ "loss": 0.7884,
1626
+ "step": 7161
1627
+ },
1628
+ {
1629
+ "epoch": 0.10790616724555704,
1630
+ "grad_norm": 0.6667525172233582,
1631
+ "learning_rate": 4.543385426912261e-05,
1632
+ "loss": 0.7815,
1633
+ "step": 7192
1634
+ },
1635
+ {
1636
+ "epoch": 0.1083712800354086,
1637
+ "grad_norm": 0.8470203280448914,
1638
+ "learning_rate": 4.53853538072915e-05,
1639
+ "loss": 0.793,
1640
+ "step": 7223
1641
+ },
1642
+ {
1643
+ "epoch": 0.10883639282526013,
1644
+ "grad_norm": 0.7718335390090942,
1645
+ "learning_rate": 4.533662329951336e-05,
1646
+ "loss": 0.787,
1647
+ "step": 7254
1648
+ },
1649
+ {
1650
+ "epoch": 0.10930150561511166,
1651
+ "grad_norm": 0.67174232006073,
1652
+ "learning_rate": 4.528766329570536e-05,
1653
+ "loss": 0.7859,
1654
+ "step": 7285
1655
+ },
1656
+ {
1657
+ "epoch": 0.1097666184049632,
1658
+ "grad_norm": 0.9030664563179016,
1659
+ "learning_rate": 4.523847434837447e-05,
1660
+ "loss": 0.785,
1661
+ "step": 7316
1662
+ },
1663
+ {
1664
+ "epoch": 0.11023173119481475,
1665
+ "grad_norm": 0.6775389313697815,
1666
+ "learning_rate": 4.518905701261128e-05,
1667
+ "loss": 0.7835,
1668
+ "step": 7347
1669
+ },
1670
+ {
1671
+ "epoch": 0.11069684398466628,
1672
+ "grad_norm": 0.6373648643493652,
1673
+ "learning_rate": 4.5139411846083715e-05,
1674
+ "loss": 0.7816,
1675
+ "step": 7378
1676
+ },
1677
+ {
1678
+ "epoch": 0.11116195677451782,
1679
+ "grad_norm": 0.7260624170303345,
1680
+ "learning_rate": 4.508953940903073e-05,
1681
+ "loss": 0.7878,
1682
+ "step": 7409
1683
+ },
1684
+ {
1685
+ "epoch": 0.11162706956436937,
1686
+ "grad_norm": 0.7170141935348511,
1687
+ "learning_rate": 4.5039440264255994e-05,
1688
+ "loss": 0.7754,
1689
+ "step": 7440
1690
+ },
1691
+ {
1692
+ "epoch": 0.1120921823542209,
1693
+ "grad_norm": 0.7276513576507568,
1694
+ "learning_rate": 4.498911497712155e-05,
1695
+ "loss": 0.7854,
1696
+ "step": 7471
1697
+ },
1698
+ {
1699
+ "epoch": 0.11255729514407244,
1700
+ "grad_norm": 0.7349756956100464,
1701
+ "learning_rate": 4.493856411554142e-05,
1702
+ "loss": 0.791,
1703
+ "step": 7502
1704
+ },
1705
+ {
1706
+ "epoch": 0.11302240793392397,
1707
+ "grad_norm": 0.8739349246025085,
1708
+ "learning_rate": 4.4887788249975206e-05,
1709
+ "loss": 0.7926,
1710
+ "step": 7533
1711
+ },
1712
+ {
1713
+ "epoch": 0.11348752072377552,
1714
+ "grad_norm": 0.7612133622169495,
1715
+ "learning_rate": 4.4836787953421656e-05,
1716
+ "loss": 0.7954,
1717
+ "step": 7564
1718
+ },
1719
+ {
1720
+ "epoch": 0.11395263351362706,
1721
+ "grad_norm": 0.7819641828536987,
1722
+ "learning_rate": 4.478556380141218e-05,
1723
+ "loss": 0.7813,
1724
+ "step": 7595
1725
+ },
1726
+ {
1727
+ "epoch": 0.11441774630347859,
1728
+ "grad_norm": 0.789462685585022,
1729
+ "learning_rate": 4.4734116372004375e-05,
1730
+ "loss": 0.7982,
1731
+ "step": 7626
1732
+ },
1733
+ {
1734
+ "epoch": 0.11488285909333014,
1735
+ "grad_norm": 0.677481472492218,
1736
+ "learning_rate": 4.4682446245775477e-05,
1737
+ "loss": 0.778,
1738
+ "step": 7657
1739
+ },
1740
+ {
1741
+ "epoch": 0.11534797188318167,
1742
+ "grad_norm": 0.8899239301681519,
1743
+ "learning_rate": 4.463055400581586e-05,
1744
+ "loss": 0.7841,
1745
+ "step": 7688
1746
+ },
1747
+ {
1748
+ "epoch": 0.11581308467303321,
1749
+ "grad_norm": 0.9114879369735718,
1750
+ "learning_rate": 4.4578440237722374e-05,
1751
+ "loss": 0.7962,
1752
+ "step": 7719
1753
+ },
1754
+ {
1755
+ "epoch": 0.11627819746288474,
1756
+ "grad_norm": 0.7342079877853394,
1757
+ "learning_rate": 4.452610552959183e-05,
1758
+ "loss": 0.784,
1759
+ "step": 7750
1760
+ },
1761
+ {
1762
+ "epoch": 0.1167433102527363,
1763
+ "grad_norm": 0.7678495049476624,
1764
+ "learning_rate": 4.447355047201428e-05,
1765
+ "loss": 0.7831,
1766
+ "step": 7781
1767
+ },
1768
+ {
1769
+ "epoch": 0.11720842304258783,
1770
+ "grad_norm": 0.8216970562934875,
1771
+ "learning_rate": 4.4420775658066414e-05,
1772
+ "loss": 0.7782,
1773
+ "step": 7812
1774
+ },
1775
+ {
1776
+ "epoch": 0.11767353583243936,
1777
+ "grad_norm": 0.8297589421272278,
1778
+ "learning_rate": 4.436778168330484e-05,
1779
+ "loss": 0.7851,
1780
+ "step": 7843
1781
+ },
1782
+ {
1783
+ "epoch": 0.11813864862229091,
1784
+ "grad_norm": 0.6707519292831421,
1785
+ "learning_rate": 4.4314569145759353e-05,
1786
+ "loss": 0.7801,
1787
+ "step": 7874
1788
+ },
1789
+ {
1790
+ "epoch": 0.11860376141214245,
1791
+ "grad_norm": 0.6816626787185669,
1792
+ "learning_rate": 4.42611386459262e-05,
1793
+ "loss": 0.7872,
1794
+ "step": 7905
1795
+ },
1796
+ {
1797
+ "epoch": 0.11906887420199398,
1798
+ "grad_norm": 0.9005252122879028,
1799
+ "learning_rate": 4.420749078676133e-05,
1800
+ "loss": 0.7936,
1801
+ "step": 7936
1802
+ },
1803
+ {
1804
+ "epoch": 0.11953398699184552,
1805
+ "grad_norm": 0.8328778147697449,
1806
+ "learning_rate": 4.4153626173673516e-05,
1807
+ "loss": 0.7786,
1808
+ "step": 7967
1809
+ },
1810
+ {
1811
+ "epoch": 0.11999909978169707,
1812
+ "grad_norm": 0.8410969376564026,
1813
+ "learning_rate": 4.409954541451762e-05,
1814
+ "loss": 0.7848,
1815
+ "step": 7998
1816
+ },
1817
+ {
1818
+ "epoch": 0.1204642125715486,
1819
+ "grad_norm": 0.7608590722084045,
1820
+ "learning_rate": 4.404524911958764e-05,
1821
+ "loss": 0.7834,
1822
+ "step": 8029
1823
+ },
1824
+ {
1825
+ "epoch": 0.12092932536140014,
1826
+ "grad_norm": 0.8817543983459473,
1827
+ "learning_rate": 4.399073790160989e-05,
1828
+ "loss": 0.7852,
1829
+ "step": 8060
1830
+ },
1831
+ {
1832
+ "epoch": 0.12139443815125169,
1833
+ "grad_norm": 0.7609240412712097,
1834
+ "learning_rate": 4.393601237573607e-05,
1835
+ "loss": 0.7766,
1836
+ "step": 8091
1837
+ },
1838
+ {
1839
+ "epoch": 0.12185955094110322,
1840
+ "grad_norm": 1.1703492403030396,
1841
+ "learning_rate": 4.388107315953628e-05,
1842
+ "loss": 0.7844,
1843
+ "step": 8122
1844
+ },
1845
+ {
1846
+ "epoch": 0.12232466373095476,
1847
+ "grad_norm": 0.7617055773735046,
1848
+ "learning_rate": 4.382592087299212e-05,
1849
+ "loss": 0.7806,
1850
+ "step": 8153
1851
+ },
1852
+ {
1853
+ "epoch": 0.12278977652080629,
1854
+ "grad_norm": 0.7049508690834045,
1855
+ "learning_rate": 4.377055613848964e-05,
1856
+ "loss": 0.7807,
1857
+ "step": 8184
1858
+ },
1859
+ {
1860
+ "epoch": 0.12325488931065784,
1861
+ "grad_norm": 0.7807313203811646,
1862
+ "learning_rate": 4.3714979580812355e-05,
1863
+ "loss": 0.7825,
1864
+ "step": 8215
1865
+ },
1866
+ {
1867
+ "epoch": 0.12372000210050937,
1868
+ "grad_norm": 0.9308986067771912,
1869
+ "learning_rate": 4.365919182713416e-05,
1870
+ "loss": 0.7803,
