arijitbhowmick commited on
Commit
4712f6c
·
1 Parent(s): 2c12673

Updated model bitnet-b1.58-2B-4T-bf16 with 1bitLLM-bitnet_b1_58-3B config files

Browse files
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) Microsoft Corporation.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/bitnet-b1.58-2B-4T/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - chat
9
+ - bitnet
10
+ - text-generation
11
+ - large-language-model
12
+ library_name: transformers
13
+ ---
14
+
15
+ # BitNet b1.58 2B4T - Scaling Native 1-bit LLM
16
+
17
+ This repository contains the weights for **BitNet b1.58 2B4T**, the first open-source, native 1-bit Large Language Model (LLM) at the 2-billion parameter scale, developed by Microsoft Research.
18
+
19
+ Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
20
+
21
+ ➡️ **Technical Report:** [BitNet b1.58 2B4T Technical Report](https://arxiv.org/abs/2504.12285)
22
+
23
+ ➡️ **Official Inference Code:** [microsoft/BitNet (bitnet.cpp)](https://github.com/microsoft/BitNet)
24
+
25
+ ## Model Variants
26
+
27
+ Several versions of the model weights are available on Hugging Face:
28
+
29
+ * [**`microsoft/bitnet-b1.58-2B-4T`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T): Contains the packed 1.58-bit weights optimized for efficient inference. **Use this for deployment.**
30
+
31
+ * [**`microsoft/bitnet-b1.58-2B-4T-bf16`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-bf16) (This repository): Contains the master weights in BF16 format. **Use this only for training or fine-tuning purposes.**
32
+
33
+ * [**`microsoft/bitnet-b1.58-2B-4T-gguf`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-gguf): Contains the model weights in GGUF format, compatible with the `bitnet.cpp` library for CPU inference.
34
+
35
+ ## Model Details
36
+
37
+ * **Architecture:** Transformer-based, modified with `BitLinear` layers (BitNet framework).
38
+ * Uses Rotary Position Embeddings (RoPE).
39
+ * Uses squared ReLU (ReLU²) activation in FFN layers.
40
+ * Employs [`subln`](https://proceedings.mlr.press/v202/wang23u.html) normalization.
41
+ * No bias terms in linear or normalization layers.
42
+ * **Quantization:** Native 1.58-bit weights and 8-bit activations (W1.58A8).
43
+ * Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
44
+ * Activations are quantized to 8-bit integers using absmax quantization (per-token).
45
+ * **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
46
+ * **Parameters:** ~2 Billion
47
+ * **Training Tokens:** 4 Trillion
48
+ * **Context Length:** Maximum sequence length of **4096 tokens**.
49
+ * *Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
50
+ * **Training Stages:**
51
+ 1. **Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
52
+ 2. **Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
53
+ 3. **Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
54
+ * **Tokenizer:** LLaMA 3 Tokenizer (vocab size: 128,256).
55
+
56
+ ## How to Use (with `transformers`)
57
+
58
+ **VERY IMPORTANT NOTE ON EFFICIENCY**
59
+
60
+ > Please do NOT expect performance efficiency gains (in terms of speed, latency, or energy consumption) when using this model with the standard transformers library, even with the required fork.
61
+ >
62
+ > The current execution paths within transformers do not contain the specialized, highly optimized computational kernels required to leverage the advantages of the BitNet architecture. Running the model via transformers will likely result in inference speeds and energy usage comparable to, or potentially worse than, standard full-precision models within this framework on both CPU and GPU.
63
+ >
64
+ > While you might observe reduced memory usage due to the quantized weights, the primary computational efficiency benefits are not accessible through this standard transformers usage path.
65
+ >
66
+ > For achieving the efficiency benefits demonstrated in the technical paper, you MUST use the dedicated C++ implementation: [bitnet.cpp](https://github.com/microsoft/BitNet).
67
+
68
+ ### Requirements
69
+
70
+ ```bash
71
+ pip install git+https://github.com/huggingface/transformers.git@096f25ae1f501a084d8ff2dcaf25fbc2bd60eba4
72
+ ```
73
+
74
+ ### Example
75
+
76
+ ```python
77
+ import torch
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+
80
+ model_id = "microsoft/bitnet-b1.58-2B-4T"
81
+
82
+ # Load tokenizer and model
83
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ model_id,
86
+ torch_dtype=torch.bfloat16
87
+ )
88
+
89
+ # Apply the chat template
90
+ messages = [
91
+ {"role": "system", "content": "You are a helpful AI assistant."},
92
+ {"role": "user", "content": "How are you?"},
93
+ ]
94
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
95
+ chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
96
+
97
+ # Generate response
98
+ chat_outputs = model.generate(**chat_input, max_new_tokens=50)
99
+ response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True) # Decode only the response part
100
+ print("\nAssistant Response:", response)
101
+ ```
102
+
103
+ ## How to Use (with `bitnet.cpp`)
104
+
105
+ Please refer to the [bitnet.cpp](https://github.com/microsoft/BitNet) GitHub repository for detailed compilation steps, usage examples, and command-line options.
106
+
107
+ ## Evaluation
108
+
109
+ BitNet b1.58 2B4T was evaluated against leading open-weight full-precision LLMs of similar size. Below are the key results (all models are instruction-tuned versions):
110
+
111
+ | Benchmark | LLaMA 3.2 1B | Gemma-3 1B | Qwen2.5 1.5B | SmolLM2 1.7B | MiniCPM 2B | **BitNet b1.58 2B** |
112
+ |--------------------------------|--------------|------------|--------------|--------------|------------|---------------------|
113
+ | **Memory (Non-emb)** | 2GB | 1.4GB | 2.6GB | 3.2GB | 4.8GB | **0.4GB** |
114
+ | **Latency (CPU Decoding)** | 48ms | 41ms | 65ms | 67ms | 124ms | **29ms** |
115
+ | **Energy (Estimated)** | 0.258J | 0.186J | 0.347J | 0.425J | 0.649J | **0.028J** |
116
+ | **Training Tokens (Pre-train)**| 9T* | 2T** | 18T | 11T | 1.1T | 4T |
117
+ | ARC-Challenge | 37.80 | 38.40 | 46.67 | 43.52 | 44.80 | **49.91** |
118
+ | ARC-Easy | 63.17 | 63.13 | **76.01** | 62.92 | 72.14 | 74.79 |
119
+ | OpenbookQA | 34.80 | 38.80 | 40.80 | **46.00** | 40.20 | 41.60 |
120
+ | BoolQ | 64.65 | 74.22 | 78.04 | 75.78 | **80.67** | 80.18 |
121
+ | HellaSwag | 60.80 | 57.69 | 68.28 | **71.71** | 70.81 | 68.44 |
122
+ | PIQA | 74.21 | 71.93 | 76.12 | 76.12 | 76.66 | **77.09** |
123
+ | WinoGrande | 59.51 | 58.48 | 62.83 | 68.98 | 61.80 | **71.90** |
124
+ | CommonsenseQA | 58.48 | 42.10 | **76.41** | 63.55 | 71.74 | 71.58 |
125
+ | TruthfulQA | 43.80 | 38.66 | **46.67** | 39.90 | 41.41 | 45.31 |
126
+ | TriviaQA | 37.60 | 23.49 | 38.37 | **45.97** | 34.13 | 33.57 |
127
+ | MMLU | 45.58 | 39.91 | **60.25** | 49.24 | 51.82 | 53.17 |
128
+ | HumanEval+ | 31.10 | 37.20 | **50.60** | 28.00 | 43.90 | 38.40 |
129
+ | GSM8K | 38.21 | 31.16 | 56.79 | 45.11 | 4.40 | **58.38** |
130
+ | MATH-500 | 23.00 | 42.00 | **53.00** | 17.60 | 14.80 | 43.40 |
131
+ | IFEval | 62.71 | **66.67** | 50.12 | 57.91 | 36.81 | 53.48 |
132
+ | MT-bench | 5.43 | 6.40 | 6.12 | 5.50 | **6.57** | 5.85 |
133
+ | **Average** | 44.90 | 43.74 | **55.23** | 48.70 | 42.05 | 54.19 |
134
+
135
+ *LLaMA 3.2 1B uses pruning & distillation.
