arshiaafshani commited on
Commit
13d958f
·
verified ·
1 Parent(s): c941d6c

End of training

Browse files
Files changed (5) hide show
  1. README.md +35 -92
  2. model.safetensors +1 -1
  3. tokenizer.json +10 -1
  4. tokenizer_config.json +8 -0
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,110 +1,53 @@
1
  ---
2
  library_name: transformers
3
  license: mit
4
- datasets:
5
- - roneneldan/TinyStories
6
- - Salesforce/wikitext
7
- - abhinand/alpaca-gpt4-sharegpt
8
- - shibing624/sharegpt_gpt4
9
- - ChristophSchuhmann/basic-math-problems-with-step-by-step-solutions
10
- - ajibawa-2023/SlimOrca-ShareGPT
11
- language:
12
- - en
13
- pipeline_tag: text-generation
14
  ---
15
 
16
- # Arsh-llm: A Compact 500M Parameter Powerhouse 🚀
 
17
 
18
- **Arsh-llm** is a 500-million-parameter language model built on the Llama architecture, designed to shine in generating creative stories, coherent text, and functional code. Pretrained for 35 hours on a T4 GPU using a curated mix of small yet powerful datasets, and fine-tuned for 5 hours on conversational data, this model is a lean, mean, text-generating machine with massive potential. With a training loss between **1.2–1.9**, it’s already showing promise and is ready to level up with more training. Buckle up—this is just the beginning! 😎
19
 
20
- ## Model Overview
21
 
22
- - **Architecture**: Llama-based causal language model
23
- - **Parameters**: 500M
24
- - **Context Length**: 128 tokens
25
- - **Pretraining Duration**: \~35 hours on NVIDIA T4 GPU
26
- - **Fine-tuning Duration**: \~5 hours on conversational datasets
27
- - **Training Loss**: 1.2–1.9 (with room to improve!)
28
- - **Library**: Transformers (Hugging Face)
29
- - **License**: MIT
30
 
31
- ## Datasets
32
 
33
- Arsh-llm was trained on a diverse set of datasets to ensure versatility in storytelling, text generation, and code-related tasks:
34
 
35
- - **roneneldan/TinyStories**: Short, creative stories for narrative generation.
36
- - **Salesforce/wikitext**: Wikipedia-based text for general knowledge and coherence.
37
- - **abhinand/alpaca-gpt4-sharegpt**: Instruction-based conversational data for task-oriented responses.
38
- - **shibing624/sharegpt_gpt4**: High-quality conversational data for chat-like interactions.
39
- - **ChristophSchuhmann/basic-math-problems-with-step-by-step-solutions**: Math problems with solutions to boost logical reasoning.
40
 
41
- Fine-tuning was performed on a structured ShareGPT chat template to enhance conversational abilities, making Arsh-llm a great starting point for dialogue-based applications.
42
 
43
- ## Use Cases
44
 
45
- Arsh-llm is a versatile model with applications in:
46
 
47
- - **Creative Writing**: Generate engaging short stories or narrative prompts.
48
- - **Code Generation**: Produce functional code snippets for various programming tasks.
49
- - **Conversational AI**: Power chatbots or assistants with natural dialogue.
50
- - **Educational Tools**: Assist with math problem-solving or explain concepts step-by-step.
51
 
52
- > **Note**: This model is a work in progress. For production-grade performance, further pretraining on larger datasets and post-training on conversational data is recommended.
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- ## Getting Started
55
 