1871
+ "step": 8246
1872
+ },
1873
+ {
1874
+ "epoch": 0.12418511489036091,
1875
+ "grad_norm": 0.7101467251777649,
1876
+ "learning_rate": 4.360319350701226e-05,
1877
+ "loss": 0.7762,
1878
+ "step": 8277
1879
+ },
1880
+ {
1881
+ "epoch": 0.12465022768021246,
1882
+ "grad_norm": 0.6804013252258301,
1883
+ "learning_rate": 4.3546985252380115e-05,
1884
+ "loss": 0.7892,
1885
+ "step": 8308
1886
+ },
1887
+ {
1888
+ "epoch": 0.12511534047006398,
1889
+ "grad_norm": 0.6824433207511902,
1890
+ "learning_rate": 4.349056769754021e-05,
1891
+ "loss": 0.7802,
1892
+ "step": 8339
1893
+ },
1894
+ {
1895
+ "epoch": 0.12558045325991554,
1896
+ "grad_norm": 1.468239188194275,
1897
+ "learning_rate": 4.3433941479156994e-05,
1898
+ "loss": 0.7869,
1899
+ "step": 8370
1900
+ },
1901
+ {
1902
+ "epoch": 0.12604556604976708,
1903
+ "grad_norm": 0.5719156861305237,
1904
+ "learning_rate": 4.3377107236249647e-05,
1905
+ "loss": 0.778,
1906
+ "step": 8401
1907
+ },
1908
+ {
1909
+ "epoch": 0.1265106788396186,
1910
+ "grad_norm": 0.6709131002426147,
1911
+ "learning_rate": 4.332006561018488e-05,
1912
+ "loss": 0.7732,
1913
+ "step": 8432
1914
+ },
1915
+ {
1916
+ "epoch": 0.12697579162947015,
1917
+ "grad_norm": 0.7485822439193726,
1918
+ "learning_rate": 4.3262817244669683e-05,
1919
+ "loss": 0.7838,
1920
+ "step": 8463
1921
+ },
1922
+ {
1923
+ "epoch": 0.12744090441932168,
1924
+ "grad_norm": 0.6957044005393982,
1925
+ "learning_rate": 4.3205362785744083e-05,
1926
+ "loss": 0.7871,
1927
+ "step": 8494
1928
+ },
1929
+ {
1930
+ "epoch": 0.12790601720917322,
1931
+ "grad_norm": 1.0035358667373657,
1932
+ "learning_rate": 4.314770288177384e-05,
1933
+ "loss": 0.7743,
1934
+ "step": 8525
1935
+ },
1936
+ {
1937
+ "epoch": 0.12837112999902475,
1938
+ "grad_norm": 0.5898587107658386,
1939
+ "learning_rate": 4.308983818344313e-05,
1940
+ "loss": 0.7826,
1941
+ "step": 8556
1942
+ },
1943
+ {
1944
+ "epoch": 0.12883624278887632,
1945
+ "grad_norm": 3.798095226287842,
1946
+ "learning_rate": 4.3031769343747206e-05,
1947
+ "loss": 0.7808,
1948
+ "step": 8587
1949
+ },
1950
+ {
1951
+ "epoch": 0.12930135557872785,
1952
+ "grad_norm": 0.6663601398468018,
1953
+ "learning_rate": 4.297349701798505e-05,
1954
+ "loss": 0.7849,
1955
+ "step": 8618
1956
+ },
1957
+ {
1958
+ "epoch": 0.12976646836857939,
1959
+ "grad_norm": 0.7356058955192566,
1960
+ "learning_rate": 4.2915021863751916e-05,
1961
+ "loss": 0.7798,
1962
+ "step": 8649
1963
+ },
1964
+ {
1965
+ "epoch": 0.13023158115843092,
1966
+ "grad_norm": 0.6421476006507874,
1967
+ "learning_rate": 4.285634454093198e-05,
1968
+ "loss": 0.7704,
1969
+ "step": 8680
1970
+ },
1971
+ {
1972
+ "epoch": 0.13069669394828246,
1973
+ "grad_norm": 0.5868635177612305,
1974
+ "learning_rate": 4.279746571169086e-05,
1975
+ "loss": 0.7759,
1976
+ "step": 8711
1977
+ },
1978
+ {
1979
+ "epoch": 0.131161806738134,
1980
+ "grad_norm": 0.6703419089317322,
1981
+ "learning_rate": 4.2738386040468136e-05,
1982
+ "loss": 0.781,
1983
+ "step": 8742
1984
+ },
1985
+ {
1986
+ "epoch": 0.13162691952798553,
1987
+ "grad_norm": 0.751116931438446,
1988
+ "learning_rate": 4.2679106193969866e-05,
1989
+ "loss": 0.768,
1990
+ "step": 8773
1991
+ },
1992
+ {
1993
+ "epoch": 0.1320920323178371,
1994
+ "grad_norm": 0.9944510459899902,
1995
+ "learning_rate": 4.261962684116106e-05,
1996
+ "loss": 0.7783,
1997
+ "step": 8804
1998
+ },
1999
+ {
2000
+ "epoch": 0.13255714510768862,
2001
+ "grad_norm": 0.6739645600318909,
2002
+ "learning_rate": 4.2559948653258145e-05,
2003
+ "loss": 0.7745,
2004
+ "step": 8835
2005
+ },
2006
+ {
2007
+ "epoch": 0.13302225789754016,
2008
+ "grad_norm": 0.612147867679596,
2009
+ "learning_rate": 4.250007230372134e-05,
2010
+ "loss": 0.7778,
2011
+ "step": 8866
2012
+ },
2013
+ {
2014
+ "epoch": 0.1334873706873917,
2015
+ "grad_norm": 0.7233457565307617,
2016
+ "learning_rate": 4.2439998468247126e-05,
2017
+ "loss": 0.7799,
2018
+ "step": 8897
2019
+ },
2020
+ {
2021
+ "epoch": 0.13395248347724323,
2022
+ "grad_norm": 0.6210694909095764,
2023
+ "learning_rate": 4.2379727824760566e-05,
2024
+ "loss": 0.7764,
2025
+ "step": 8928
2026
+ },
2027
+ {
2028
+ "epoch": 0.13441759626709476,
2029
+ "grad_norm": 0.7104094624519348,
2030
+ "learning_rate": 4.231926105340768e-05,
2031
+ "loss": 0.776,
2032
+ "step": 8959
2033
+ },
2034
+ {
2035
+ "epoch": 0.1348827090569463,
2036
+ "grad_norm": 0.6815863251686096,
2037
+ "learning_rate": 4.225859883654776e-05,
2038
+ "loss": 0.7799,
2039
+ "step": 8990
2040
+ },
2041
+ {
2042
+ "epoch": 0.13534782184679786,
2043
+ "grad_norm": 0.660565972328186,
2044
+ "learning_rate": 4.219774185874569e-05,
2045
+ "loss": 0.7856,
2046
+ "step": 9021
2047
+ },
2048
+ {
2049
+ "epoch": 0.1358129346366494,
2050
+ "grad_norm": 0.8271650671958923,
2051
+ "learning_rate": 4.213669080676418e-05,
2052
+ "loss": 0.7758,
2053
+ "step": 9052
2054
+ },
2055
+ {
2056
+ "epoch": 0.13627804742650093,
2057
+ "grad_norm": 0.6217832565307617,
2058
+ "learning_rate": 4.2075446369556056e-05,
2059
+ "loss": 0.7736,
2060
+ "step": 9083
2061
+ },
2062
+ {
2063
+ "epoch": 0.13674316021635247,
2064
+ "grad_norm": 0.6582239270210266,
2065
+ "learning_rate": 4.201400923825648e-05,
2066
+ "loss": 0.7765,
2067
+ "step": 9114
2068
+ },
2069
+ {
2070
+ "epoch": 0.137208273006204,
2071
+ "grad_norm": 0.758140504360199,
2072
+ "learning_rate": 4.195238010617511e-05,
2073
+ "loss": 0.7696,
2074
+ "step": 9145
2075
+ },
2076
+ {
2077
+ "epoch": 0.13767338579605554,
2078
+ "grad_norm": 0.7370248436927795,
2079
+ "learning_rate": 4.1890559668788344e-05,
2080
+ "loss": 0.7751,
2081
+ "step": 9176
2082
+ },
2083
+ {
2084
+ "epoch": 0.13813849858590707,
2085
+ "grad_norm": 0.667799711227417,
2086
+ "learning_rate": 4.1828548623731405e-05,
2087
+ "loss": 0.7686,
2088
+ "step": 9207
2089
+ },
2090
+ {
2091
+ "epoch": 0.13860361137575863,
2092
+ "grad_norm": 0.6749032139778137,
2093
+ "learning_rate": 4.1766347670790506e-05,
2094
+ "loss": 0.7656,
2095
+ "step": 9238
2096
+ },
2097
+ {
2098
+ "epoch": 0.13906872416561017,
2099
+ "grad_norm": 0.7389397025108337,
2100
+ "learning_rate": 4.170395751189495e-05,
2101
+ "loss": 0.7733,
2102
+ "step": 9269
2103
+ },
2104
+ {
2105
+ "epoch": 0.1395338369554617,
2106
+ "grad_norm": 0.8019024133682251,
2107
+ "learning_rate": 4.164137885110921e-05,
2108
+ "loss": 0.7704,
2109
+ "step": 9300
2110
+ },
2111
+ {
2112
+ "epoch": 0.13999894974531324,
2113
+ "grad_norm": 0.6880025863647461,
2114
+ "learning_rate": 4.157861239462495e-05,
2115
+ "loss": 0.7745,
