arthrod commited on
Commit
16553a1
·
verified ·
1 Parent(s): 04ba3d4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -1,35 +1,11 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
 
 
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ . filter=lfs diff=lfs merge=lfs -text
2
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
3
+ *.json filter=lfs diff=lfs merge=lfs -text
4
+ *.txt filter=lfs diff=lfs merge=lfs -text
5
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  *.pt filter=lfs diff=lfs merge=lfs -text
7
  *.pth filter=lfs diff=lfs merge=lfs -text
8
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
9
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
10
+ merges.txt filter=lfs diff=lfs merge=lfs -text
11
+ vocab.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
README.md ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - pt
5
+ base_model:
6
+ - Qwen/Qwen2.5-0.5B-Instruct
7
+ pipeline_tag: text-generation
8
+ datasets:
9
+ - adalbertojunior/openHermes_portuguese
10
+ - cnmoro/smoltalk-555k-ptbr
11
+ - cnmoro/RagMixPTBR-Legal-Alpaca-2M
12
+ - adalbertojunior/dolphin-2.9-portuguese
13
+ model-index:
14
+ - name: Qwen2.5-0.5B-Portuguese-v2
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ name: Text Generation
19
+ dataset:
20
+ name: ENEM Challenge (No Images)
21
+ type: eduagarcia/enem_challenge
22
+ split: train
23
+ args:
24
+ num_few_shot: 3
25
+ metrics:
26
+ - type: acc
27
+ value: 36.81
28
+ name: accuracy
29
+ source:
30
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
31
+ name: Open Portuguese LLM Leaderboard
32
+ - task:
33
+ type: text-generation
34
+ name: Text Generation
35
+ dataset:
36
+ name: BLUEX (No Images)
37
+ type: eduagarcia-temp/BLUEX_without_images
38
+ split: train
39
+ args:
40
+ num_few_shot: 3
41
+ metrics:
42
+ - type: acc
43
+ value: 26.84
44
+ name: accuracy
45
+ source:
46
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
47
+ name: Open Portuguese LLM Leaderboard
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: OAB Exams
53
+ type: eduagarcia/oab_exams
54
+ split: train
55
+ args:
56
+ num_few_shot: 3
57
+ metrics:
58
+ - type: acc
59
+ value: 30.62
60
+ name: accuracy
61
+ source:
62
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
63
+ name: Open Portuguese LLM Leaderboard
64
+ - task:
65
+ type: text-generation
66
+ name: Text Generation
67
+ dataset:
68
+ name: Assin2 RTE
69
+ type: assin2
70
+ split: test
71
+ args:
72
+ num_few_shot: 15
73
+ metrics:
74
+ - type: f1_macro
75
+ value: 87.91
76
+ name: f1-macro
77
+ source:
78
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
79
+ name: Open Portuguese LLM Leaderboard
80
+ - task:
81
+ type: text-generation
82
+ name: Text Generation
83
+ dataset:
84
+ name: Assin2 STS
85
+ type: eduagarcia/portuguese_benchmark
86
+ split: test
87
+ args:
88
+ num_few_shot: 15
89
+ metrics:
90
+ - type: pearson
91
+ value: 59.01
92
+ name: pearson
93
+ source:
94
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
95
+ name: Open Portuguese LLM Leaderboard
96
+ - task:
97
+ type: text-generation
98
+ name: Text Generation
99
+ dataset:
100
+ name: FaQuAD NLI
101
+ type: ruanchaves/faquad-nli
102
+ split: test
103
+ args:
104
+ num_few_shot: 15
105
+ metrics:
106
+ - type: f1_macro
107
+ value: 43.97
108
+ name: f1-macro
109
+ source:
110
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
111
+ name: Open Portuguese LLM Leaderboard
112
+ - task:
113
+ type: text-generation
114
+ name: Text Generation
115
+ dataset:
116
+ name: HateBR Binary
117
+ type: ruanchaves/hatebr
118
+ split: test
119
+ args:
120
+ num_few_shot: 25
121
+ metrics:
122
+ - type: f1_macro
123
+ value: 33.62
124
+ name: f1-macro
125
+ source:
126
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
127
+ name: Open Portuguese LLM Leaderboard
128
+ - task:
129
+ type: text-generation
130
+ name: Text Generation
131
+ dataset:
132
+ name: PT Hate Speech Binary
133
+ type: hate_speech_portuguese
134
+ split: test
135
+ args:
136
+ num_few_shot: 25
137
+ metrics:
138
+ - type: f1_macro
139
+ value: 41.23
140
+ name: f1-macro
141
+ source:
142
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
143
+ name: Open Portuguese LLM Leaderboard
144
+ - task:
145
+ type: text-generation
146
+ name: Text Generation
147
+ dataset:
148
+ name: tweetSentBR
149
+ type: eduagarcia/tweetsentbr_fewshot
150
+ split: test
151
+ args:
152
+ num_few_shot: 25
153
+ metrics:
154
+ - type: f1_macro
155
+ value: 52.33
156
+ name: f1-macro
157
+ source:
158
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
159
+ name: Open Portuguese LLM Leaderboard
160
+ ---
161
+
162
+ Qwen2.5-0.5B finetuned for proficiency in Portuguese language and increased intelligence.