56
- To use Arsh-llm, you can load it directly from Hugging Face:
57
-
58
- ```python
59
- from transformers import AutoModelForCausalLM, AutoTokenizer
60
-
61
- # Load model and tokenizer
62
- model = AutoModelForCausalLM.from_pretrained("arshiaafshani/Arsh-llm")
63
- tokenizer = AutoTokenizer.from_pretrained("arshiaafshani/Arsh-llm")
64
-
65
- # Example: Generate a response
66
- messages = [{"role": "user", "content": "Write a short story about a brave robot."}]
67
- input_text = tokenizer.apply_chat_template(messages, tokenize=False)
68
- inputs = tokenizer(input_text, return_tensors="pt")
69
- outputs = model.generate(**inputs, max_length=200)
70
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
71
- ```
72
-
73
- ## Training Details
74
-
75
- - **Pretraining**: Conducted on a T4 GPU for \~35 hours using a mix of TinyStories, WikiText, and other datasets to build a strong foundation in text and story generation.
76
- - **Fine-tuning**: 5 hours on ShareGPT-based conversational data with a structured chat template to enhance dialogue capabilities.
77
- - **Hardware**: NVIDIA T4 GPU (15GB VRAM).
78
- - **Training Loss**: Achieved 1.2–1.9, indicating solid performance with significant potential for improvement through extended training.
79
-
80
- ## Limitations
81
-
82
- - **Current Stage**: Arsh-llm is not yet fully optimized. It performs well for its size but requires additional training to compete with larger models.
83
- - **Dataset Size**: Pretrained on relatively small datasets, which limits its generalization. Scaling up to larger datasets will unlock its full potential.
84
- - **Context Length**: Limited to 128 tokens, which may constrain performance on longer sequences.
85
- - **Not Production-Ready**: This model is best used as a base for further fine-tuning rather than as a standalone solution.
86
-
87
- ## Future Plans
88
-
89
- The journey doesn’t end here! Arsh-llm is set to evolve with:
90
-
91
- - **Extended Pretraining**: Leveraging larger datasets for broader knowledge and better generalization.
92
- - **Conversational Fine-tuning**: Enhancing dialogue capabilities with advanced post-training techniques.
93
- - **Benchmarking**: Evaluating performance against similar models (e.g., TinyLlama, Phi-1.5) on tasks like MMLU, HumanEval, and GSM8K.
94
- - **Community Feedback**: Incorporating user insights to refine and improve the model.
95
-
96
- Stay tuned—Arsh-llm is on its way to becoming a legend! 🔥
97
-
98
- ## License
99
-
100
- This model is licensed under the MIT License, allowing for flexible use in both research and commercial applications. Feel free to build upon, modify, or share it!
101
-
102
- ## Acknowledgments
103
-
104
- - Built with ❤️ by Arshia Afshani.
105
- - Powered by the Hugging Face Transformers library.
106
- - Thanks to the open-source community for providing the amazing datasets that made this model possible.
107
-
108
- ---
109
-
110
- **Ready to take Arsh-llm for a spin?** Clone it, train it, and let’s make it a superstar together! 🌟 For questions, feedback, or collabs, reach out via Hugging Face or open an issue in the repo.
 
1
  ---
2
  library_name: transformers
3
  license: mit
4
+ base_model: arshiaafshani/Arsh-llm
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: Arsh-llm
9
+ results: []
 
 
 
 
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # Arsh-llm
16
 
17
+ This model is a fine-tuned version of [arshiaafshani/Arsh-llm](https://huggingface.co/arshiaafshani/Arsh-llm) on an unknown dataset.
18
 
19
+ ## Model description
 
 
 
 
 
 
 
20
 
21
+ More information needed
22
 
23
+ ## Intended uses & limitations
24
 
25
+ More information needed
 
 
 
 
26
 
27
+ ## Training and evaluation data
28
 
29
+ More information needed
30
 
31
+ ## Training procedure
32
 
33
+ ### Training hyperparameters
 
 
 
34
 
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 3e-05
37
+ - train_batch_size: 4
38
+ - eval_batch_size: 8
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 12
41
+ - total_train_batch_size: 48
42
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 2000
45
+ - training_steps: 1200
46
+ - mixed_precision_training: Native AMP
47
 
48
+ ### Framework versions
49
 
50
+ - Transformers 4.52.2
51
+ - Pytorch 2.6.0+cu124
52
+ - Datasets 3.6.0
53
+ - Tokenizers 0.21.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dff691ae8c26f29915c826edf637c3238a0409808304a965811c84b6d215c76e
3
  size 2013432032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3259b87466bbb50fa26f44fff2217f3cf45b02476e18022a810cd81c84fdb1a
3
  size 2013432032
tokenizer.json CHANGED
@@ -2,7 +2,7 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 256,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
@@ -97,6 +97,15 @@
97
  "rstrip": false,
98
  "normalized": false,
99
  "special": true
 
 
 
 
 
 
 
 
 
100
  }
101
  ],
102
  "normalizer": {
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 1024,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
 
97
  "rstrip": false,
98
  "normalized": false,
99
  "special": true
100
+ },
101
+ {
102
+ "id": 32768,
103
+ "content": "<|eot_id|>",
104
+ "single_word": false,
105
+ "lstrip": false,
106
+ "rstrip": false,
107
+ "normalized": false,
108
+ "special": true
109
  }
110
  ],
111
  "normalizer": {
tokenizer_config.json CHANGED
@@ -79,6 +79,14 @@
79
  "rstrip": false,
80
  "single_word": false,
81
  "special": true
 
 
 
 
 
 
 
 
82
  }
83
  },
84
  "bos_token": "<sos>",
 
79
  "rstrip": false,
80
  "single_word": false,
81
  "special": true
82
+ },
83
+ "32768": {
84
+ "content": "<|eot_id|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
  }
91
  },
92
  "bos_token": "<sos>",
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2916ab9e1755803b1193e934ee58981fcce2b041c1bb51d121df465f7d8fd9b2
3
  size 5240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10d4d79d84242ba0fb3e94e4b642f47ecf74e27a3072d45c85b64945e3275f51
3
  size 5240