136
+
137
+ **Gemma-3 1B uses distillation.
138
+
139
+ ## License
140
+ The model weights and code are released under the [MIT License](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T/blob/main/LICENSE).
141
+
142
+ ## Disclaimer
143
+ This model is intended for research and development purposes. While efforts have been made to align it using SFT and DPO, it may still produce outputs that are unexpected, biased, or inaccurate. Please use responsibly.
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BitNetForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_bitnet.BitNetConfig",
7
+ "AutoModelForCausalLM": "modeling_bitnet.BitNetForCausalLM"
8
+ },
9
+ "bos_token_id": 128000,
10
+ "eos_token_id": 128001,
11
+ "hidden_act": "relu2",
12
+ "hidden_size": 2560,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 6912,
15
+ "max_position_embeddings": 4096,
16
+ "model_type": "bitnet",
17
+ "rms_norm_eps": 1e-05,
18
+ "num_attention_heads": 20,
19
+ "num_hidden_layers": 30,
20
+ "num_key_value_heads": 5,
21
+ "rope_theta": 500000.0,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "use_cache": true,
25
+ "vocab_size": 128256,
26
+ "quantization_config": {
27
+ "quant_method": "bitnet",
28
+ "linear_class": "autobitlinear",
29
+ "quantization_mode": "online"
30
+ }
31
+ }
configuration_bitnet.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class BitNetConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`BitnetModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`BitnetModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. Bitnet 1 supports up to 2048 tokens,
65
+ Bitnet 2 up to 4096, CodeBitnet up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import BitnetModel, BitNetConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = BitNetConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = BitnetModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ weight_bits=1,
140
+ input_bits=8,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.hidden_size = hidden_size
146
+ self.intermediate_size = intermediate_size
147
+ self.num_hidden_layers = num_hidden_layers
148
+ self.num_attention_heads = num_attention_heads
149
+
150
+ # for backward compatibility
151
+ if num_key_value_heads is None:
152
+ num_key_value_heads = num_attention_heads
153
+
154
+ self.num_key_value_heads = num_key_value_heads
155
+ self.hidden_act = hidden_act
156
+ self.initializer_range = initializer_range
157
+ self.rms_norm_eps = rms_norm_eps
158
+ self.pretraining_tp = pretraining_tp
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.attention_bias = attention_bias
164
+ self.attention_dropout = attention_dropout
165
+ self.weight_bits = weight_bits
166
+ self.input_bits = input_bits
167
+
168
+ super().__init__(
169
+ pad_token_id=pad_token_id,
170
+ bos_token_id=bos_token_id,
171
+ eos_token_id=eos_token_id,
172
+ tie_word_embeddings=tie_word_embeddings,
173
+ **kwargs,
174
+ )
175
+
176
+ def _rope_scaling_validation(self):
177
+ """
178
+ Validate the `rope_scaling` configuration.
179
+ """
180
+ if self.rope_scaling is None:
181
+ return
182
+
183
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
184
+ raise ValueError(
185
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
186
+ f"got {self.rope_scaling}"
187
+ )
188
+ rope_scaling_type = self.rope_scaling.get("type", None)
189
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
190
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
191
+ raise ValueError(
192
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
193
+ )
194
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
195
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "eos_token_id": [
4
+ 128001,
5
+ 128009
6
+ ],
7
+ "do_sample": true,
8
+ "temperature": 0.6,
9
+ "max_length": 4096,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.40.0.dev0"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:529637ff6dab1f5890767356928693f69ffe61d3b6040a43de9306b37bfd5ae1
3
+ size 4825679400
modeling_bitnet.py ADDED
@@ -0,0 +1,1387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaMA model."""
21
+
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ QuestionAnsweringModelOutput,
39
+ SequenceClassifierOutputWithPast,
40
+ )
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_2_available,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_bitnet import BitNetConfig
52
+ from .utils_quant import BitLinear
53
+
54
+
55
+ if is_flash_attn_2_available():
56
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
58
+
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+ _CONFIG_FOR_DOC = "BitNetConfig"
63
+
64
+
65
+ def _get_unpad_data(attention_mask):
66
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
67
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
68
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
69
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
70
+ return (
71
+ indices,
72
+ cu_seqlens,
73
+ max_seqlen_in_batch,
74
+ )
75
+
76
+
77
+ class BitnetRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ BitnetRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+
94
+ ALL_LAYERNORM_LAYERS.append(BitnetRMSNorm)
95
+
96
+
97
+ class BitnetRotaryEmbedding(nn.Module):
98
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
99
+ super().__init__()
100
+ self.scaling_factor = scaling_factor
101
+ self.dim = dim
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.base = base
104
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
105
+ self.register_buffer("inv_freq", inv_freq)
106
+ # For BC we register cos and sin cached
107
+ self.max_seq_len_cached = max_position_embeddings
108
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
109
+ t = t / self.scaling_factor
110
+ freqs = torch.outer(t, self.inv_freq)
111
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
112
+ emb = torch.cat((freqs, freqs), dim=-1)
113
+ self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
114
+ self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
115
+
116
+ @property
117
+ def sin_cached(self):
118
+ logger.warning_once(
119
+ "The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
120
+ "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
121
+ )
122
+ return self._sin_cached
123
+
124
+ @property
125
+ def cos_cached(self):
126
+ logger.warning_once(
127
+ "The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
128
+ "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
129
+ )
130
+ return self._cos_cached
131
+
132
+ @torch.no_grad()
133
+ def forward(self, x, position_ids):
134
+ # x: [bs, num_attention_heads, seq_len, head_size]
135
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
136
+ position_ids_expanded = position_ids[:, None, :].float()
137
+ # Force float32 since bfloat16 loses precision on long contexts
138
+ # See https://github.com/huggingface/transformers/pull/29285
139
+ device_type = x.device.type
140
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
141
+ with torch.autocast(device_type=device_type, enabled=False):
142
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
143
+ emb = torch.cat((freqs, freqs), dim=-1)
144
+ cos = emb.cos()
145
+ sin = emb.sin()
146
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
147
+
148
+
149
+ def rotate_half(x):
150
+ """Rotates half the hidden dims of the input."""