2116
+ "step": 9331
2117
+ },
2118
+ {
2119
+ "epoch": 0.14046406253516477,
2120
+ "grad_norm": 0.7543455362319946,
2121
+ "learning_rate": 4.1515658850753114e-05,
2122
+ "loss": 0.7616,
2123
+ "step": 9362
2124
+ },
2125
+ {
2126
+ "epoch": 0.1409291753250163,
2127
+ "grad_norm": 0.6550135612487793,
2128
+ "learning_rate": 4.145251892991588e-05,
2129
+ "loss": 0.7698,
2130
+ "step": 9393
2131
+ },
2132
+ {
2133
+ "epoch": 0.14139428811486784,
2134
+ "grad_norm": 0.7469960451126099,
2135
+ "learning_rate": 4.138919334463868e-05,
2136
+ "loss": 0.764,
2137
+ "step": 9424
2138
+ },
2139
+ {
2140
+ "epoch": 0.1418594009047194,
2141
+ "grad_norm": 0.65736323595047,
2142
+ "learning_rate": 4.1325682809542124e-05,
2143
+ "loss": 0.7625,
2144
+ "step": 9455
2145
+ },
2146
+ {
2147
+ "epoch": 0.14232451369457094,
2148
+ "grad_norm": 0.7517855167388916,
2149
+ "learning_rate": 4.126198804133398e-05,
2150
+ "loss": 0.7727,
2151
+ "step": 9486
2152
+ },
2153
+ {
2154
+ "epoch": 0.14278962648442248,
2155
+ "grad_norm": 0.5399331450462341,
2156
+ "learning_rate": 4.1198109758801055e-05,
2157
+ "loss": 0.7625,
2158
+ "step": 9517
2159
+ },
2160
+ {
2161
+ "epoch": 0.143254739274274,
2162
+ "grad_norm": 0.7568219900131226,
2163
+ "learning_rate": 4.113404868280107e-05,
2164
+ "loss": 0.7629,
2165
+ "step": 9548
2166
+ },
2167
+ {
2168
+ "epoch": 0.14371985206412555,
2169
+ "grad_norm": 0.8380396962165833,
2170
+ "learning_rate": 4.106980553625457e-05,
2171
+ "loss": 0.765,
2172
+ "step": 9579
2173
+ },
2174
+ {
2175
+ "epoch": 0.14418496485397708,
2176
+ "grad_norm": 0.657565176486969,
2177
+ "learning_rate": 4.100538104413674e-05,
2178
+ "loss": 0.7617,
2179
+ "step": 9610
2180
+ },
2181
+ {
2182
+ "epoch": 0.14465007764382862,
2183
+ "grad_norm": 0.784701406955719,
2184
+ "learning_rate": 4.09407759334692e-05,
2185
+ "loss": 0.7662,
2186
+ "step": 9641
2187
+ },
2188
+ {
2189
+ "epoch": 0.14511519043368018,
2190
+ "grad_norm": 0.6358653903007507,
2191
+ "learning_rate": 4.087599093331186e-05,
2192
+ "loss": 0.7668,
2193
+ "step": 9672
2194
+ },
2195
+ {
2196
+ "epoch": 0.14558030322353172,
2197
+ "grad_norm": 0.6734030842781067,
2198
+ "learning_rate": 4.081102677475462e-05,
2199
+ "loss": 0.7587,
2200
+ "step": 9703
2201
+ },
2202
+ {
2203
+ "epoch": 0.14604541601338325,
2204
+ "grad_norm": 0.693668007850647,
2205
+ "learning_rate": 4.0745884190909194e-05,
2206
+ "loss": 0.7587,
2207
+ "step": 9734
2208
+ },
2209
+ {
2210
+ "epoch": 0.14651052880323479,
2211
+ "grad_norm": 0.7010748982429504,
2212
+ "learning_rate": 4.0680563916900796e-05,
2213
+ "loss": 0.7729,
2214
+ "step": 9765
2215
+ },
2216
+ {
2217
+ "epoch": 0.14697564159308632,
2218
+ "grad_norm": 0.6210809946060181,
2219
+ "learning_rate": 4.0615066689859815e-05,
2220
+ "loss": 0.7708,
2221
+ "step": 9796
2222
+ },
2223
+ {
2224
+ "epoch": 0.14744075438293786,
2225
+ "grad_norm": 0.6918211579322815,
2226
+ "learning_rate": 4.0549393248913584e-05,
2227
+ "loss": 0.7742,
2228
+ "step": 9827
2229
+ },
2230
+ {
2231
+ "epoch": 0.1479058671727894,
2232
+ "grad_norm": 0.7196410298347473,
2233
+ "learning_rate": 4.048354433517794e-05,
2234
+ "loss": 0.7593,
2235
+ "step": 9858
2236
+ },
2237
+ {
2238
+ "epoch": 0.14837097996264095,
2239
+ "grad_norm": 0.6762074828147888,
2240
+ "learning_rate": 4.0417520691748916e-05,
2241
+ "loss": 0.7601,
2242
+ "step": 9889
2243
+ },
2244
+ {
2245
+ "epoch": 0.1488360927524925,
2246
+ "grad_norm": 0.7633680701255798,
2247
+ "learning_rate": 4.035132306369438e-05,
2248
+ "loss": 0.7684,
2249
+ "step": 9920
2250
+ },
2251
+ {
2252
+ "epoch": 0.14930120554234402,
2253
+ "grad_norm": 0.6944717168807983,
2254
+ "learning_rate": 4.028495219804555e-05,
2255
+ "loss": 0.7554,
2256
+ "step": 9951
2257
+ },
2258
+ {
2259
+ "epoch": 0.14976631833219556,
2260
+ "grad_norm": 0.6295722126960754,
2261
+ "learning_rate": 4.021840884378864e-05,
2262
+ "loss": 0.7584,
2263
+ "step": 9982
2264
+ },
2265
+ {
2266
+ "epoch": 0.1502314311220471,
2267
+ "grad_norm": 0.6174144744873047,
2268
+ "learning_rate": 4.015169375185633e-05,
2269
+ "loss": 0.7626,
2270
+ "step": 10013
2271
+ },
2272
+ {
2273
+ "epoch": 0.15069654391189863,
2274
+ "grad_norm": 0.7596246600151062,
2275
+ "learning_rate": 4.0084807675119396e-05,
2276
+ "loss": 0.7664,
2277
+ "step": 10044
2278
+ },
2279
+ {
2280
+ "epoch": 0.15116165670175016,
2281
+ "grad_norm": 0.6924237012863159,
2282
+ "learning_rate": 4.0017751368378106e-05,
2283
+ "loss": 0.7736,
2284
+ "step": 10075
2285
+ },
2286
+ {
2287
+ "epoch": 0.15162676949160173,
2288
+ "grad_norm": 0.6916103363037109,
2289
+ "learning_rate": 3.995052558835377e-05,
2290
+ "loss": 0.7784,
2291
+ "step": 10106
2292
+ },
2293
+ {
2294
+ "epoch": 0.15209188228145326,
2295
+ "grad_norm": 0.7141834497451782,
2296
+ "learning_rate": 3.988313109368017e-05,
2297
+ "loss": 0.7669,
2298
+ "step": 10137
2299
+ },
2300
+ {
2301
+ "epoch": 0.1525569950713048,
2302
+ "grad_norm": 0.6703450679779053,
2303
+ "learning_rate": 3.981556864489504e-05,
2304
+ "loss": 0.7612,
2305
+ "step": 10168
2306
+ },
2307
+ {
2308
+ "epoch": 0.15302210786115633,
2309
+ "grad_norm": 0.6729284524917603,
2310
+ "learning_rate": 3.974783900443142e-05,
2311
+ "loss": 0.7695,
2312
+ "step": 10199
2313
+ },
2314
+ {
2315
+ "epoch": 0.15348722065100787,
2316
+ "grad_norm": 0.8227813243865967,
2317
+ "learning_rate": 3.9679942936609095e-05,
2318
+ "loss": 0.7573,
2319
+ "step": 10230
2320
+ },
2321
+ {
2322
+ "epoch": 0.1539523334408594,
2323
+ "grad_norm": 0.6902511715888977,
2324
+ "learning_rate": 3.961188120762596e-05,
2325
+ "loss": 0.7603,
2326
+ "step": 10261
2327
+ },
2328
+ {
2329
+ "epoch": 0.15441744623071094,
2330
+ "grad_norm": 0.6204094290733337,
2331
+ "learning_rate": 3.954365458554938e-05,
2332
+ "loss": 0.7612,
2333
+ "step": 10292
2334
+ },
2335
+ {
2336
+ "epoch": 0.1548825590205625,
2337
+ "grad_norm": 0.7256117463111877,
2338
+ "learning_rate": 3.947526384030751e-05,
2339
+ "loss": 0.7635,
2340
+ "step": 10323
2341
+ },
2342
+ {
2343
+ "epoch": 0.15534767181041403,
2344
+ "grad_norm": 0.6088977456092834,
2345
+ "learning_rate": 3.9406709743680624e-05,
2346
+ "loss": 0.7609,
2347
+ "step": 10354
2348
+ },
2349
+ {
2350
+ "epoch": 0.15581278460026557,
2351
+ "grad_norm": 0.6714738607406616,
2352
+ "learning_rate": 3.9337993069292366e-05,
2353
+ "loss": 0.7661,
2354
+ "step": 10385
2355
+ },
2356
+ {
2357
+ "epoch": 0.1562778973901171,
2358
+ "grad_norm": 0.6832950711250305,
2359
+ "learning_rate": 3.926911459260109e-05,
2360
+ "loss": 0.7703,
