--- base_model: - meta-llama/Llama-3.2-1B --- # 🦙 LoRA Implementation of LLaMA This model is a **Low-Rank Adaptation (LoRA)** of the **LLaMA 3.2-1B** model. **Original size**: ~1 Billion parameters **LoRA fine-tuned parameters**: ~86,000 **Result**: Achieves similar performance on many prompts with dramatically reduced trainable weights. --- ### About This model was fine-tuned using the [PEFT (Parameter-Efficient Fine-Tuning)](https://github.com/huggingface/peft) library and Hugging Face's `transformers`. - **Base Model**: `meta-llama/Llama-3.2-1B` ### Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/Llama-3.2-1B_LoRA") tokenizer = AutoTokenizer.from_pretrained("your-username/Llama-3.2-1B_LoRA") inputs = tokenizer("Tell me something interesting about space.", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True))