151
+ x1 = x[..., : x.shape[-1] // 2]
152
+ x2 = x[..., x.shape[-1] // 2 :]
153
+ return torch.cat((-x2, x1), dim=-1)
154
+
155
+
156
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
157
+ """Applies Rotary Position Embedding to the query and key tensors.
158
+
159
+ Args:
160
+ q (`torch.Tensor`): The query tensor.
161
+ k (`torch.Tensor`): The key tensor.
162
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
163
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
164
+ position_ids (`torch.Tensor`, *optional*):
165
+ Deprecated and unused.
166
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
167
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
168
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
169
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
170
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
171
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
172
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
173
+ Returns:
174
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
175
+ """
176
+ cos = cos.unsqueeze(unsqueeze_dim)
177
+ sin = sin.unsqueeze(unsqueeze_dim)
178
+ q_embed = (q * cos) + (rotate_half(q) * sin)
179
+ k_embed = (k * cos) + (rotate_half(k) * sin)
180
+ return q_embed, k_embed
181
+
182
+
183
+ class BitnetMLP(nn.Module):
184
+ def __init__(self, config):
185
+ super().__init__()
186
+ self.config = config
187
+ self.hidden_size = config.hidden_size
188
+ self.intermediate_size = config.intermediate_size
189
+ self.gate_proj = BitLinear(
190
+ self.hidden_size, self.intermediate_size, bias=False,
191
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
192
+ )
193
+ self.up_proj = BitLinear(
194
+ self.hidden_size, self.intermediate_size, bias=False,
195
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
196
+ )
197
+ self.down_proj = BitLinear(
198
+ self.intermediate_size, self.hidden_size, bias=False,
199
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
200
+ )
201
+ self.act_fn = ACT2FN[config.hidden_act]
202
+ self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
203
+
204
+ def forward(self, x):
205
+ x = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
206
+ x = self.ffn_layernorm(x)
207
+ x = self.down_proj(x)
208
+ return x
209
+
210
+
211
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
212
+ """
213
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
214
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
215
+ """
216
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
217
+ if n_rep == 1:
218
+ return hidden_states
219
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
220
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
221
+
222
+
223
+ class BitnetAttention(nn.Module):
224
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
225
+
226
+ def __init__(self, config: BitNetConfig, layer_idx: Optional[int] = None):
227
+ super().__init__()
228
+ self.config = config
229
+ self.layer_idx = layer_idx
230
+ if layer_idx is None:
231
+ logger.warning_once(
232
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
233
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
234
+ "when creating this class."
235
+ )
236
+
237
+ self.attention_dropout = config.attention_dropout
238
+ self.hidden_size = config.hidden_size
239
+ self.num_heads = config.num_attention_heads
240
+ self.head_dim = self.hidden_size // self.num_heads
241
+ self.num_key_value_heads = config.num_key_value_heads
242
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
243
+ self.max_position_embeddings = config.max_position_embeddings
244
+ self.rope_theta = config.rope_theta
245
+ self.is_causal = True
246
+
247
+ if (self.head_dim * self.num_heads) != self.hidden_size:
248
+ raise ValueError(
249
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
250
+ f" and `num_heads`: {self.num_heads})."
251
+ )
252
+
253
+ self.q_proj = BitLinear(
254
+ self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias,
255
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
256
+ )
257
+ self.k_proj = BitLinear(
258
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
259
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
260
+ )
261
+ self.v_proj = BitLinear(
262
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
263
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
264
+ )
265
+ self.o_proj = BitLinear(
266
+ self.hidden_size, self.hidden_size, bias=config.attention_bias,
267
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
268
+ )
269
+ self._init_rope()
270
+ self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
271
+
272
+ def _init_rope(self):
273
+ if self.config.rope_scaling is None:
274
+ self.rotary_emb = BitnetRotaryEmbedding(
275
+ self.head_dim,
276
+ max_position_embeddings=self.max_position_embeddings,
277
+ base=self.rope_theta,
278
+ )
279
+ else:
280
+ raise NotImplementedError
281
+
282
+ def forward(
283
+ self,
284
+ hidden_states: torch.Tensor,
285
+ attention_mask: Optional[torch.Tensor] = None,
286
+ position_ids: Optional[torch.LongTensor] = None,
287
+ past_key_value: Optional[Cache] = None,
288
+ output_attentions: bool = False,
289
+ use_cache: bool = False,
290
+ cache_position: Optional[torch.LongTensor] = None,
291
+ **kwargs,
292
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
293
+ bsz, q_len, _ = hidden_states.size()
294
+
295
+ query_states = self.q_proj(hidden_states)
296
+ key_states = self.k_proj(hidden_states)
297
+ value_states = self.v_proj(hidden_states)
298
+
299
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
300
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
301
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
302
+
303
+ past_key_value = getattr(self, "past_key_value", past_key_value)
304
+ cos, sin = self.rotary_emb(value_states, position_ids)
305
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
306
+
307
+ if past_key_value is not None:
308
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
309
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
310
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
311
+
312
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
313
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
314
+
315
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
316
+
317
+ if attention_mask is not None: # no matter the length, we just slice it
318
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
319
+ attn_weights = attn_weights + causal_mask
320
+
321
+ # upcast attention to fp32
322
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
323
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
324
+ attn_output = torch.matmul(attn_weights, value_states)
325
+
326
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
327
+ raise ValueError(
328
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
329
+ f" {attn_output.size()}"
330
+ )
331
+
332
+ attn_output = attn_output.transpose(1, 2).contiguous()
333
+
334
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
335
+
336
+ attn_output = self.inner_attn_ln(attn_output)
337
+ attn_output = self.o_proj(attn_output)
338
+
339
+ if not output_attentions:
340
+ attn_weights = None
341
+
342
+ return attn_output, attn_weights, past_key_value
343
+
344
+
345
+ class BitnetFlashAttention2(BitnetAttention):
346
+ """
347
+ Bitnet flash attention module. This module inherits from `BitnetAttention` as the weights of the module stays
348
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
349
+ flash attention and deal with padding tokens in case the input contains any of them.