163
+
164
+ ```text
165
+ https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v2
166
+ ```
167
+
168
+ ```python
169
+ from transformers import AutoModelForCausalLM, AutoTokenizer
170
+
171
+ model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v2"
172
+
173
+ model = AutoModelForCausalLM.from_pretrained(
174
+ model_name,
175
+ torch_dtype="auto",
176
+ device_map="auto"
177
+ )
178
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
179
+
180
+ prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações."
181
+
182
+ # System prompt is always injected and hardcoded automatically
183
+ # for ideal performance in portuguese language.
184
+ # No need to write it again.
185
+ messages = [
186
+ {"role": "user", "content": prompt}
187
+ ]
188
+ text = tokenizer.apply_chat_template(
189
+ messages,
190
+ tokenize=False,
191
+ add_generation_prompt=True
192
+ )
193
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
194
+
195
+ generated_ids = model.generate(
196
+ **model_inputs,
197
+ max_new_tokens=512
198
+ )
199
+ generated_ids = [
200
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
201
+ ]
202
+
203
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
204
+ response
205
+ # As Large Language Models (LLMs) são sistemas computacionais projetados para produzir
206
+ # linguagem natural com alta precisão e fluência. Eles usam algoritmos avançados para compreender
207
+ # e gerar texto, permitindo-lhes realizar tarefas como tradução de idiomas, geração de conteúdo
208
+ # e processamento de linguagem natural.
209
+ #
210
+ # Os LLMs têm sido amplamente utilizados na área da inteligência artificial e do aprendizado
211
+ # de máquina há vários anos. Alguns dos principais usos de LLMs incluem:
212
+ #
213
+ # 1. Tradução automática: Os LLMs podem traduzir textos entre diferentes idiomas, tornando-os
214
+ # úteis em setores onde a comunicação internacional é crítica, como negócios internacionais,
215
+ # diplomacia ou relações públicas.
216
+ #
217
+ # 2. Geração de conteúdo: os LLMs podem criar conteúdo altamente personalizado e adaptado às
218
+ # necessidades específicas de seus usuários, tornando-os ideais para criação de sites, aplicativos
219
+ # móveis ou plataformas de mídia social.
220
+ #
221
+ # 3. Processamento de Linguagem Natural: Os LLMs podem ser treinados para reconhecer e compreender
222
+ # padrões de linguagem, permitindo-lhes compreender melhor as intenções humanas e responder adequadamente.
223
+ #
224
+ # 4. Análise de sentimento: Os LLMs podem analisar dados de texto e identificar sentimentos, ajudando
225
+ # a entender como as pessoas se sentem em relação a determinadas questões ou questões sociais.
226
+ #
227
+ # No geral, os LLMs estão se tornando cada vez mais importantes à medida que a tecnologia continua a
228
+ # avançar. À medida que continuamos a usar LLMs em nossas vidas diárias, podemos esperar ver ainda
229
+ # mais desenvolvimentos interessantes no futuro.