2361
+ "step": 10416
2362
+ },
2363
+ {
2364
+ "epoch": 0.15674301017996864,
2365
+ "grad_norm": 0.8103564381599426,
2366
+ "learning_rate": 3.920007509089102e-05,
2367
+ "loss": 0.7641,
2368
+ "step": 10447
2369
+ },
2370
+ {
2371
+ "epoch": 0.15720812296982017,
2372
+ "grad_norm": 0.7727939486503601,
2373
+ "learning_rate": 3.913087534326357e-05,
2374
+ "loss": 0.7644,
2375
+ "step": 10478
2376
+ },
2377
+ {
2378
+ "epoch": 0.1576732357596717,
2379
+ "grad_norm": 0.6045538187026978,
2380
+ "learning_rate": 3.9061516130628475e-05,
2381
+ "loss": 0.7603,
2382
+ "step": 10509
2383
+ },
2384
+ {
2385
+ "epoch": 0.15813834854952327,
2386
+ "grad_norm": 0.7199150323867798,
2387
+ "learning_rate": 3.8991998235695025e-05,
2388
+ "loss": 0.7617,
2389
+ "step": 10540
2390
+ },
2391
+ {
2392
+ "epoch": 0.1586034613393748,
2393
+ "grad_norm": 0.6426290273666382,
2394
+ "learning_rate": 3.8922322442963224e-05,
2395
+ "loss": 0.765,
2396
+ "step": 10571
2397
+ },
2398
+ {
2399
+ "epoch": 0.15906857412922634,
2400
+ "grad_norm": 0.6604538559913635,
2401
+ "learning_rate": 3.885248953871491e-05,
2402
+ "loss": 0.7512,
2403
+ "step": 10602
2404
+ },
2405
+ {
2406
+ "epoch": 0.15953368691907788,
2407
+ "grad_norm": 0.6802282333374023,
2408
+ "learning_rate": 3.8782500311004915e-05,
2409
+ "loss": 0.7528,
2410
+ "step": 10633
2411
+ },
2412
+ {
2413
+ "epoch": 0.1599987997089294,
2414
+ "grad_norm": 0.5920473337173462,
2415
+ "learning_rate": 3.871235554965218e-05,
2416
+ "loss": 0.7645,
2417
+ "step": 10664
2418
+ },
2419
+ {
2420
+ "epoch": 0.16046391249878095,
2421
+ "grad_norm": 0.70703125,
2422
+ "learning_rate": 3.864205604623078e-05,
2423
+ "loss": 0.7798,
2424
+ "step": 10695
2425
+ },
2426
+ {
2427
+ "epoch": 0.16092902528863248,
2428
+ "grad_norm": 0.7090973258018494,
2429
+ "learning_rate": 3.857160259406107e-05,
2430
+ "loss": 0.7501,
2431
+ "step": 10726
2432
+ },
2433
+ {
2434
+ "epoch": 0.16139413807848405,
2435
+ "grad_norm": 0.6518564820289612,
2436
+ "learning_rate": 3.8500995988200674e-05,
2437
+ "loss": 0.7646,
2438
+ "step": 10757
2439
+ },
2440
+ {
2441
+ "epoch": 0.16185925086833558,
2442
+ "grad_norm": 0.7883148789405823,
2443
+ "learning_rate": 3.843023702543556e-05,
2444
+ "loss": 0.7464,
2445
+ "step": 10788
2446
+ },
2447
+ {
2448
+ "epoch": 0.16232436365818712,
2449
+ "grad_norm": 0.701317310333252,
2450
+ "learning_rate": 3.8359326504270984e-05,
2451
+ "loss": 0.7629,
2452
+ "step": 10819
2453
+ },
2454
+ {
2455
+ "epoch": 0.16278947644803865,
2456
+ "grad_norm": 0.6755788922309875,
2457
+ "learning_rate": 3.828826522492255e-05,
2458
+ "loss": 0.7524,
2459
+ "step": 10850
2460
+ },
2461
+ {
2462
+ "epoch": 0.16325458923789019,
2463
+ "grad_norm": 0.7258623242378235,
2464
+ "learning_rate": 3.821705398930713e-05,
2465
+ "loss": 0.7681,
2466
+ "step": 10881
2467
+ },
2468
+ {
2469
+ "epoch": 0.16371970202774172,
2470
+ "grad_norm": 0.678916871547699,
2471
+ "learning_rate": 3.814569360103385e-05,
2472
+ "loss": 0.7572,
2473
+ "step": 10912
2474
+ },
2475
+ {
2476
+ "epoch": 0.16418481481759326,
2477
+ "grad_norm": 0.6140801906585693,
2478
+ "learning_rate": 3.807418486539499e-05,
2479
+ "loss": 0.7573,
2480
+ "step": 10943
2481
+ },
2482
+ {
2483
+ "epoch": 0.16464992760744482,
2484
+ "grad_norm": 0.8363719582557678,
2485
+ "learning_rate": 3.80025285893569e-05,
2486
+ "loss": 0.7541,
2487
+ "step": 10974
2488
+ },
2489
+ {
2490
+ "epoch": 0.16511504039729635,
2491
+ "grad_norm": 0.8430968523025513,
2492
+ "learning_rate": 3.793072558155093e-05,
2493
+ "loss": 0.7621,
2494
+ "step": 11005
2495
+ },
2496
+ {
2497
+ "epoch": 0.1655801531871479,
2498
+ "grad_norm": 0.7111339569091797,
2499
+ "learning_rate": 3.785877665226426e-05,
2500
+ "loss": 0.7581,
2501
+ "step": 11036
2502
+ },
2503
+ {
2504
+ "epoch": 0.16604526597699942,
2505
+ "grad_norm": 0.6369599103927612,
2506
+ "learning_rate": 3.778668261343079e-05,
2507
+ "loss": 0.7543,
2508
+ "step": 11067
2509
+ },
2510
+ {
2511
+ "epoch": 0.16651037876685096,
2512
+ "grad_norm": 0.6842892169952393,
2513
+ "learning_rate": 3.771444427862192e-05,
2514
+ "loss": 0.7599,
2515
+ "step": 11098
2516
+ },
2517
+ {
2518
+ "epoch": 0.1669754915567025,
2519
+ "grad_norm": 0.6923761963844299,
2520
+ "learning_rate": 3.7642062463037465e-05,
2521
+ "loss": 0.762,
2522
+ "step": 11129
2523
+ },
2524
+ {
2525
+ "epoch": 0.16744060434655403,
2526
+ "grad_norm": 0.7744085788726807,
2527
+ "learning_rate": 3.7569537983496373e-05,
2528
+ "loss": 0.748,
2529
+ "step": 11160
2530
+ },
2531
+ {
2532
+ "epoch": 0.1679057171364056,
2533
+ "grad_norm": 0.6975285410881042,
2534
+ "learning_rate": 3.749687165842753e-05,
2535
+ "loss": 0.7518,
2536
+ "step": 11191
2537
+ },
2538
+ {
2539
+ "epoch": 0.16837082992625713,
2540
+ "grad_norm": 0.5738661289215088,
2541
+ "learning_rate": 3.7424064307860536e-05,
2542
+ "loss": 0.7508,
2543
+ "step": 11222
2544
+ },
2545
+ {
2546
+ "epoch": 0.16883594271610866,
2547
+ "grad_norm": 0.5840383172035217,
2548
+ "learning_rate": 3.735111675341645e-05,
2549
+ "loss": 0.7591,
2550
+ "step": 11253
2551
+ },
2552
+ {
2553
+ "epoch": 0.1693010555059602,
2554
+ "grad_norm": 0.7805384397506714,
2555
+ "learning_rate": 3.7278029818298524e-05,
2556
+ "loss": 0.7519,
2557
+ "step": 11284
2558
+ },
2559
+ {
2560
+ "epoch": 0.16976616829581173,
2561
+ "grad_norm": 0.7086957693099976,
2562
+ "learning_rate": 3.720480432728287e-05,
2563
+ "loss": 0.7638,
2564
+ "step": 11315
2565
+ },
2566
+ {
2567
+ "epoch": 0.17023128108566327,
2568
+ "grad_norm": 0.7142307758331299,
2569
+ "learning_rate": 3.71314411067092e-05,
2570
+ "loss": 0.7489,
2571
+ "step": 11346
2572
+ },
2573
+ {
2574
+ "epoch": 0.1706963938755148,
2575
+ "grad_norm": 0.6033651232719421,
2576
+ "learning_rate": 3.70579409844715e-05,
2577
+ "loss": 0.762,
2578
+ "step": 11377
2579
+ },
2580
+ {
2581
+ "epoch": 0.17116150666536636,
2582
+ "grad_norm": 0.6250593066215515,
2583
+ "learning_rate": 3.698430479000865e-05,
2584
+ "loss": 0.7552,
2585
+ "step": 11408
2586
+ },
2587
+ {
2588
+ "epoch": 0.1716266194552179,
2589
+ "grad_norm": 0.6813081502914429,
2590
+ "learning_rate": 3.691053335429509e-05,
2591
+ "loss": 0.7556,
2592
+ "step": 11439
2593
+ },
2594
+ {
2595
+ "epoch": 0.17209173224506943,
2596
+ "grad_norm": 0.8393754363059998,
2597
+ "learning_rate": 3.683662750983147e-05,
2598
+ "loss": 0.7569,
2599
+ "step": 11470
2600
+ },
2601
+ {
2602
+ "epoch": 0.17255684503492097,
2603
+ "grad_norm": 1.5094987154006958,
2604
+ "learning_rate": 3.676258809063518e-05,
2605