350
+ """
351
+
352
+ def __init__(self, *args, **kwargs):
353
+ super().__init__(*args, **kwargs)
354
+
355
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
356
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
357
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
358
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
359
+
360
+ def forward(
361
+ self,
362
+ hidden_states: torch.Tensor,
363
+ attention_mask: Optional[torch.LongTensor] = None,
364
+ position_ids: Optional[torch.LongTensor] = None,
365
+ past_key_value: Optional[Cache] = None,
366
+ output_attentions: bool = False,
367
+ use_cache: bool = False,
368
+ cache_position: Optional[torch.LongTensor] = None,
369
+ **kwargs,
370
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
371
+ output_attentions = False
372
+
373
+ bsz, q_len, _ = hidden_states.size()
374
+
375
+ query_states = self.q_proj(hidden_states)
376
+ key_states = self.k_proj(hidden_states)
377
+ value_states = self.v_proj(hidden_states)
378
+
379
+ # Flash attention requires the input to have the shape
380
+ # batch_size x seq_length x head_dim x hidden_dim
381
+ # therefore we just need to keep the original shape
382
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
383
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
384
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
385
+
386
+ cos, sin = self.rotary_emb(value_states, position_ids)
387
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
388
+
389
+ past_key_value = getattr(self, "past_key_value", past_key_value)
390
+
391
+ if past_key_value is not None:
392
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
393
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
394
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
395
+
396
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
397
+ # to be able to avoid many of these transpose/reshape/view.
398
+ query_states = query_states.transpose(1, 2)
399
+ key_states = key_states.transpose(1, 2)
400
+ value_states = value_states.transpose(1, 2)
401
+
402
+ dropout_rate = self.attention_dropout if self.training else 0.0
403
+
404
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
405
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
406
+ # cast them back in the correct dtype just to be sure everything works as expected.
407
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
408
+ # in fp32. (BitnetRMSNorm handles it correctly)
409
+
410
+ input_dtype = query_states.dtype
411
+ if input_dtype == torch.float32:
412
+ if torch.is_autocast_enabled():
413
+ target_dtype = torch.get_autocast_gpu_dtype()
414
+ # Handle the case where the model is quantized
415
+ elif hasattr(self.config, "_pre_quantization_dtype"):
416
+ target_dtype = self.config._pre_quantization_dtype
417
+ else:
418
+ target_dtype = self.q_proj.weight.dtype
419
+
420
+ logger.warning_once(
421
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
422
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
423
+ f" {target_dtype}."
424
+ )
425
+
426
+ query_states = query_states.to(target_dtype)
427
+ key_states = key_states.to(target_dtype)
428
+ value_states = value_states.to(target_dtype)
429
+
430
+ attn_output = self._flash_attention_forward(
431
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
432
+ )
433
+
434
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
435
+ attn_output = self.inner_attn_ln(attn_output)
436
+ attn_output = self.o_proj(attn_output)
437
+
438
+ if not output_attentions:
439
+ attn_weights = None
440
+
441
+ return attn_output, attn_weights, past_key_value
442
+
443
+ def _flash_attention_forward(
444
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
445
+ ):
446
+ """
447
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
448
+ first unpad the input, then computes the attention scores and pad the final attention scores.
449
+
450
+ Args:
451
+ query_states (`torch.Tensor`):
452
+ Input query states to be passed to Flash Attention API
453
+ key_states (`torch.Tensor`):
454
+ Input key states to be passed to Flash Attention API
455
+ value_states (`torch.Tensor`):
456
+ Input value states to be passed to Flash Attention API
457
+ attention_mask (`torch.Tensor`):
458
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
459
+ position of padding tokens and 1 for the position of non-padding tokens.
460
+ dropout (`float`):
461
+ Attention dropout
462
+ softmax_scale (`float`, *optional*):
463
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
464
+ """
465
+ if not self._flash_attn_uses_top_left_mask:
466
+ causal = self.is_causal
467
+ else:
468
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BitnetFlashAttention2 __init__.
469
+ causal = self.is_causal and query_length != 1
470
+
471
+ # Contains at least one padding token in the sequence
472
+ if attention_mask is not None:
473
+ batch_size = query_states.shape[0]
474
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
475
+ query_states, key_states, value_states, attention_mask, query_length
476
+ )
477
+
478
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
479
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
480
+
481
+ attn_output_unpad = flash_attn_varlen_func(
482
+ query_states,
483
+ key_states,
484
+ value_states,
485
+ cu_seqlens_q=cu_seqlens_q,
486
+ cu_seqlens_k=cu_seqlens_k,
487
+ max_seqlen_q=max_seqlen_in_batch_q,
488
+ max_seqlen_k=max_seqlen_in_batch_k,
489
+ dropout_p=dropout,
490
+ softmax_scale=softmax_scale,
491
+ causal=causal,
492
+ )
493
+
494
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
495
+ else:
496
+ attn_output = flash_attn_func(
497
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
498
+ )
499
+
500
+ return attn_output
501
+
502
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
503
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
504
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
505
+
506
+ key_layer = index_first_axis(
507
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
508
+ )
509
+ value_layer = index_first_axis(
510
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
511
+ )
512
+ if query_length == kv_seq_len:
513
+ query_layer = index_first_axis(
514
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
515
+ )
516
+ cu_seqlens_q = cu_seqlens_k
517
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
518
+ indices_q = indices_k
519
+ elif query_length == 1:
520
+ max_seqlen_in_batch_q = 1
521
+ cu_seqlens_q = torch.arange(
522
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
523
+ ) # There is a memcpy here, that is very bad.
524
+ indices_q = cu_seqlens_q[:-1]
525
+ query_layer = query_layer.squeeze(1)
526
+ else:
527
+ # The -q_len: slice assumes left padding.
528
+ attention_mask = attention_mask[:, -query_length:]
529
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
530
+
531
+ return (
532
+ query_layer,
533
+ key_layer,
534
+ value_layer,
535
+ indices_q,
536
+ (cu_seqlens_q, cu_seqlens_k),
537
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
538
+ )
539
+
540
+
541
+
542
+ LLAMA_ATTENTION_CLASSES = {
543
+ "eager": BitnetAttention,
544
+ "flash_attention_2": BitnetFlashAttention2,
545
+ }
546
+
547
+
548
+ class BitnetDecoderLayer(nn.Module):
549
+ def __init__(self, config: BitNetConfig, layer_idx: int):
550
+ super().__init__()
551
+ self.hidden_size = config.hidden_size
552
+
553
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
554
+
555
+ self.mlp = BitnetMLP(config)
556
+ self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
557
+ self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
558
+
559
+ def forward(
560
+ self,
561
+ hidden_states: torch.Tensor,
562
+ attention_mask: Optional[torch.Tensor] = None,
563
+ position_ids: Optional[torch.LongTensor] = None,
564
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
565
+ output_attentions: Optional[bool] = False,
566
+ use_cache: Optional[bool] = False,
567
+ cache_position: Optional[torch.LongTensor] = None,
568
+ **kwargs,
569
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
570
+ """
571
+ Args:
572
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
573
+ attention_mask (`torch.FloatTensor`, *optional*):
574
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
575
+ query_sequence_length, key_sequence_length)` if default attention is used.