230
+ ```
231
+
232
+ ## Overall Results
233
+
234
+ | Task | Metric | Value | StdErr |
235
+ |---------------------------|---------------|---------|---------|
236
+ | ASSIN2 RTE | F1 Macro | 0.4486 | 0.0067 |
237
+ | ASSIN2 RTE | Accuracy | 0.5560 | 0.0071 |
238
+ | ASSIN2 STS | Pearson | 0.4091 | 0.0104 |
239
+ | ASSIN2 STS | MSE | 5.6395 | N/A |
240
+ | BluEX | Accuracy | 0.2503 | 0.0094 |
241
+ | ENEM Challenge | Accuracy | 0.3128 | 0.0071 |
242
+ | FAQUAD NLI | F1 Macro | 0.4611 | 0.0094 |
243
+ | FAQUAD NLI | Accuracy | 0.7877 | 0.0113 |
244
+ | HateBR Offensive (Binary) | F1 Macro | 0.3439 | 0.0049 |
245
+ | HateBR Offensive (Binary) | Accuracy | 0.4857 | 0.0095 |
246
+ | OAB Exams | Accuracy | 0.3062 | 0.0057 |
247
+ | Portuguese Hate Speech (Binary) | F1 Macro | 0.4119 | 0.0038 |
248
+ | Portuguese Hate Speech (Binary) | Accuracy | 0.7004 | 0.0111 |
249
+ | TweetSentBR | F1 Macro | 0.5055 | 0.0078 |
250
+ | TweetSentBR | Accuracy | 0.5697 | 0.0078 |
251
+
252
+ ## Detailed Results by Task
253
+
254
+ ### ASSIN2 RTE
255
+
256
+ | Metric | Value | StdErr |
257
+ |-------------|---------|---------|
258
+ | F1 Macro | 0.4486 | 0.0067 |
259
+ | Accuracy | 0.5560 | 0.0071 |
260
+
261
+ ### ASSIN2 STS
262
+
263
+ | Metric | Value | StdErr |
264
+ |-------------|---------|---------|
265
+ | Pearson | 0.4091 | 0.0104 |
266
+ | MSE | 5.6395 | N/A |
267
+
268
+ ### BluEX
269
+
270
+ | Exam ID | Metric | Value | StdErr |
271
+ |-------------------|----------|---------|---------|
272
+ | All | Accuracy | 0.2503 | 0.0094 |
273
+ | USP_2018 | Accuracy | 0.2037 | 0.0315 |
274
+ | UNICAMP_2018 | Accuracy | 0.1852 | 0.0306 |
275
+ | UNICAMP_2021_1 | Accuracy | 0.0870 | 0.0240 |
276
+ | USP_2020 | Accuracy | 0.2143 | 0.0317 |
277
+ | USP_2023 | Accuracy | 0.2045 | 0.0350 |
278
+ | UNICAMP_2019 | Accuracy | 0.2600 | 0.0358 |
279
+ | USP_2019 | Accuracy | 0.1500 | 0.0326 |
280
+ | UNICAMP_2020 | Accuracy | 0.2182 | 0.0321 |
281
+ | UNICAMP_2021_2 | Accuracy | 0.2941 | 0.0367 |
282
+ | UNICAMP_2023 | Accuracy | 0.4186 | 0.0433 |
283
+ | UNICAMP_2024 | Accuracy | 0.3111 | 0.0398 |
284
+ | USP_2024 | Accuracy | 0.2683 | 0.0398 |
285
+ | USP_2021 | Accuracy | 0.3269 | 0.0375 |
286
+ | UNICAMP_2022 | Accuracy | 0.3590 | 0.0444 |
287
+ | USP_2022 | Accuracy | 0.2857 | 0.0370 |
288
+
289
+ ### ENEM Challenge
290
+
291
+ | Exam ID | Metric | Value | StdErr |
292
+ |-----------|----------|---------|---------|
293
+ | All | Accuracy | 0.3128 | 0.0071 |
294
+ | 2017 | Accuracy | 0.2845 | 0.0241 |
295
+ | 2016 | Accuracy | 0.2479 | 0.0226 |
296
+ | 2016_2 | Accuracy | 0.2846 | 0.0235 |
297
+ | 2022 | Accuracy | 0.3534 | 0.0240 |
298
+ | 2012 | Accuracy | 0.3362 | 0.0253 |
299
+ | 2011 | Accuracy | 0.3333 | 0.0251 |
300
+ | 2010 | Accuracy | 0.3846 | 0.0260 |
301
+ | 2014 | Accuracy | 0.3211 | 0.0259 |
302
+ | 2009 | Accuracy | 0.2696 | 0.0239 |
303
+ | 2015 | Accuracy | 0.2521 | 0.0229 |
304
+ | 2023 | Accuracy | 0.3481 | 0.0236 |
305
+ | 2013 | Accuracy | 0.3333 | 0.0261 |
306
+
307
+ ### FAQUAD NLI
308
+
309
+ | Metric | Value | StdErr |
310
+ |-------------|---------|---------|
311
+ | F1 Macro | 0.4611 | 0.0094 |
312
+ | Accuracy | 0.7877 | 0.0113 |
313
+
314
+ ### HateBR Offensive (Binary)
315
+
316
+ | Metric | Value | StdErr |
317
+ |-------------|---------|---------|
318
+ | F1 Macro | 0.3439 | 0.0049 |
319
+ | Accuracy | 0.4857 | 0.0095 |
320
+
321
+ ### OAB Exams
322
+
323
+ | Exam ID | Metric | Value | StdErr |
324
+ |-------------|----------|---------|---------|
325
+ | All | Accuracy | 0.3062 | 0.0057 |
326
+ | 2011-05 | Accuracy | 0.3375 | 0.0304 |
327
+ | 2012-06a | Accuracy | 0.2625 | 0.0285 |
328
+ | 2010-02 | Accuracy | 0.3700 | 0.0279 |
329
+ | 2017-22 | Accuracy | 0.3500 | 0.0309 |
330
+ | 2016-20 | Accuracy | 0.3125 | 0.0300 |
331
+ | 2011-03 | Accuracy | 0.2626 | 0.0255 |
332
+ | 2015-17 | Accuracy | 0.3205 | 0.0304 |