+ "loss": 0.7561,
2606
+ "step": 11501
2607
+ },
2608
+ {
2609
+ "epoch": 0.1730219578247725,
2610
+ "grad_norm": 0.631462037563324,
2611
+ "learning_rate": 3.6688415932231004e-05,
2612
+ "loss": 0.7558,
2613
+ "step": 11532
2614
+ },
2615
+ {
2616
+ "epoch": 0.17348707061462404,
2617
+ "grad_norm": 0.7486265897750854,
2618
+ "learning_rate": 3.661411187164166e-05,
2619
+ "loss": 0.7569,
2620
+ "step": 11563
2621
+ },
2622
+ {
2623
+ "epoch": 0.17395218340447557,
2624
+ "grad_norm": 0.9510587453842163,
2625
+ "learning_rate": 3.65396767473784e-05,
2626
+ "loss": 0.7503,
2627
+ "step": 11594
2628
+ },
2629
+ {
2630
+ "epoch": 0.17441729619432714,
2631
+ "grad_norm": 0.5841720700263977,
2632
+ "learning_rate": 3.6465111399431465e-05,
2633
+ "loss": 0.7555,
2634
+ "step": 11625
2635
+ },
2636
+ {
2637
+ "epoch": 0.17488240898417867,
2638
+ "grad_norm": 0.5946236848831177,
2639
+ "learning_rate": 3.6390416669260674e-05,
2640
+ "loss": 0.7484,
2641
+ "step": 11656
2642
+ },
2643
+ {
2644
+ "epoch": 0.1753475217740302,
2645
+ "grad_norm": 0.8158132433891296,
2646
+ "learning_rate": 3.63155933997859e-05,
2647
+ "loss": 0.748,
2648
+ "step": 11687
2649
+ },
2650
+ {
2651
+ "epoch": 0.17581263456388174,
2652
+ "grad_norm": 0.6327953338623047,
2653
+ "learning_rate": 3.624064243537758e-05,
2654
+ "loss": 0.7611,
2655
+ "step": 11718
2656
+ },
2657
+ {
2658
+ "epoch": 0.17627774735373328,
2659
+ "grad_norm": 0.7370153069496155,
2660
+ "learning_rate": 3.616556462184716e-05,
2661
+ "loss": 0.7495,
2662
+ "step": 11749
2663
+ },
2664
+ {
2665
+ "epoch": 0.1767428601435848,
2666
+ "grad_norm": 0.911038875579834,
2667
+ "learning_rate": 3.609036080643755e-05,
2668
+ "loss": 0.7604,
2669
+ "step": 11780
2670
+ },
2671
+ {
2672
+ "epoch": 0.17720797293343635,
2673
+ "grad_norm": 0.7187597751617432,
2674
+ "learning_rate": 3.60150318378136e-05,
2675
+ "loss": 0.7448,
2676
+ "step": 11811
2677
+ },
2678
+ {
2679
+ "epoch": 0.1776730857232879,
2680
+ "grad_norm": 0.6611767411231995,
2681
+ "learning_rate": 3.5939578566052465e-05,
2682
+ "loss": 0.7486,
2683
+ "step": 11842
2684
+ },
2685
+ {
2686
+ "epoch": 0.17813819851313945,
2687
+ "grad_norm": 0.725936770439148,
2688
+ "learning_rate": 3.586400184263408e-05,
2689
+ "loss": 0.7585,
2690
+ "step": 11873
2691
+ },
2692
+ {
2693
+ "epoch": 0.17860331130299098,
2694
+ "grad_norm": 0.7662620544433594,
2695
+ "learning_rate": 3.578830252043148e-05,
2696
+ "loss": 0.7489,
2697
+ "step": 11904
2698
+ },
2699
+ {
2700
+ "epoch": 0.17906842409284252,
2701
+ "grad_norm": 0.7236283421516418,
2702
+ "learning_rate": 3.571248145370125e-05,
2703
+ "loss": 0.7571,
2704
+ "step": 11935
2705
+ },
2706
+ {
2707
+ "epoch": 0.17953353688269405,
2708
+ "grad_norm": 0.7157570123672485,
2709
+ "learning_rate": 3.5636539498073794e-05,
2710
+ "loss": 0.7524,
2711
+ "step": 11966
2712
+ },
2713
+ {
2714
+ "epoch": 0.17999864967254559,
2715
+ "grad_norm": 0.7178536653518677,
2716
+ "learning_rate": 3.556047751054378e-05,
2717
+ "loss": 0.7592,
2718
+ "step": 11997
2719
+ },
2720
+ {
2721
+ "epoch": 0.18046376246239712,
2722
+ "grad_norm": 0.5687118768692017,
2723
+ "learning_rate": 3.548429634946039e-05,
2724
+ "loss": 0.7485,
2725
+ "step": 12028
2726
+ },
2727
+ {
2728
+ "epoch": 0.18092887525224868,
2729
+ "grad_norm": 0.853602409362793,
2730
+ "learning_rate": 3.540799687451768e-05,
2731
+ "loss": 0.7578,
2732
+ "step": 12059
2733
+ },
2734
+ {
2735
+ "epoch": 0.18139398804210022,
2736
+ "grad_norm": 0.7728062272071838,
2737
+ "learning_rate": 3.533157994674485e-05,
2738
+ "loss": 0.7463,
2739
+ "step": 12090
2740
+ },
2741
+ {
2742
+ "epoch": 0.18185910083195175,
2743
+ "grad_norm": 0.6808280348777771,
2744
+ "learning_rate": 3.5255046428496546e-05,
2745
+ "loss": 0.7513,
2746
+ "step": 12121
2747
+ },
2748
+ {
2749
+ "epoch": 0.1823242136218033,
2750
+ "grad_norm": 0.730434775352478,
2751
+ "learning_rate": 3.517839718344311e-05,
2752
+ "loss": 0.7459,
2753
+ "step": 12152
2754
+ },
2755
+ {
2756
+ "epoch": 0.18278932641165482,
2757
+ "grad_norm": 0.7605392336845398,
2758
+ "learning_rate": 3.510163307656086e-05,
2759
+ "loss": 0.7428,
2760
+ "step": 12183
2761
+ },
2762
+ {
2763
+ "epoch": 0.18325443920150636,
2764
+ "grad_norm": 0.6910775303840637,
2765
+ "learning_rate": 3.5024754974122324e-05,
2766
+ "loss": 0.7433,
2767
+ "step": 12214
2768
+ },
2769
+ {
2770
+ "epoch": 0.1837195519913579,
2771
+ "grad_norm": 0.7537398338317871,
2772
+ "learning_rate": 3.494776374368643e-05,
2773
+ "loss": 0.7492,
2774
+ "step": 12245
2775
+ },
2776
+ {
2777
+ "epoch": 0.18418466478120946,
2778
+ "grad_norm": 6.885498523712158,
2779
+ "learning_rate": 3.4870660254088724e-05,
2780
+ "loss": 0.7657,
2781
+ "step": 12276
2782
+ },
2783
+ {
2784
+ "epoch": 0.184649777571061,
2785
+ "grad_norm": 0.7328066229820251,
2786
+ "learning_rate": 3.479344537543164e-05,
2787
+ "loss": 0.7481,
2788
+ "step": 12307
2789
+ },
2790
+ {
2791
+ "epoch": 0.18511489036091253,
2792
+ "grad_norm": 0.7026427388191223,
2793
+ "learning_rate": 3.4716119979074565e-05,
2794
+ "loss": 0.7496,
2795
+ "step": 12338
2796
+ },
2797
+ {
2798
+ "epoch": 0.18558000315076406,
2799
+ "grad_norm": 0.6714969277381897,
2800
+ "learning_rate": 3.463868493762412e-05,
2801
+ "loss": 0.753,
2802
+ "step": 12369
2803
+ },
2804
+ {
2805
+ "epoch": 0.1860451159406156,
2806
+ "grad_norm": 0.6818881034851074,
2807
+ "learning_rate": 3.456114112492418e-05,
2808
+ "loss": 0.7481,
2809
+ "step": 12400
2810
+ },
2811
+ {
2812
+ "epoch": 0.18651022873046713,
2813
+ "grad_norm": 0.752812385559082,
2814
+ "learning_rate": 3.4483489416046164e-05,
2815
+ "loss": 0.7499,
2816
+ "step": 12431
2817
+ },
2818
+ {
2819
+ "epoch": 0.18697534152031867,
2820
+ "grad_norm": 0.6960272789001465,
2821
+ "learning_rate": 3.440573068727905e-05,
2822
+ "loss": 0.7439,
2823
+ "step": 12462
2824
+ },
2825
+ {
2826
+ "epoch": 0.18744045431017023,
2827
+ "grad_norm": 0.6496702432632446,
2828
+ "learning_rate": 3.4327865816119495e-05,
2829
+ "loss": 0.7501,
2830
+ "step": 12493
2831
+ },
2832
+ {
2833
+ "epoch": 0.18790556710002176,
2834
+ "grad_norm": 0.5779111981391907,
2835
+ "learning_rate": 3.4249895681262025e-05,
2836
+ "loss": 0.7529,
2837
+ "step": 12524
2838
+ },
2839
+ {
2840
+ "epoch": 0.1883706798898733,
2841
+ "grad_norm": 0.9846493601799011,
2842
+ "learning_rate": 3.417182116258899e-05,
2843
+ "loss": 0.7523,
2844
+ "step": 12555
2845
+ },
2846
+ {
2847
+ "epoch": 0.18883579267972483,
2848
+ "grad_norm": 0.7048613429069519,
2849
+ "learning_rate": 3.409364314116074e-05,
