aryashah00 commited on
Commit
f9fa77b
·
verified ·
1 Parent(s): 760a04f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -54
README.md CHANGED
@@ -37,58 +37,7 @@ This model is specifically designed for generating synthetic survey responses fr
37
  1. A detailed persona description
38
  2. A specific survey question
39
 
40
- ### Python Example
41
-
42
- ```python
43
- from transformers import AutoModelForCausalLM, AutoTokenizer
44
-
45
- # Load model and tokenizer
46
- model = AutoModelForCausalLM.from_pretrained("aryashah00/survey-finetuned-tinyllama-for-deployment", device_map="auto", trust_remote_code=True)
47
- tokenizer = AutoTokenizer.from_pretrained("aryashah00/survey-finetuned-tinyllama-for-deployment", trust_remote_code=True)
48
- #tokenizer = AutoTokenizer.from_pretrained(model_name)
49
-
50
- # Define persona and question
51
- persona = "A nurse who educates the child about modern medical treatments and encourages a balanced approach to healthcare"
52
- question = "How often was your pain well controlled during this hospital stay?"
53
-
54
- # Prepare prompts
55
- system_prompt = f"You are embodying the following persona: {{persona}}"
56
- user_prompt = f"Survey Question: {{question}}\n\nPlease provide your honest and detailed response to this question."
57
-
58
- # Create message format
59
- messages = [
60
- {"role": "system", "content": system_prompt},
61
- {"role": "user", "content": user_prompt}
62
- ]
63
-
64
- # Apply chat template
65
- input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
66
-
67
- # Tokenize
68
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
69
-
70
- # Generate response
71
- import torch
72
- with torch.no_grad():
73
- output_ids = model.generate(
74
- input_ids=input_ids,
75
- max_new_tokens=256,
76
- temperature=0.7,
77
- top_p=0.9,
78
- do_sample=True
79
- )
80
-
81
- # Decode
82
- output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
83
-
84
- # Extract just the generated response
85
- response_start = output.find(input_text) + len(input_text)
86
- generated_response = output[response_start:].strip()
87
-
88
- print(f"Generated response: {{generated_response}}")
89
- ```
90
-
91
- ## Inference on CPU:
92
 
93
  ```python
94
  import torch
@@ -117,7 +66,7 @@ print(f"Model loaded successfully on: {next(model.parameters()).device}")
117
 
118
  # Example persona and survey question
119
  persona = "A caring mother who lost her first child due to a miscarriage."
120
- question = "Rate on a scale of 1(less likely) to 5(extremely likely):I deeply care about others"
121
 
122
  # Format messages following chat template
123
  messages = [
@@ -136,7 +85,7 @@ with torch.no_grad():
136
  output_ids = model.generate(
137
  input_ids=input_ids,
138
  max_new_tokens=256,
139
- temperature=0.7,
140
  top_p=0.9,
141
  do_sample=True
142
  )
 
37
  1. A detailed persona description
38
  2. A specific survey question
39
 
40
+ ## EXAMPLE Inference on CPU:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ```python
43
  import torch
 
66
 
67
  # Example persona and survey question
68
  persona = "A caring mother who lost her first child due to a miscarriage."
69
+ question = "Rate on a scale of 1(less likely) to 5(extremely likely) for the following question: I deeply care about others"
70
 
71
  # Format messages following chat template
72
  messages = [
 
85
  output_ids = model.generate(
86
  input_ids=input_ids,
87
  max_new_tokens=256,
88
+ temperature=0.9,
89
  top_p=0.9,
90
  do_sample=True
91
  )