576
+ output_attentions (`bool`, *optional*):
577
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
578
+ returned tensors for more detail.
579
+ use_cache (`bool`, *optional*):
580
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
581
+ (see `past_key_values`).
582
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
583
+ """
584
+ if "padding_mask" in kwargs:
585
+ warnings.warn(
586
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
587
+ )
588
+
589
+ residual = hidden_states
590
+
591
+ hidden_states = self.input_layernorm(hidden_states)
592
+
593
+ # Self Attention
594
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
595
+ hidden_states=hidden_states,
596
+ attention_mask=attention_mask,
597
+ position_ids=position_ids,
598
+ past_key_value=past_key_value,
599
+ output_attentions=output_attentions,
600
+ use_cache=use_cache,
601
+ cache_position=cache_position,
602
+ **kwargs,
603
+ )
604
+ hidden_states = residual + hidden_states
605
+
606
+ # Fully Connected
607
+ residual = hidden_states
608
+ hidden_states = self.post_attention_layernorm(hidden_states)
609
+ hidden_states = self.mlp(hidden_states)
610
+ hidden_states = residual + hidden_states
611
+
612
+ outputs = (hidden_states,)
613
+
614
+ if output_attentions:
615
+ outputs += (self_attn_weights,)
616
+
617
+ if use_cache:
618
+ outputs += (present_key_value,)
619
+
620
+ return outputs
621
+
622
+
623
+ LLAMA_START_DOCSTRING = r"""
624
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
625
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
626
+ etc.)
627
+
628
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
629
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
630
+ and behavior.
631
+
632
+ Parameters:
633
+ config ([`BitNetConfig`]):
634
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
635
+ load the weights associated with the model, only the configuration. Check out the
636
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
637
+ """
638
+
639
+
640
+ @add_start_docstrings(
641
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
642
+ LLAMA_START_DOCSTRING,
643
+ )
644
+ class BitnetPreTrainedModel(PreTrainedModel):
645
+ config_class = BitNetConfig
646
+ base_model_prefix = "model"
647
+ supports_gradient_checkpointing = True
648
+ _no_split_modules = ["BitnetDecoderLayer"]
649
+ _skip_keys_device_placement = ["past_key_values"]
650
+ _supports_flash_attn_2 = True
651
+ _supports_sdpa = False
652
+ _supports_cache_class = True
653
+
654
+ def _init_weights(self, module):
655
+ std = self.config.initializer_range
656
+ if isinstance(module, nn.Linear):
657
+ module.weight.data.normal_(mean=0.0, std=std)
658
+ if module.bias is not None:
659
+ module.bias.data.zero_()
660
+ elif isinstance(module, nn.Embedding):
661
+ module.weight.data.normal_(mean=0.0, std=std)
662
+ if module.padding_idx is not None:
663
+ module.weight.data[module.padding_idx].zero_()
664
+
665
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
666
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
667
+ raise ValueError(
668
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
669
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
670
+ )
671
+
672
+ for layer in self.model.layers:
673
+ device = layer.input_layernorm.weight.device
674
+ if hasattr(self.config, "_pre_quantization_dtype"):
675
+ dtype = self.config._pre_quantization_dtype
676
+ else:
677
+ dtype = layer.self_attn.o_proj.weight.dtype
678
+ layer.self_attn.past_key_value = cache_cls(
679
+ self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
680
+ )
681
+
682
+ def _reset_cache(self):
683
+ for layer in self.model.layers:
684
+ layer.self_attn.past_key_value = None
685
+
686
+
687
+ LLAMA_INPUTS_DOCSTRING = r"""
688
+ Args:
689
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
690
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
691
+ it.
692
+
693
+ Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
694
+ [`PreTrainedTokenizer.__call__`] for details.
695
+
696
+ [What are input IDs?](../glossary#input-ids)
697
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
698
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
699
+
700
+ - 1 for tokens that are **not masked**,
701
+ - 0 for tokens that are **masked**.
702
+
703
+ [What are attention masks?](../glossary#attention-mask)
704
+
705
+ Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
706
+ [`PreTrainedTokenizer.__call__`] for details.
707
+
708
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
709
+ `past_key_values`).
710
+
711
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
712
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
713
+ information on the default strategy.
714
+
715
+ - 1 indicates the head is **not masked**,
716
+ - 0 indicates the head is **masked**.
717
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
718
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
719
+ config.n_positions - 1]`.
720
+
721
+ [What are position IDs?](../glossary#position-ids)
722
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
723
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
724
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
725
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
726
+
727
+ Two formats are allowed:
728
+ - a [`~cache_utils.Cache`] instance;
729
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
730
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
731
+ cache format.
732
+
733
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
734
+ legacy cache format will be returned.
735
+
736
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
737
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
738
+ of shape `(batch_size, sequence_length)`.
739
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
740
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
741
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
742
+ model's internal embedding lookup matrix.
743
+ use_cache (`bool`, *optional*):
744
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
745
+ `past_key_values`).
746
+ output_attentions (`bool`, *optional*):
747
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
748
+ tensors for more detail.
749
+ output_hidden_states (`bool`, *optional*):
750
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
751
+ more detail.
752
+ return_dict (`bool`, *optional*):
753
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
754
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
755
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
756
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
757
+ the complete sequence length.
758
+ """
759
+
760
+
761
+ @add_start_docstrings(
762
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
763
+ LLAMA_START_DOCSTRING,
764
+ )
765
+ class BitnetModel(BitnetPreTrainedModel):
766
+ """
767
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`]
768
+
769
+ Args:
770
+ config: BitNetConfig
771
+ """
772
+
773
+ def __init__(self, config: BitNetConfig):
774
+ super().__init__(config)
775
+ self.padding_idx = config.pad_token_id
776
+ self.vocab_size = config.vocab_size
777
+
778
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
779
+ self.layers = nn.ModuleList(
780
+ [BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
781
+ )
782
+ self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
783
+ self.gradient_checkpointing = False
784
+
785
+ # Initialize weights and apply final processing
786
+ self.post_init()
787
+
788
+ def get_input_embeddings(self):
789
+ return self.embed_tokens
790
+
791
+ def set_input_embeddings(self, value):
792
+ self.embed_tokens = value
793
+
794
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
795
+ def forward(
796
+ self,
797
+ input_ids: torch.LongTensor = None,
798
+ attention_mask: Optional[torch.Tensor] = None,
799
+ position_ids: Optional[torch.LongTensor] = None,
800
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
801
+ inputs_embeds: Optional[torch.FloatTensor] = None,
802
+ use_cache: Optional[bool] = None,
803
+ output_attentions: Optional[bool] = None,
804
+ output_hidden_states: Optional[bool] = None,
805
+ return_dict: Optional[bool] = None,
806
+ cache_position: Optional[torch.LongTensor] = None,
807
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
808
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
809
+ output_hidden_states = (
810
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
811
+ )
812
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
813
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
814
+
815
+ if (input_ids is None) ^ (inputs_embeds is not None):
816
+ raise ValueError(
817
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
818
+ )
819
+
820
+ if self.gradient_checkpointing and self.training and use_cache:
821
+ logger.warning_once(
822
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
823
+ )
824
+ use_cache = False
825
+
826
+ if inputs_embeds is None:
827
+ inputs_embeds = self.embed_tokens(input_ids)
828
+
829
+ past_seen_tokens = 0
830
+ if use_cache: # kept for BC (cache positions)
831
+ if not isinstance(past_key_values, StaticCache):
832
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
833
+ past_seen_tokens = past_key_values.get_seq_length()
834
+
835
+ if cache_position is None:
836
+ if isinstance(past_key_values, StaticCache):
837
+ raise ValueError("cache_position is a required argument when using StaticCache.")
838
+ cache_position = torch.arange(
839
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
840
+ )
841
+
842
+ if position_ids is None:
843
+ position_ids = cache_position.unsqueeze(0)
844
+
845
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
846
+
847
+ # embed positions
848
+ hidden_states = inputs_embeds
849
+
850
+ # decoder layers
851
+ all_hidden_states = () if output_hidden_states else None
852
+ all_self_attns = () if output_attentions else None
853
+ next_decoder_cache = None
854
+
855
+ for decoder_layer in self.layers:
856
+ if output_hidden_states:
857
+ all_hidden_states += (hidden_states,)
858
+
859
+ if self.gradient_checkpointing and self.training:
860
+ layer_outputs = self._gradient_checkpointing_func(
861
+ decoder_layer.__call__,
862
+ hidden_states,
863
+ causal_mask,
864
+ position_ids,
865
+ past_key_values,
866
+ output_attentions,
867
+ use_cache,
868
+ cache_position,
869
+ )
870
+ else:
871
+ layer_outputs = decoder_layer(
872
+ hidden_states,
873
+ attention_mask=causal_mask,
874
+ position_ids=position_ids,
875
+ past_key_value=past_key_values,
876
+ output_attentions=output_attentions,
877
+ use_cache=use_cache,
878
+ cache_position=cache_position,
879
+ )
880
+
881
+ hidden_states = layer_outputs[0]
882
+
883
+ if use_cache:
884
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
885
+
886
+ if output_attentions:
887
+ all_self_attns += (layer_outputs[1],)
888
+
889
+ hidden_states = self.norm(hidden_states)
890
+
891
+ # add hidden states from the last decoder layer
892
+ if output_hidden_states:
893
+ all_hidden_states += (hidden_states,)
894
+
895
+ next_cache = None
896
+ if use_cache:
897
+ next_cache = (
898
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
899
+ )
900
+ if not return_dict:
901
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
902
+ return BaseModelOutputWithPast(
903
+ last_hidden_state=hidden_states,
904
+ past_key_values=next_cache,
905
+ hidden_states=all_hidden_states,
906
+ attentions=all_self_attns,
907
+ )
908
+
909
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
910
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
911
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
912
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
913
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
914
+ if self.config._attn_implementation == "flash_attention_2":
915
+ if attention_mask is not None and 0.0 in attention_mask:
916
+ return attention_mask
917
+ return None
918
+
919
+ dtype, device = input_tensor.dtype, input_tensor.device
920
+ min_dtype = torch.finfo(dtype).min
921
+ sequence_length = input_tensor.shape[1]
922
+ if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache
923
+ target_length = self.config.max_position_embeddings
924
+ else: # dynamic cache
925
+ target_length = (
926
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
927
+ )
928
+
929
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
930
+ if sequence_length != 1:
931
+ causal_mask = torch.triu(causal_mask, diagonal=1)
932
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
933
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
934
+ if attention_mask is not None:
935
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
936
+ if attention_mask.dim() == 2:
937
+ mask_length = attention_mask.shape[-1]
938
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
939
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
940
+ elif attention_mask.dim() == 4:
941
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
942
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
943
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
944
+ offset = cache_position[0]
945
+ else:
946
+ offset = 0
947
+ mask_shape = attention_mask.shape
948
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
949
+ causal_mask[
950
+ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
951
+ ] = mask_slice
952
+
953
+ return causal_mask
954
+
955
+
956
+ class BitnetForCausalLM(BitnetPreTrainedModel):
957
+ _tied_weights_keys = ["lm_head.weight"]
958
+
959
+ def __init__(self, config):
960
+ super().__init__(config)
961
+ self.model = BitnetModel(config)
962
+ self.vocab_size = config.vocab_size
963
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
964
+
965
+ # Initialize weights and apply final processing
966
+ self.post_init()
967
+
968
+ def get_input_embeddings(self):
969
+ return self.model.embed_tokens
970
+
971
+ def set_input_embeddings(self, value):
972
+ self.model.embed_tokens = value
973
+
974
+ def get_output_embeddings(self):
975
+ return self.lm_head
976
+
977
+ def set_output_embeddings(self, new_embeddings):
978
+ self.lm_head = new_embeddings
979
+
980
+ def set_decoder(self, decoder):
981
+ self.model = decoder
982
+
983
+ def get_decoder(self):
984
+ return self.model
985
+
986
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
987
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
988
+ def forward(
989
+ self,
990
+ input_ids: torch.LongTensor = None,
991
+ attention_mask: Optional[torch.Tensor] = None,
992
+ position_ids: Optional[torch.LongTensor] = None,
993
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
994
+ inputs_embeds: Optional[torch.FloatTensor] = None,
995
+ labels: Optional[torch.LongTensor] = None,
996
+ use_cache: Optional[bool] = None,
997
+ output_attentions: Optional[bool] = None,
998
+ output_hidden_states: Optional[bool] = None,
999
+ return_dict: Optional[bool] = None,
1000
+ cache_position: Optional[torch.LongTensor] = None,
1001
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1002
+ r"""
1003
+ Args:
1004
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1005
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1006
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1007
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1008
+
1009
+ Returns:
1010
+
1011
+ Example:
1012
+
1013
+ ```python
1014
+ >>> from transformers import LlamaTokenizer, LlamaForCausalLM
1015
+
1016
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf")
1017
+ >>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf")
1018
+
1019
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1020
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1021
+
1022
+ >>> # Generate
1023
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1024
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1025
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1026
+ ```"""
1027
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1028
+ output_hidden_states = (
1029
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1030
+ )
1031
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1032
+
1033
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1034
+ outputs = self.model(
1035
+ input_ids=input_ids,
1036
+ attention_mask=attention_mask,
1037
+ position_ids=position_ids,
1038
+ past_key_values=past_key_values,
1039
+ inputs_embeds=inputs_embeds,
1040
+ use_cache=use_cache,
1041
+ output_attentions=output_attentions,
1042
+ output_hidden_states=output_hidden_states,
1043
+ return_dict=return_dict,
1044
+ cache_position=cache_position,
1045
+ )
1046
+
1047
+ hidden_states = outputs[0]
1048
+ logits = self.lm_head(hidden_states)
1049
+ logits = logits.float()
1050
+
1051
+ loss = None
1052
+ if labels is not None:
1053
+ # Shift so that tokens < n predict n
1054
+ shift_logits = logits[..., :-1, :].contiguous()
1055
+ shift_labels = labels[..., 1:].contiguous()
1056
+ # Flatten the tokens
1057
+ loss_fct = CrossEntropyLoss()
1058
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1059
+ shift_labels = shift_labels.view(-1)
1060
+ # Enable model parallelism
1061
+ shift_labels = shift_labels.to(shift_logits.device)
1062
+ loss = loss_fct(shift_logits, shift_labels)
1063
+
1064
+ if not return_dict:
1065
+ output = (logits,) + outputs[1:]
1066
+ return (loss,) + output if loss is not None else output
1067
+
1068
+ return CausalLMOutputWithPast(
1069
+ loss=loss,
1070
+ logits=logits,
1071
+ past_key_values=outputs.past_key_values,
1072
+ hidden_states=outputs.hidden_states,
1073
+ attentions=outputs.attentions,
1074
+ )
1075
+
1076
+ def prepare_inputs_for_generation(
1077
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
1078
+ ):
1079
+ # With static cache, the `past_key_values` is None
1080
+ # TODO joao: standardize interface for the different Cache classes and remove of this if
1081
+ has_static_cache = False
1082
+ if past_key_values is None:
1083
+ past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
1084
+ has_static_cache = past_key_values is not None
1085
+
1086
+ past_length = 0
1087
+ if past_key_values is not None:
1088
+ if isinstance(past_key_values, Cache):
1089
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1090
+ max_cache_length = (
1091
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1092
+ if past_key_values.get_max_length() is not None
1093
+ else None
1094
+ )
1095
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1096
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1097
+ else:
1098
+ cache_length = past_length = past_key_values[0][0].shape[2]
1099
+ max_cache_length = None
1100
+
1101
+ # Keep only the unprocessed tokens:
1102
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1103
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1104
+ # input)
1105
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1106
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1107
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1108
+ # input_ids based on the past_length.
1109
+ elif past_length < input_ids.shape[1]:
1110
+ input_ids = input_ids[:, past_length:]
1111
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1112
+
1113
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1114
+ if (
1115
+ max_cache_length is not None
1116
+ and attention_mask is not None
1117
+ and cache_length + input_ids.shape[1] > max_cache_length
1118
+ ):
1119
+ attention_mask = attention_mask[:, -max_cache_length:]
1120
+
1121
+ position_ids = kwargs.get("position_ids", None)
1122
+ if attention_mask is not None and position_ids is None:
1123
+ # create position_ids on the fly for batch generation
1124
+ position_ids = attention_mask.long().cumsum(-1) - 1
1125
+ position_ids.masked_fill_(attention_mask == 0, 1)
1126
+ if past_key_values:
1127
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1128
+
1129
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1130
+ if inputs_embeds is not None and past_key_values is None:
1131
+ model_inputs = {"inputs_embeds": inputs_embeds}
1132
+ else:
1133
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1134
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1135
+ # TODO: use `next_tokens` directly instead.
1136
+ model_inputs = {"input_ids": input_ids.contiguous()}
1137
+
1138
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1139
+ if cache_position is None:
1140
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1141
+ else:
1142
+ cache_position = cache_position[-input_length:]
1143
+
1144
+ if has_static_cache:
1145
+ past_key_values = None
1146
+
1147
+ model_inputs.update(
1148
+ {
1149
+ "position_ids": position_ids,
1150
+ "cache_position": cache_position,
1151
+ "past_key_values": past_key_values,
1152
+ "use_cache": kwargs.get("use_cache"),
1153
+ "attention_mask": attention_mask,
1154
+ }
1155
+ )
1156
+ return model_inputs
1157
+
1158
+ @staticmethod
1159
+ def _reorder_cache(past_key_values, beam_idx):
1160
+ reordered_past = ()
1161
+ for layer_past in past_key_values:
1162
+ reordered_past += (
1163
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1164
+ )
1165
+ return reordered_past
1166
+
1167
+
1168
+ @add_start_docstrings(
1169
+ """
1170
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1171
+
1172
+ [`BitnetForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1173
+ (e.g. GPT-2) do.
1174
+
1175
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1176
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1177
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1178
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1179
+ each row of the batch).
1180
+ """,
1181
+ LLAMA_START_DOCSTRING,
1182
+ )
1183
+ class BitnetForSequenceClassification(BitnetPreTrainedModel):
1184
+ def __init__(self, config):
1185
+ super().__init__(config)
1186
+ self.num_labels = config.num_labels
1187
+ self.model = BitnetModel(config)
1188
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1189
+
1190
+ # Initialize weights and apply final processing
1191
+ self.post_init()
1192
+
1193
+ def get_input_embeddings(self):
1194
+ return self.model.embed_tokens
1195
+
1196
+ def set_input_embeddings(self, value):
1197
+ self.model.embed_tokens = value
1198
+
1199
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1200
+ def forward(
1201
+ self,
1202
+ input_ids: torch.LongTensor = None,
1203
+ attention_mask: Optional[torch.Tensor] = None,
1204
+ position_ids: Optional[torch.LongTensor] = None,
1205
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1206
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1207
+ labels: Optional[torch.LongTensor] = None,
1208
+ use_cache: Optional[bool] = None,
1209
+ output_attentions: Optional[bool] = None,
1210
+ output_hidden_states: Optional[bool] = None,
1211
+ return_dict: Optional[bool] = None,
1212
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1213
+ r"""
1214
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1215
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1216
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1217
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1218
+ """
1219
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1220
+
1221
+ transformer_outputs = self.model(
1222
+ input_ids,
1223
+ attention_mask=attention_mask,
1224
+ position_ids=position_ids,
1225
+ past_key_values=past_key_values,
1226
+ inputs_embeds=inputs_embeds,
1227
+ use_cache=use_cache,
1228
+ output_attentions=output_attentions,
1229
+ output_hidden_states=output_hidden_states,
1230
+ return_dict=return_dict,
1231
+ )
1232
+ hidden_states = transformer_outputs[0]
1233
+ logits = self.score(hidden_states)
1234
+
1235
+ if input_ids is not None:
1236
+ batch_size = input_ids.shape[0]
1237
+ else:
1238
+ batch_size = inputs_embeds.shape[0]
1239
+
1240
+ if self.config.pad_token_id is None and batch_size != 1:
1241
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1242
+ if self.config.pad_token_id is None:
1243
+ sequence_lengths = -1
1244
+ else:
1245
+ if input_ids is not None:
1246
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1247
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1248
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1249
+ sequence_lengths = sequence_lengths.to(logits.device)
1250
+ else:
1251
+ sequence_lengths = -1
1252
+
1253
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1254
+
1255
+ loss = None
1256
+ if labels is not None:
1257
+ labels = labels.to(logits.device)
1258
+ if self.config.problem_type is None:
1259
+ if self.num_labels == 1:
1260
+ self.config.problem_type = "regression"
1261
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1262
+ self.config.problem_type = "single_label_classification"
1263
+ else:
1264
+ self.config.problem_type = "multi_label_classification"
1265
+
1266
+ if self.config.problem_type == "regression":
1267
+ loss_fct = MSELoss()
1268
+ if self.num_labels == 1:
1269
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1270
+ else:
1271
+ loss = loss_fct(pooled_logits, labels)
1272
+ elif self.config.problem_type == "single_label_classification":
1273
+ loss_fct = CrossEntropyLoss()
1274
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1275
+ elif self.config.problem_type == "multi_label_classification":
1276
+ loss_fct = BCEWithLogitsLoss()
1277
+ loss = loss_fct(pooled_logits, labels)
1278
+ if not return_dict:
1279
+ output = (pooled_logits,) + transformer_outputs[1:]
1280
+ return ((loss,) + output) if loss is not None else output
1281
+
1282
+ return SequenceClassifierOutputWithPast(
1283
+ loss=loss,
1284
+ logits=pooled_logits,
1285
+ past_key_values=transformer_outputs.past_key_values,
1286
+ hidden_states=transformer_outputs.hidden_states,
1287
+ attentions=transformer_outputs.attentions,
1288
+ )
1289
+
1290
+
1291
+ @add_start_docstrings(
1292
+ """
1293
+ The Bitnet Model transformer with a span classification head on top for extractive question-answering tasks like
1294
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1295
+ """,
1296
+ LLAMA_START_DOCSTRING,
1297
+ )
1298
+ class BitnetForQuestionAnswering(BitnetPreTrainedModel):
1299
+ base_model_prefix = "transformer"
1300
+
1301
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Bitnet
1302
+ def __init__(self, config):
1303
+ super().__init__(config)
1304
+ self.transformer = BitnetModel(config)
1305
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1306
+
1307
+ # Initialize weights and apply final processing
1308
+ self.post_init()
1309
+
1310
+ def get_input_embeddings(self):
1311
+ return self.transformer.embed_tokens
1312
+
1313
+ def set_input_embeddings(self, value):
1314
+ self.transformer.embed_tokens = value
1315
+
1316
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1317
+ def forward(
1318
+ self,
1319
+ input_ids: Optional[torch.LongTensor] = None,
1320
+ attention_mask: Optional[torch.FloatTensor] = None,
1321
+ position_ids: Optional[torch.LongTensor] = None,
1322
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1323
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1324
+ start_positions: Optional[torch.LongTensor] = None,
1325
+ end_positions: Optional[torch.LongTensor] = None,
1326
+ output_attentions: Optional[bool] = None,
1327
+ output_hidden_states: Optional[bool] = None,
1328
+ return_dict: Optional[bool] = None,
1329
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1330
+ r"""
1331
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1332
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1333
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1334
+ are not taken into account for computing the loss.
1335
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1336
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1337
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1338
+ are not taken into account for computing the loss.
1339
+ """
1340
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1341
+
1342
+ outputs = self.transformer(
1343
+ input_ids,
1344
+ attention_mask=attention_mask,
1345
+ position_ids=position_ids,
1346
+ past_key_values=past_key_values,
1347
+ inputs_embeds=inputs_embeds,
1348
+ output_attentions=output_attentions,
1349
+ output_hidden_states=output_hidden_states,
1350
+ return_dict=return_dict,
1351
+ )
1352
+
1353
+ sequence_output = outputs[0]
1354
+
1355
+ logits = self.qa_outputs(sequence_output)
1356
+ start_logits, end_logits = logits.split(1, dim=-1)
1357
+ start_logits = start_logits.squeeze(-1).contiguous()
1358
+ end_logits = end_logits.squeeze(-1).contiguous()
1359
+
1360
+ total_loss = None
1361
+ if start_positions is not None and end_positions is not None:
1362
+ # If we are on multi-GPU, split add a dimension
1363
+ if len(start_positions.size()) > 1:
1364
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1365
+ if len(end_positions.size()) > 1:
1366
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1367
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1368
+ ignored_index = start_logits.size(1)
1369
+ start_positions = start_positions.clamp(0, ignored_index)
1370
+ end_positions = end_positions.clamp(0, ignored_index)
1371
+
1372
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1373
+ start_loss = loss_fct(start_logits, start_positions)
1374
+ end_loss = loss_fct(end_logits, end_positions)
1375
+ total_loss = (start_loss + end_loss) / 2
1376
+
1377
+ if not return_dict:
1378
+ output = (start_logits, end_logits) + outputs[2:]
1379
+ return ((total_loss,) + output) if total_loss is not None else output
1380
+
1381
+ return QuestionAnsweringModelOutput(
1382
+ loss=total_loss,
1383
+ start_logits=start_logits,
1384
+ end_logits=end_logits,
1385
+ hidden_states=outputs.hidden_states,
1386
+ attentions=outputs.attentions,
1387
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|begin_of_text|>",
3
+ "eos_token": "<|end_of_text|>"
4
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = message['role'] | capitalize + ': '+ message['content'] | trim + '<|eot_id|>' %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant: ' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }
utils_quant.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+
5
+
6
+ def weight_quant(weight, num_bits=1):
7
+ dtype = weight.dtype
8
+ weight = weight.float()
9
+ s = 1 / weight.abs().mean().clamp(min=1e-5)
10
+ result = (weight * s).round().clamp(-1, 1) / s
11
+ return result.type(dtype)
12
+
13
+
14
+ def activation_quant(x, num_bits=8):
15
+ dtype = x.dtype
16
+ x = x.float()
17
+ Qn = -2 ** (num_bits - 1)
18
+ Qp = 2 ** (num_bits - 1) - 1
19
+ s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
20
+ result = (x * s).round().clamp(Qn, Qp) / s
21
+ return result.type(dtype)
22
+
23
+
24
+ class BitLinear(nn.Linear):
25
+
26
+ def __init__(self,
27
+ *kargs,
28
+ weight_bits=1,
29
+ input_bits=8,
30
+ **kwargs
31
+ ):
32
+ super(BitLinear, self).__init__(*kargs, **kwargs)
33
+ """
34
+ RMSNorm is placed outside BitLinear
35
+ """
36
+ self.weight_bits = weight_bits
37
+ self.input_bits = input_bits
38
+
39
+ def forward(self, input):
40
+
41
+ quant_input = input + (activation_quant(input, self.input_bits) - input).detach()
42
+ quant_weight = self.weight + (weight_quant(self.weight, self.weight_bits) - self.weight).detach()
43
+
44
+ out = nn.functional.linear(quant_input, quant_weight)
45
+ if not self.bias is None:
46
+ out += self.bias.view(1, -1).expand_as(out)
47
+
48
+ return out