2850
+ "loss": 0.7448,
2851
+ "step": 12586
2852
+ },
2853
+ {
2854
+ "epoch": 0.18930090546957637,
2855
+ "grad_norm": 0.7556883096694946,
2856
+ "learning_rate": 3.401536249920559e-05,
2857
+ "loss": 0.7452,
2858
+ "step": 12617
2859
+ },
2860
+ {
2861
+ "epoch": 0.1897660182594279,
2862
+ "grad_norm": 0.6527885794639587,
2863
+ "learning_rate": 3.393698012010998e-05,
2864
+ "loss": 0.7577,
2865
+ "step": 12648
2866
+ },
2867
+ {
2868
+ "epoch": 0.19023113104927944,
2869
+ "grad_norm": 0.6012036800384521,
2870
+ "learning_rate": 3.385849688840839e-05,
2871
+ "loss": 0.7495,
2872
+ "step": 12679
2873
+ },
2874
+ {
2875
+ "epoch": 0.190696243839131,
2876
+ "grad_norm": 0.6436840891838074,
2877
+ "learning_rate": 3.3779913689773414e-05,
2878
+ "loss": 0.7528,
2879
+ "step": 12710
2880
+ },
2881
+ {
2882
+ "epoch": 0.19116135662898254,
2883
+ "grad_norm": 0.6732128262519836,
2884
+ "learning_rate": 3.370123141100578e-05,
2885
+ "loss": 0.753,
2886
+ "step": 12741
2887
+ },
2888
+ {
2889
+ "epoch": 0.19162646941883407,
2890
+ "grad_norm": 0.6353326439857483,
2891
+ "learning_rate": 3.3622450940024305e-05,
2892
+ "loss": 0.7486,
2893
+ "step": 12772
2894
+ },
2895
+ {
2896
+ "epoch": 0.1920915822086856,
2897
+ "grad_norm": 0.5631440877914429,
2898
+ "learning_rate": 3.35435731658559e-05,
2899
+ "loss": 0.7514,
2900
+ "step": 12803
2901
+ },
2902
+ {
2903
+ "epoch": 0.19255669499853714,
2904
+ "grad_norm": 0.6583711504936218,
2905
+ "learning_rate": 3.346459897862552e-05,
2906
+ "loss": 0.7433,
2907
+ "step": 12834
2908
+ },
2909
+ {
2910
+ "epoch": 0.19302180778838868,
2911
+ "grad_norm": 0.6780082583427429,
2912
+ "learning_rate": 3.338552926954613e-05,
2913
+ "loss": 0.7454,
2914
+ "step": 12865
2915
+ },
2916
+ {
2917
+ "epoch": 0.1934869205782402,
2918
+ "grad_norm": 0.6170808672904968,
2919
+ "learning_rate": 3.330636493090868e-05,
2920
+ "loss": 0.7483,
2921
+ "step": 12896
2922
+ },
2923
+ {
2924
+ "epoch": 0.19395203336809178,
2925
+ "grad_norm": 0.6318443417549133,
2926
+ "learning_rate": 3.322710685607193e-05,
2927
+ "loss": 0.7468,
2928
+ "step": 12927
2929
+ },
2930
+ {
2931
+ "epoch": 0.1944171461579433,
2932
+ "grad_norm": 0.6315960884094238,
2933
+ "learning_rate": 3.314775593945251e-05,
2934
+ "loss": 0.7555,
2935
+ "step": 12958
2936
+ },
2937
+ {
2938
+ "epoch": 0.19488225894779485,
2939
+ "grad_norm": 0.6713199615478516,
2940
+ "learning_rate": 3.3068313076514714e-05,
2941
+ "loss": 0.7434,
2942
+ "step": 12989
2943
+ },
2944
+ {
2945
+ "epoch": 0.19534737173764638,
2946
+ "grad_norm": 0.6113536953926086,
2947
+ "learning_rate": 3.298877916376047e-05,
2948
+ "loss": 0.7507,
2949
+ "step": 13020
2950
+ },
2951
+ {
2952
+ "epoch": 0.19581248452749792,
2953
+ "grad_norm": 0.6978309750556946,
2954
+ "learning_rate": 3.290915509871915e-05,
2955
+ "loss": 0.7517,
2956
+ "step": 13051
2957
+ },
2958
+ {
2959
+ "epoch": 0.19627759731734945,
2960
+ "grad_norm": 0.5803030729293823,
2961
+ "learning_rate": 3.282944177993753e-05,
2962
+ "loss": 0.7435,
2963
+ "step": 13082
2964
+ },
2965
+ {
2966
+ "epoch": 0.19674271010720099,
2967
+ "grad_norm": 0.6192615032196045,
2968
+ "learning_rate": 3.274964010696957e-05,
2969
+ "loss": 0.741,
2970
+ "step": 13113
2971
+ },
2972
+ {
2973
+ "epoch": 0.19720782289705255,
2974
+ "grad_norm": 0.6736807227134705,
2975
+ "learning_rate": 3.266975098036629e-05,
2976
+ "loss": 0.745,
2977
+ "step": 13144
2978
+ },
2979
+ {
2980
+ "epoch": 0.19767293568690408,
2981
+ "grad_norm": 0.6507841348648071,
2982
+ "learning_rate": 3.258977530166562e-05,
2983
+ "loss": 0.7519,
2984
+ "step": 13175
2985
+ },
2986
+ {
2987
+ "epoch": 0.19813804847675562,
2988
+ "grad_norm": 0.8572797775268555,
2989
+ "learning_rate": 3.250971397338227e-05,
2990
+ "loss": 0.7469,
2991
+ "step": 13206
2992
+ },
2993
+ {
2994
+ "epoch": 0.19860316126660715,
2995
+ "grad_norm": 0.666427731513977,
2996
+ "learning_rate": 3.2429567898997404e-05,
2997
+ "loss": 0.7468,
2998
+ "step": 13237
2999
+ },
3000
+ {
3001
+ "epoch": 0.1990682740564587,
3002
+ "grad_norm": 2.855318069458008,
3003
+ "learning_rate": 3.234933798294859e-05,
3004
+ "loss": 0.7531,
3005
+ "step": 13268
3006
+ },
3007
+ {
3008
+ "epoch": 0.19953338684631022,
3009
+ "grad_norm": 0.6657108664512634,
3010
+ "learning_rate": 3.2269025130619535e-05,
3011
+ "loss": 0.7533,
3012
+ "step": 13299
3013
+ },
3014
+ {
3015
+ "epoch": 0.19999849963616176,
3016
+ "grad_norm": 0.6588160991668701,
3017
+ "learning_rate": 3.218863024832985e-05,
3018
+ "loss": 0.7485,
3019
+ "step": 13330
3020
+ },
3021
+ {
3022
+ "epoch": 0.20046361242601332,
3023
+ "grad_norm": 0.7666765451431274,
3024
+ "learning_rate": 3.2108154243324864e-05,
3025
+ "loss": 0.7487,
3026
+ "step": 13361
3027
+ },
3028
+ {
3029
+ "epoch": 0.20092872521586486,
3030
+ "grad_norm": 0.5730627775192261,
3031
+ "learning_rate": 3.2027598023765345e-05,
3032
+ "loss": 0.7537,
3033
+ "step": 13392
3034
+ },
3035
+ {
3036
+ "epoch": 0.2013938380057164,
3037
+ "grad_norm": 0.7242007851600647,
3038
+ "learning_rate": 3.194696249871729e-05,
3039
+ "loss": 0.7466,
3040
+ "step": 13423
3041
+ },
3042
+ {
3043
+ "epoch": 0.20185895079556793,
3044
+ "grad_norm": 0.6119891405105591,
3045
+ "learning_rate": 3.186624857814164e-05,
3046
+ "loss": 0.7481,
3047
+ "step": 13454
3048
+ },
3049
+ {
3050
+ "epoch": 0.20232406358541946,
3051
+ "grad_norm": 0.6716734766960144,
3052
+ "learning_rate": 3.178545717288401e-05,
3053
+ "loss": 0.7488,
3054
+ "step": 13485
3055
+ },
3056
+ {
3057
+ "epoch": 0.202789176375271,
3058
+ "grad_norm": 0.6604441404342651,
3059
+ "learning_rate": 3.170458919466444e-05,
3060
+ "loss": 0.7492,
3061
+ "step": 13516
3062
+ },
3063
+ {
3064
+ "epoch": 0.20325428916512253,
3065
+ "grad_norm": 0.6652749180793762,
3066
+ "learning_rate": 3.1623645556067063e-05,
3067
+ "loss": 0.7308,
3068
+ "step": 13547
3069
+ },
3070
+ {
3071
+ "epoch": 0.2037194019549741,
3072
+ "grad_norm": 0.7707824110984802,
3073
+ "learning_rate": 3.154262717052985e-05,
3074
+ "loss": 0.7406,
3075
+ "step": 13578
3076
+ },
3077
+ {
3078
+ "epoch": 0.20418451474482563,
3079
+ "grad_norm": 0.6316570043563843,
3080
+ "learning_rate": 3.146153495233426e-05,
3081
+ "loss": 0.7448,
3082
+ "step": 13609
3083
+ },
3084
+ {
3085
+ "epoch": 0.20464962753467716,
3086
+ "grad_norm": 0.7021921277046204,
3087
+ "learning_rate": 3.1380369816594944e-05,
3088
+ "loss": 0.7496,
3089
+ "step": 13640
3090
+ },
3091
+ {
3092
+ "epoch": 0.2051147403245287,
3093
+ "grad_norm": 0.6538084745407104,
3094
+ "learning_rate": 3.129913267924946e-05,
3095
+ "loss": 0.7398,
3096
+ "step": 13671
3097
+ },
3098
+ {
3099
+ "epoch": 0.20557985311438023,
3100
+ "grad_norm": 0.686916172504425,
3101
+ "learning_rate": 3.121782445704782e-05,
3102
+ "loss": 0.7442,
3103
+ "step": 13702
3104
+ },
3105
+ {
3106
+ "epoch": 0.20604496590423177,
3107
+ "grad_norm": 0.6664201021194458,
3108
+ "learning_rate": 3.11364460675423e-05,
3109
+ "loss": 0.7443,
3110
+ "step": 13733
3111
+ },
3112
+ {
3113
+ "epoch": 0.2065100786940833,
3114
+ "grad_norm": 0.6051350831985474,
3115
+ "learning_rate": 3.1054998429076934e-05,
3116
+ "loss": 0.7461,
3117
+ "step": 13764
3118
+ },
3119
+ {
3120
+ "epoch": 0.20697519148393487,
3121
+ "grad_norm": 0.6227654814720154,
3122
+ "learning_rate": 3.097348246077728e-05,
3123
+ "loss": 0.7364,
3124
+ "step": 13795
3125
+ },
3126
+ {
3127
+ "epoch": 0.2074403042737864,
3128
+ "grad_norm": 0.6357854008674622,
3129
+ "learning_rate": 3.0891899082539924e-05,
3130
+ "loss": 0.7398,
3131
+ "step": 13826
3132
+ },
3133
+ {
3134
+ "epoch": 0.20790541706363794,
3135
+ "grad_norm": 0.6361419558525085,
3136
+ "learning_rate": 3.0810249215022233e-05,
3137
+ "loss": 0.7492,
3138
+ "step": 13857
3139
+ },
3140
+ {
3141
+ "epoch": 0.20837052985348947,
3142
+ "grad_norm": 0.6335052251815796,
3143
+ "learning_rate": 3.0728533779631865e-05,
3144
+ "loss": 0.742,
3145
+ "step": 13888
3146
+ },
3147
+ {
3148
+ "epoch": 0.208835642643341,
3149
+ "grad_norm": 0.7693495750427246,
3150
+ "learning_rate": 3.064675369851637e-05,
3151
+ "loss": 0.7439,
3152
+ "step": 13919
3153
+ },
3154
+ {
3155
+ "epoch": 0.20930075543319254,
3156
+ "grad_norm": 0.8410791158676147,
3157
+ "learning_rate": 3.056490989455289e-05,
3158
+ "loss": 0.7316,
3159
+ "step": 13950
3160
+ },
3161
+ {
3162
+ "epoch": 0.20976586822304408,
3163
+ "grad_norm": 0.6099753975868225,
3164
+ "learning_rate": 3.0483003291337596e-05,
3165
+ "loss": 0.7444,
3166
+ "step": 13981
3167
+ },
3168
+ {
3169
+ "epoch": 0.21023098101289564,
3170
+ "grad_norm": 0.6221752762794495,
3171
+ "learning_rate": 3.040103481317539e-05,
3172
+ "loss": 0.7359,
3173
+ "step": 14012
3174
+ },
3175
+ {
3176
+ "epoch": 0.21069609380274718,
3177
+ "grad_norm": 0.6333944201469421,
3178
+ "learning_rate": 3.03190053850694e-05,
3179
+ "loss": 0.751,
3180
+ "step": 14043
3181
+ },
3182
+ {
3183
+ "epoch": 0.2111612065925987,
3184
+ "grad_norm": 0.7014179229736328,
3185
+ "learning_rate": 3.0236915932710573e-05,
3186
+ "loss": 0.7376,
3187
+ "step": 14074
3188
+ },
3189
+ {
3190
+ "epoch": 0.21162631938245025,
3191
+ "grad_norm": 0.5648131966590881,
3192
+ "learning_rate": 3.0154767382467232e-05,
3193
+ "loss": 0.7465,
3194
+ "step": 14105
3195
+ },
3196
+ {
3197
+ "epoch": 0.21209143217230178,
3198
+ "grad_norm": 0.6424175500869751,
3199
+ "learning_rate": 3.0072560661374582e-05,
3200
+ "loss": 0.7433,
3201
+ "step": 14136
3202
+ },
3203
+ {
3204
+ "epoch": 0.21255654496215332,
3205
+ "grad_norm": 0.5607630610466003,
3206
+ "learning_rate": 2.999029669712431e-05,
3207
+ "loss": 0.7381,
3208
+ "step": 14167
3209
+ },
3210
+ {
3211
+ "epoch": 0.21302165775200485,
3212
+ "grad_norm": 0.6301280856132507,
3213
+ "learning_rate": 2.990797641805408e-05,
3214
+ "loss": 0.7339,
3215
+ "step": 14198
3216
+ },
3217
+ {
3218
+ "epoch": 0.2134867705418564,
3219
+ "grad_norm": 0.7305763959884644,
3220
+ "learning_rate": 2.982560075313704e-05,
3221
+ "loss": 0.7401,
3222
+ "step": 14229
3223
+ },
3224
+ {
3225
+ "epoch": 0.21395188333170795,
3226
+ "grad_norm": 0.7338880896568298,
3227
+ "learning_rate": 2.9743170631971368e-05,
3228
+ "loss": 0.7488,
3229
+ "step": 14260
3230
+ },
3231
+ {
3232
+ "epoch": 0.21441699612155948,
3233
+ "grad_norm": 0.5389525890350342,
3234
+ "learning_rate": 2.9660686984769792e-05,
3235
+ "loss": 0.7385,
3236
+ "step": 14291
3237
+ },
3238
+ {
3239
+ "epoch": 0.21488210891141102,
3240
+ "grad_norm": 0.6449492573738098,
3241
+ "learning_rate": 2.9578150742349047e-05,
3242
+ "loss": 0.7437,
3243
+ "step": 14322
3244
+ },
3245
+ {
3246
+ "epoch": 0.21534722170126255,
3247
+ "grad_norm": 0.6714854836463928,
3248
+ "learning_rate": 2.949556283611942e-05,
3249
+ "loss": 0.735,
3250
+ "step": 14353
3251
+ },
3252
+ {
3253
+ "epoch": 0.2158123344911141,
3254
+ "grad_norm": 0.6901969909667969,
3255
+ "learning_rate": 2.9412924198074206e-05,
3256
+ "loss": 0.7358,
3257
+ "step": 14384
3258
+ },
3259
+ {
3260
+ "epoch": 0.21627744728096562,
3261
+ "grad_norm": 0.6448566317558289,
3262
+ "learning_rate": 2.9330235760779208e-05,
3263
+ "loss": 0.7438,
3264
+ "step": 14415
3265
+ },
3266
+ {
3267
+ "epoch": 0.2167425600708172,
3268
+ "grad_norm": 0.5600573420524597,
3269
+ "learning_rate": 2.9247498457362188e-05,
3270
+ "loss": 0.7297,
3271
+ "step": 14446
3272
+ },
3273
+ {
3274
+ "epoch": 0.21720767286066872,
3275
+ "grad_norm": 0.5650613307952881,
3276
+ "learning_rate": 2.9164713221502373e-05,
3277
+ "loss": 0.7419,
3278
+ "step": 14477
3279
+ },
3280
+ {
3281
+ "epoch": 0.21767278565052026,
3282
+ "grad_norm": 0.574630856513977,
3283
+ "learning_rate": 2.9081880987419912e-05,
3284
+ "loss": 0.7373,
3285
+ "step": 14508
3286
+ },
3287
+ {
3288
+ "epoch": 0.2181378984403718,
3289
+ "grad_norm": 0.570468008518219,
3290
+ "learning_rate": 2.8999002689865296e-05,
3291
+ "loss": 0.74,
3292
+ "step": 14539
3293
+ },
3294
+ {
3295
+ "epoch": 0.21860301123022333,
3296
+ "grad_norm": 0.6052928566932678,
3297
+ "learning_rate": 2.8916079264108852e-05,
3298
+ "loss": 0.7396,
3299
+ "step": 14570
3300
+ },
3301
+ {
3302
+ "epoch": 0.21906812402007486,
3303
+ "grad_norm": 0.6222713589668274,
3304
+ "learning_rate": 2.883311164593017e-05,
3305
+ "loss": 0.7419,
3306
+ "step": 14601
3307
+ },
3308
+ {
3309
+ "epoch": 0.2195332368099264,
3310
+ "grad_norm": 0.6853971481323242,
3311
+ "learning_rate": 2.875010077160754e-05,
3312
+ "loss": 0.7458,
3313
+ "step": 14632
3314
+ },
3315
+ {
3316
+ "epoch": 0.21999834959977796,
3317
+ "grad_norm": 0.7226673364639282,
3318
+ "learning_rate": 2.866704757790741e-05,
3319
+ "loss": 0.7482,
3320
+ "step": 14663
3321
+ },
3322
+ {
3323
+ "epoch": 0.2204634623896295,
3324
+ "grad_norm": 0.7071784138679504,
3325
+ "learning_rate": 2.858395300207376e-05,
3326
+ "loss": 0.7388,
3327
+ "step": 14694
3328
+ },
3329
+ {
3330
+ "epoch": 0.22092857517948103,
3331
+ "grad_norm": 0.7203782200813293,
3332
+ "learning_rate": 2.8500817981817607e-05,
3333
+ "loss": 0.7328,
3334
+ "step": 14725
3335
+ },
3336
+ {
3337
+ "epoch": 0.22139368796933256,
3338
+ "grad_norm": 0.6478374600410461,
3339
+ "learning_rate": 2.8417643455306336e-05,
3340
+ "loss": 0.7518,
3341
+ "step": 14756
3342
+ },
3343
+ {
3344
+ "epoch": 0.2218588007591841,
3345
+ "grad_norm": 1.1449323892593384,
3346
+ "learning_rate": 2.8334430361153185e-05,
3347
+ "loss": 0.7424,
3348
+ "step": 14787
3349
+ },
3350
+ {
3351
+ "epoch": 0.22232391354903563,
3352
+ "grad_norm": 0.6048957109451294,
3353
+ "learning_rate": 2.8251179638406612e-05,
3354
+ "loss": 0.7427,
3355
+ "step": 14818
3356
+ },
3357
+ {
3358
+ "epoch": 0.22278902633888717,
3359
+ "grad_norm": 0.6361618041992188,
3360
+ "learning_rate": 2.8167892226539704e-05,
3361
+ "loss": 0.7374,
3362
+ "step": 14849
3363
+ },
3364
+ {
3365
+ "epoch": 0.22325413912873873,
3366
+ "grad_norm": 0.6137757301330566,
3367
+ "learning_rate": 2.8084569065439588e-05,
3368
+ "loss": 0.7401,
3369
+ "step": 14880
3370
+ },
3371
+ {
3372
+ "epoch": 0.22371925191859027,
3373
+ "grad_norm": 0.7561056613922119,
3374
+ "learning_rate": 2.8001211095396807e-05,
3375
+ "loss": 0.7355,
3376
+ "step": 14911
3377
+ },
3378
+ {
3379
+ "epoch": 0.2241843647084418,
3380
+ "grad_norm": 0.6654713153839111,
3381
+ "learning_rate": 2.791781925709473e-05,
3382
+ "loss": 0.7306,
3383
+ "step": 14942
3384
+ },
3385
+ {
3386
+ "epoch": 0.22464947749829334,
3387
+ "grad_norm": 1.9415818452835083,
3388
+ "learning_rate": 2.7834394491598908e-05,
3389
+ "loss": 0.747,
3390
+ "step": 14973
3391
+ },
3392
+ {
3393
+ "epoch": 0.22511459028814487,
3394
+ "grad_norm": 0.5493363738059998,
3395
+ "learning_rate": 2.7750937740346485e-05,
3396
+ "loss": 0.7354,
3397
+ "step": 15004
3398
+ },
3399
+ {
3400
+ "epoch": 0.2255797030779964,
3401
+ "grad_norm": 0.6092799305915833,
3402
+ "learning_rate": 2.7667449945135564e-05,
3403
+ "loss": 0.7379,
3404
+ "step": 15035
3405
+ },
3406
+ {
3407
+ "epoch": 0.22604481586784794,
3408
+ "grad_norm": 0.7052552103996277,
3409
+ "learning_rate": 2.7583932048114557e-05,
3410
+ "loss": 0.739,
3411
+ "step": 15066
3412
+ },
3413
+ {
3414
+ "epoch": 0.2265099286576995,
3415
+ "grad_norm": 0.6495633721351624,
3416
+ "learning_rate": 2.7500384991771587e-05,
3417
+ "loss": 0.7382,
3418
+ "step": 15097
3419
+ },
3420
+ {
3421
+ "epoch": 0.22697504144755104,
3422
+ "grad_norm": 0.6802439093589783,
3423
+ "learning_rate": 2.7416809718923825e-05,
3424
+ "loss": 0.742,
3425
+ "step": 15128
3426
+ },
3427
+ {
3428
+ "epoch": 0.22744015423740258,
3429
+ "grad_norm": 0.6225425004959106,
3430
+ "learning_rate": 2.7333207172706864e-05,
3431
+ "loss": 0.7346,
3432
+ "step": 15159
3433
+ },
3434
+ {
3435
+ "epoch": 0.2279052670272541,
3436
+ "grad_norm": 0.5513209104537964,
3437
+ "learning_rate": 2.7249578296564088e-05,
3438
+ "loss": 0.7356,
3439
+ "step": 15190
3440
+ },
3441
+ {
3442
+ "epoch": 0.22837037981710565,
3443
+ "grad_norm": 0.6840267777442932,
3444
+ "learning_rate": 2.7165924034235973e-05,
3445
+ "loss": 0.7446,
3446
+ "step": 15221
3447
+ },
3448
+ {
3449
+ "epoch": 0.22883549260695718,
3450
+ "grad_norm": 0.6213731169700623,
3451
+ "learning_rate": 2.708224532974953e-05,
3452
+ "loss": 0.7299,
3453
+ "step": 15252
3454
+ }
3455
+ ],
3456
+ "logging_steps": 31,
3457
+ "max_steps": 30517,
3458
+ "num_input_tokens_seen": 0,
3459
+ "num_train_epochs": 1,
3460
+ "save_steps": 3052,
3461
+ "stateful_callbacks": {
3462
+ "TrainerControl": {
3463
+ "args": {
3464
+ "should_epoch_stop": false,
3465
+ "should_evaluate": false,
3466
+ "should_log": false,
3467
+ "should_save": true,
3468
+ "should_training_stop": false
3469
+ },
3470
+ "attributes": {}
3471
+ }
3472
+ },
3473
+ "total_flos": 1.060677039050195e+19,
3474
+ "train_batch_size": 16,
3475
+ "trial_name": null,
3476
+ "trial_params": null
3477
+ }
checkpoint-15260/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8c8c4b56f5ef244b7e4deb23b13b2d7ae50fce940e6c0d8a4ec3f3f25fa1a3
3
+ size 5304
checkpoint-18312/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-18312/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.44.0.dev0"
14
+ }
checkpoint-18312/model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed361d4fa578fdbeeb816e56a68a4a65c369b62a0456ad2ded5defc6be2d5f6b
3
+ size 4976687216
checkpoint-18312/model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edb205482e80b5d03e63693e387d459b0cb9c97948cde971ff025ba98f1396d
3
+ size 4778622352
checkpoint-18312/model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2222b40c6fea7def1d5911b059ab36bf97b9328e0251689f78a0a9ebd98cd18d
3
+ size 4932743960
checkpoint-18312/model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfc2c86e34819a46908bfe3ad42f3986e7efdfc34f67e43f40f690f77c7b0672
3
+ size 4932743992
checkpoint-18312/model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:891f86a74d6b1791b98b581ff94cbedb16bfdb78595b9697dc3fd2ecc5974ba2
3
+ size 4998852296
checkpoint-18312/model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39bdb6e4a71c7dc4e9d684e29725e8889ad7e421e47d4f7f5d7137ab0df4ac7
3
+ size 3662865184
checkpoint-18312/model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d34784c4222ee23f5487edbd2175706e78d672048e0c575a5cb4becab9f83959
3
+ size 2179989632
checkpoint-18312/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30462466048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
344
+ "model.norm.weight": "model-00006-of-00007.safetensors"
345
+ }
346
+ }
checkpoint-18312/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45b3c36a474fb5839471c234607fbdbcfce7f71c4eef4ff68d1e3407407e7fb
3
+ size 16177880918
checkpoint-18312/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9cd6a0487226e5bd30d1846894c82af483733ab4381b75bae9c0745e05d405
3
+ size 14244
checkpoint-18312/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e65c3d6f29e706fd941a38280ce5628189a6998eac6d29abbeab00ad838d00
3
+ size 1064
checkpoint-18312/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-18312/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8c8c4b56f5ef244b7e4deb23b13b2d7ae50fce940e6c0d8a4ec3f3f25fa1a3
3
+ size 5304
checkpoint-21364/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.0.dev0",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-21364/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.44.0.dev0"
14
+ }
checkpoint-21364/model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1328ca7a55c33f44f019a9112d010c27b0834cfca77844d56d633d67cdf15b9
3
+ size 4976687216
checkpoint-21364/model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edb205482e80b5d03e63693e387d459b0cb9c97948cde971ff025ba98f1396d
3
+ size 4778622352