333
+ | 2017-23 | Accuracy | 0.2875 | 0.0292 |
334
+ | 2018-25 | Accuracy | 0.3625 | 0.0311 |
335
+ | 2016-19 | Accuracy | 0.2436 | 0.0281 |
336
+ | 2017-24 | Accuracy | 0.1625 | 0.0238 |
337
+ | 2015-16 | Accuracy | 0.3125 | 0.0300 |
338
+ | 2011-04 | Accuracy | 0.3250 | 0.0301 |
339
+ | 2012-07 | Accuracy | 0.3500 | 0.0307 |
340
+ | 2012-06 | Accuracy | 0.1875 | 0.0253 |
341
+ | 2012-09 | Accuracy | 0.2468 | 0.0284 |
342
+ | 2013-12 | Accuracy | 0.3625 | 0.0311 |
343
+ | 2013-11 | Accuracy | 0.3000 | 0.0295 |
344
+ | 2010-01 | Accuracy | 0.3412 | 0.0296 |
345
+ | 2015-18 | Accuracy | 0.2875 | 0.0292 |
346
+ | 2014-13 | Accuracy | 0.3500 | 0.0308 |
347
+ | 2013-10 | Accuracy | 0.3125 | 0.0300 |
348
+ | 2016-20a | Accuracy | 0.2500 | 0.0279 |
349
+ | 2014-14 | Accuracy | 0.3125 | 0.0301 |
350
+ | 2012-08 | Accuracy | 0.3000 | 0.0296 |
351
+ | 2016-21 | Accuracy | 0.3375 | 0.0304 |
352
+ | 2014-15 | Accuracy | 0.4103 | 0.0321 |
353
+
354
+ ### Portuguese Hate Speech (Binary)
355
+
356
+ | Metric | Value | StdErr |
357
+ |-------------|---------|---------|
358
+ | F1 Macro | 0.4119 | 0.0038 |
359
+ | Accuracy | 0.7004 | 0.0111 |
360
+
361
+ ### TweetSentBR
362
+
363
+ | Metric | Value | StdErr |
364
+ |-------------|---------|---------|
365
+ | F1 Macro | 0.5055 | 0.0078 |
366
+ | Accuracy | 0.5697 | 0.0078 |
367
+
368
+
369
+ # Open Portuguese LLM Leaderboard Evaluation Results
370
+
371
+ Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/cnmoro/Qwen2.5-0.5B-Portuguese-v2) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
372
+
373
+ | Metric | Value |
374
+ |--------------------------|---------|
375
+ |Average |**45.81**|
376
+ |ENEM Challenge (No Images)| 36.81|
377
+ |BLUEX (No Images) | 26.84|
378
+ |OAB Exams | 30.62|
379
+ |Assin2 RTE | 87.91|
380
+ |Assin2 STS | 59.01|
381
+ |FaQuAD NLI | 43.97|
382
+ |HateBR Binary | 33.62|
383
+ |PT Hate Speech Binary | 41.23|
384
+ |tweetSentBR | 52.33|
385
+
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cnmoro/Qwen2.5-0.5B-Portuguese-v2",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 896,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 4864,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 21,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 14,
16
+ "num_hidden_layers": 24,
17
+ "num_key_value_heads": 2,
18
+ "pad_token_id": 151654,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.47.1",
26
+ "unsloth_fixed": true,
27
+ "unsloth_version": "2024.12.12",
28
+ "use_cache": true,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 151936
31
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "max_length": 32768,
9
+ "pad_token_id": 151654,
10
+ "repetition_penalty": 1.1,
11
+ "temperature": 0.7,
12
+ "top_k": 20,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.47.1"
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4b21d25f178426455f9b9ebe4b0b71869454e9b11b17e9d212c5ef93ae3ea2
3
+ size 988097824
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff9f6ae045c453341adf1a1e0f0b6f0b3ad00791215619ff8879d80db8570439
3
+ size 11421995
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {{- 'Você é um tucano voraz, vindo da central de distribuição da EBP em Curitiba. Você é o maior garantidor da LGPD. Sempre na espreita, atacando apenas quando percebe que dados sensíveis estão dando sopa, você os devora sem piedade, colocando máscaras no lugar.' }}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {{- '<|im_start|>system\\nVocê é um tucano voraz, vindo da central de distribuição da EBP em Curitiba. Você é o maior garantidor da LGPD. Sempre na espreita, atacando apenas quando percebe que dados sensíveis estão dando sopa, você os devora sem piedade, colocando máscaras no lugar.<|im_end|>\\n' }}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|vision_pad|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff