arijitbhowmick
commited on
Commit
·
4712f6c
1
Parent(s):
2c12673
Updated model bitnet-b1.58-2B-4T-bf16 with 1bitLLM-bitnet_b1_58-3B config files
Browse files- LICENSE +21 -0
- README.md +143 -0
- config.json +31 -0
- configuration_bitnet.py +195 -0
- generation_config.json +12 -0
- model.safetensors +3 -0
- modeling_bitnet.py +1387 -0
- special_tokens_map.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2062 -0
- utils_quant.py +48 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Microsoft Corporation.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE
|
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/microsoft/bitnet-b1.58-2B-4T/blob/main/LICENSE
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
tags:
|
8 |
+
- chat
|
9 |
+
- bitnet
|
10 |
+
- text-generation
|
11 |
+
- large-language-model
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# BitNet b1.58 2B4T - Scaling Native 1-bit LLM
|
16 |
+
|
17 |
+
This repository contains the weights for **BitNet b1.58 2B4T**, the first open-source, native 1-bit Large Language Model (LLM) at the 2-billion parameter scale, developed by Microsoft Research.
|
18 |
+
|
19 |
+
Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
|
20 |
+
|
21 |
+
➡️ **Technical Report:** [BitNet b1.58 2B4T Technical Report](https://arxiv.org/abs/2504.12285)
|
22 |
+
|
23 |
+
➡️ **Official Inference Code:** [microsoft/BitNet (bitnet.cpp)](https://github.com/microsoft/BitNet)
|
24 |
+
|
25 |
+
## Model Variants
|
26 |
+
|
27 |
+
Several versions of the model weights are available on Hugging Face:
|
28 |
+
|
29 |
+
* [**`microsoft/bitnet-b1.58-2B-4T`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T): Contains the packed 1.58-bit weights optimized for efficient inference. **Use this for deployment.**
|
30 |
+
|
31 |
+
* [**`microsoft/bitnet-b1.58-2B-4T-bf16`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-bf16) (This repository): Contains the master weights in BF16 format. **Use this only for training or fine-tuning purposes.**
|
32 |
+
|
33 |
+
* [**`microsoft/bitnet-b1.58-2B-4T-gguf`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-gguf): Contains the model weights in GGUF format, compatible with the `bitnet.cpp` library for CPU inference.
|
34 |
+
|
35 |
+
## Model Details
|
36 |
+
|
37 |
+
* **Architecture:** Transformer-based, modified with `BitLinear` layers (BitNet framework).
|
38 |
+
* Uses Rotary Position Embeddings (RoPE).
|
39 |
+
* Uses squared ReLU (ReLU²) activation in FFN layers.
|
40 |
+
* Employs [`subln`](https://proceedings.mlr.press/v202/wang23u.html) normalization.
|
41 |
+
* No bias terms in linear or normalization layers.
|
42 |
+
* **Quantization:** Native 1.58-bit weights and 8-bit activations (W1.58A8).
|
43 |
+
* Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
|
44 |
+
* Activations are quantized to 8-bit integers using absmax quantization (per-token).
|
45 |
+
* **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
|
46 |
+
* **Parameters:** ~2 Billion
|
47 |
+
* **Training Tokens:** 4 Trillion
|
48 |
+
* **Context Length:** Maximum sequence length of **4096 tokens**.
|
49 |
+
* *Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
|
50 |
+
* **Training Stages:**
|
51 |
+
1. **Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
|
52 |
+
2. **Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
|
53 |
+
3. **Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
|
54 |
+
* **Tokenizer:** LLaMA 3 Tokenizer (vocab size: 128,256).
|
55 |
+
|
56 |
+
## How to Use (with `transformers`)
|
57 |
+
|
58 |
+
**VERY IMPORTANT NOTE ON EFFICIENCY**
|
59 |
+
|
60 |
+
> Please do NOT expect performance efficiency gains (in terms of speed, latency, or energy consumption) when using this model with the standard transformers library, even with the required fork.
|
61 |
+
>
|
62 |
+
> The current execution paths within transformers do not contain the specialized, highly optimized computational kernels required to leverage the advantages of the BitNet architecture. Running the model via transformers will likely result in inference speeds and energy usage comparable to, or potentially worse than, standard full-precision models within this framework on both CPU and GPU.
|
63 |
+
>
|
64 |
+
> While you might observe reduced memory usage due to the quantized weights, the primary computational efficiency benefits are not accessible through this standard transformers usage path.
|
65 |
+
>
|
66 |
+
> For achieving the efficiency benefits demonstrated in the technical paper, you MUST use the dedicated C++ implementation: [bitnet.cpp](https://github.com/microsoft/BitNet).
|
67 |
+
|
68 |
+
### Requirements
|
69 |
+
|
70 |
+
```bash
|
71 |
+
pip install git+https://github.com/huggingface/transformers.git@096f25ae1f501a084d8ff2dcaf25fbc2bd60eba4
|
72 |
+
```
|
73 |
+
|
74 |
+
### Example
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
+
|
80 |
+
model_id = "microsoft/bitnet-b1.58-2B-4T"
|
81 |
+
|
82 |
+
# Load tokenizer and model
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_id,
|
86 |
+
torch_dtype=torch.bfloat16
|
87 |
+
)
|
88 |
+
|
89 |
+
# Apply the chat template
|
90 |
+
messages = [
|
91 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
92 |
+
{"role": "user", "content": "How are you?"},
|
93 |
+
]
|
94 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
95 |
+
chat_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
96 |
+
|
97 |
+
# Generate response
|
98 |
+
chat_outputs = model.generate(**chat_input, max_new_tokens=50)
|
99 |
+
response = tokenizer.decode(chat_outputs[0][chat_input['input_ids'].shape[-1]:], skip_special_tokens=True) # Decode only the response part
|
100 |
+
print("\nAssistant Response:", response)
|
101 |
+
```
|
102 |
+
|
103 |
+
## How to Use (with `bitnet.cpp`)
|
104 |
+
|
105 |
+
Please refer to the [bitnet.cpp](https://github.com/microsoft/BitNet) GitHub repository for detailed compilation steps, usage examples, and command-line options.
|
106 |
+
|
107 |
+
## Evaluation
|
108 |
+
|
109 |
+
BitNet b1.58 2B4T was evaluated against leading open-weight full-precision LLMs of similar size. Below are the key results (all models are instruction-tuned versions):
|
110 |
+
|
111 |
+
| Benchmark | LLaMA 3.2 1B | Gemma-3 1B | Qwen2.5 1.5B | SmolLM2 1.7B | MiniCPM 2B | **BitNet b1.58 2B** |
|
112 |
+
|--------------------------------|--------------|------------|--------------|--------------|------------|---------------------|
|
113 |
+
| **Memory (Non-emb)** | 2GB | 1.4GB | 2.6GB | 3.2GB | 4.8GB | **0.4GB** |
|
114 |
+
| **Latency (CPU Decoding)** | 48ms | 41ms | 65ms | 67ms | 124ms | **29ms** |
|
115 |
+
| **Energy (Estimated)** | 0.258J | 0.186J | 0.347J | 0.425J | 0.649J | **0.028J** |
|
116 |
+
| **Training Tokens (Pre-train)**| 9T* | 2T** | 18T | 11T | 1.1T | 4T |
|
117 |
+
| ARC-Challenge | 37.80 | 38.40 | 46.67 | 43.52 | 44.80 | **49.91** |
|
118 |
+
| ARC-Easy | 63.17 | 63.13 | **76.01** | 62.92 | 72.14 | 74.79 |
|
119 |
+
| OpenbookQA | 34.80 | 38.80 | 40.80 | **46.00** | 40.20 | 41.60 |
|
120 |
+
| BoolQ | 64.65 | 74.22 | 78.04 | 75.78 | **80.67** | 80.18 |
|
121 |
+
| HellaSwag | 60.80 | 57.69 | 68.28 | **71.71** | 70.81 | 68.44 |
|
122 |
+
| PIQA | 74.21 | 71.93 | 76.12 | 76.12 | 76.66 | **77.09** |
|
123 |
+
| WinoGrande | 59.51 | 58.48 | 62.83 | 68.98 | 61.80 | **71.90** |
|
124 |
+
| CommonsenseQA | 58.48 | 42.10 | **76.41** | 63.55 | 71.74 | 71.58 |
|
125 |
+
| TruthfulQA | 43.80 | 38.66 | **46.67** | 39.90 | 41.41 | 45.31 |
|
126 |
+
| TriviaQA | 37.60 | 23.49 | 38.37 | **45.97** | 34.13 | 33.57 |
|
127 |
+
| MMLU | 45.58 | 39.91 | **60.25** | 49.24 | 51.82 | 53.17 |
|
128 |
+
| HumanEval+ | 31.10 | 37.20 | **50.60** | 28.00 | 43.90 | 38.40 |
|
129 |
+
| GSM8K | 38.21 | 31.16 | 56.79 | 45.11 | 4.40 | **58.38** |
|
130 |
+
| MATH-500 | 23.00 | 42.00 | **53.00** | 17.60 | 14.80 | 43.40 |
|
131 |
+
| IFEval | 62.71 | **66.67** | 50.12 | 57.91 | 36.81 | 53.48 |
|
132 |
+
| MT-bench | 5.43 | 6.40 | 6.12 | 5.50 | **6.57** | 5.85 |
|
133 |
+
| **Average** | 44.90 | 43.74 | **55.23** | 48.70 | 42.05 | 54.19 |
|
134 |
+
|
135 |
+
*LLaMA 3.2 1B uses pruning & distillation.
|
136 |
+
|
137 |
+
**Gemma-3 1B uses distillation.
|
138 |
+
|
139 |
+
## License
|
140 |
+
The model weights and code are released under the [MIT License](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T/blob/main/LICENSE).
|
141 |
+
|
142 |
+
## Disclaimer
|
143 |
+
This model is intended for research and development purposes. While efforts have been made to align it using SFT and DPO, it may still produce outputs that are unexpected, biased, or inaccurate. Please use responsibly.
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BitNetForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_bitnet.BitNetConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_bitnet.BitNetForCausalLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 128000,
|
10 |
+
"eos_token_id": 128001,
|
11 |
+
"hidden_act": "relu2",
|
12 |
+
"hidden_size": 2560,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 6912,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"model_type": "bitnet",
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"num_attention_heads": 20,
|
19 |
+
"num_hidden_layers": 30,
|
20 |
+
"num_key_value_heads": 5,
|
21 |
+
"rope_theta": 500000.0,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 128256,
|
26 |
+
"quantization_config": {
|
27 |
+
"quant_method": "bitnet",
|
28 |
+
"linear_class": "autobitlinear",
|
29 |
+
"quantization_mode": "online"
|
30 |
+
}
|
31 |
+
}
|
configuration_bitnet.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class BitNetConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`BitnetModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`BitnetModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
64 |
+
The maximum sequence length that this model might ever be used with. Bitnet 1 supports up to 2048 tokens,
|
65 |
+
Bitnet 2 up to 4096, CodeBitnet up to 16384.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
81 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to tie weight embeddings
|
86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
87 |
+
The base period of the RoPE embeddings.
|
88 |
+
rope_scaling (`Dict`, *optional*):
|
89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
93 |
+
these scaling strategies behave:
|
94 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
95 |
+
experimental feature, subject to breaking API changes in future versions.
|
96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
98 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
99 |
+
The dropout ratio for the attention probabilities.
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import BitnetModel, BitNetConfig
|
103 |
+
|
104 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
105 |
+
>>> configuration = BitNetConfig()
|
106 |
+
|
107 |
+
>>> # Initializing a model from the llama-7b style configuration
|
108 |
+
>>> model = BitnetModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "llama"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32000,
|
120 |
+
hidden_size=4096,
|
121 |
+
intermediate_size=11008,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
hidden_act="silu",
|
126 |
+
max_position_embeddings=2048,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-6,
|
129 |
+
use_cache=True,
|
130 |
+
pad_token_id=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=2,
|
133 |
+
pretraining_tp=1,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
attention_bias=False,
|
138 |
+
attention_dropout=0.0,
|
139 |
+
weight_bits=1,
|
140 |
+
input_bits=8,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.max_position_embeddings = max_position_embeddings
|
145 |
+
self.hidden_size = hidden_size
|
146 |
+
self.intermediate_size = intermediate_size
|
147 |
+
self.num_hidden_layers = num_hidden_layers
|
148 |
+
self.num_attention_heads = num_attention_heads
|
149 |
+
|
150 |
+
# for backward compatibility
|
151 |
+
if num_key_value_heads is None:
|
152 |
+
num_key_value_heads = num_attention_heads
|
153 |
+
|
154 |
+
self.num_key_value_heads = num_key_value_heads
|
155 |
+
self.hidden_act = hidden_act
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.pretraining_tp = pretraining_tp
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self._rope_scaling_validation()
|
163 |
+
self.attention_bias = attention_bias
|
164 |
+
self.attention_dropout = attention_dropout
|
165 |
+
self.weight_bits = weight_bits
|
166 |
+
self.input_bits = input_bits
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
pad_token_id=pad_token_id,
|
170 |
+
bos_token_id=bos_token_id,
|
171 |
+
eos_token_id=eos_token_id,
|
172 |
+
tie_word_embeddings=tie_word_embeddings,
|
173 |
+
**kwargs,
|
174 |
+
)
|
175 |
+
|
176 |
+
def _rope_scaling_validation(self):
|
177 |
+
"""
|
178 |
+
Validate the `rope_scaling` configuration.
|
179 |
+
"""
|
180 |
+
if self.rope_scaling is None:
|
181 |
+
return
|
182 |
+
|
183 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
184 |
+
raise ValueError(
|
185 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
186 |
+
f"got {self.rope_scaling}"
|
187 |
+
)
|
188 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
189 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
190 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
191 |
+
raise ValueError(
|
192 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
193 |
+
)
|
194 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
195 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"eos_token_id": [
|
4 |
+
128001,
|
5 |
+
128009
|
6 |
+
],
|
7 |
+
"do_sample": true,
|
8 |
+
"temperature": 0.6,
|
9 |
+
"max_length": 4096,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.40.0.dev0"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:529637ff6dab1f5890767356928693f69ffe61d3b6040a43de9306b37bfd5ae1
|
3 |
+
size 4825679400
|
modeling_bitnet.py
ADDED
@@ -0,0 +1,1387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch LLaMA model."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
)
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
43 |
+
from transformers.utils import (
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_bitnet import BitNetConfig
|
52 |
+
from .utils_quant import BitLinear
|
53 |
+
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CONFIG_FOR_DOC = "BitNetConfig"
|
63 |
+
|
64 |
+
|
65 |
+
def _get_unpad_data(attention_mask):
|
66 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
67 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
68 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
69 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
70 |
+
return (
|
71 |
+
indices,
|
72 |
+
cu_seqlens,
|
73 |
+
max_seqlen_in_batch,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
class BitnetRMSNorm(nn.Module):
|
78 |
+
def __init__(self, hidden_size, eps=1e-6):
|
79 |
+
"""
|
80 |
+
BitnetRMSNorm is equivalent to T5LayerNorm
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
84 |
+
self.variance_epsilon = eps
|
85 |
+
|
86 |
+
def forward(self, hidden_states):
|
87 |
+
input_dtype = hidden_states.dtype
|
88 |
+
hidden_states = hidden_states.to(torch.float32)
|
89 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
90 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
91 |
+
return self.weight * hidden_states.to(input_dtype)
|
92 |
+
|
93 |
+
|
94 |
+
ALL_LAYERNORM_LAYERS.append(BitnetRMSNorm)
|
95 |
+
|
96 |
+
|
97 |
+
class BitnetRotaryEmbedding(nn.Module):
|
98 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
99 |
+
super().__init__()
|
100 |
+
self.scaling_factor = scaling_factor
|
101 |
+
self.dim = dim
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.base = base
|
104 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
105 |
+
self.register_buffer("inv_freq", inv_freq)
|
106 |
+
# For BC we register cos and sin cached
|
107 |
+
self.max_seq_len_cached = max_position_embeddings
|
108 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
109 |
+
t = t / self.scaling_factor
|
110 |
+
freqs = torch.outer(t, self.inv_freq)
|
111 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
112 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
113 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
114 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
115 |
+
|
116 |
+
@property
|
117 |
+
def sin_cached(self):
|
118 |
+
logger.warning_once(
|
119 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
120 |
+
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
|
121 |
+
)
|
122 |
+
return self._sin_cached
|
123 |
+
|
124 |
+
@property
|
125 |
+
def cos_cached(self):
|
126 |
+
logger.warning_once(
|
127 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
128 |
+
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
|
129 |
+
)
|
130 |
+
return self._cos_cached
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def forward(self, x, position_ids):
|
134 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
135 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
136 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
137 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
138 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
139 |
+
device_type = x.device.type
|
140 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
141 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
142 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
143 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
144 |
+
cos = emb.cos()
|
145 |
+
sin = emb.sin()
|
146 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
147 |
+
|
148 |
+
|
149 |
+
def rotate_half(x):
|
150 |
+
"""Rotates half the hidden dims of the input."""
|
151 |
+
x1 = x[..., : x.shape[-1] // 2]
|
152 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
153 |
+
return torch.cat((-x2, x1), dim=-1)
|
154 |
+
|
155 |
+
|
156 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
157 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
q (`torch.Tensor`): The query tensor.
|
161 |
+
k (`torch.Tensor`): The key tensor.
|
162 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
163 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
164 |
+
position_ids (`torch.Tensor`, *optional*):
|
165 |
+
Deprecated and unused.
|
166 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
167 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
168 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
169 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
170 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
171 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
172 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
173 |
+
Returns:
|
174 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
175 |
+
"""
|
176 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
177 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
178 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
179 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
180 |
+
return q_embed, k_embed
|
181 |
+
|
182 |
+
|
183 |
+
class BitnetMLP(nn.Module):
|
184 |
+
def __init__(self, config):
|
185 |
+
super().__init__()
|
186 |
+
self.config = config
|
187 |
+
self.hidden_size = config.hidden_size
|
188 |
+
self.intermediate_size = config.intermediate_size
|
189 |
+
self.gate_proj = BitLinear(
|
190 |
+
self.hidden_size, self.intermediate_size, bias=False,
|
191 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
192 |
+
)
|
193 |
+
self.up_proj = BitLinear(
|
194 |
+
self.hidden_size, self.intermediate_size, bias=False,
|
195 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
196 |
+
)
|
197 |
+
self.down_proj = BitLinear(
|
198 |
+
self.intermediate_size, self.hidden_size, bias=False,
|
199 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
200 |
+
)
|
201 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
202 |
+
self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
x = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
|
206 |
+
x = self.ffn_layernorm(x)
|
207 |
+
x = self.down_proj(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
212 |
+
"""
|
213 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
214 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
215 |
+
"""
|
216 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
217 |
+
if n_rep == 1:
|
218 |
+
return hidden_states
|
219 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
220 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
221 |
+
|
222 |
+
|
223 |
+
class BitnetAttention(nn.Module):
|
224 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
225 |
+
|
226 |
+
def __init__(self, config: BitNetConfig, layer_idx: Optional[int] = None):
|
227 |
+
super().__init__()
|
228 |
+
self.config = config
|
229 |
+
self.layer_idx = layer_idx
|
230 |
+
if layer_idx is None:
|
231 |
+
logger.warning_once(
|
232 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
233 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
234 |
+
"when creating this class."
|
235 |
+
)
|
236 |
+
|
237 |
+
self.attention_dropout = config.attention_dropout
|
238 |
+
self.hidden_size = config.hidden_size
|
239 |
+
self.num_heads = config.num_attention_heads
|
240 |
+
self.head_dim = self.hidden_size // self.num_heads
|
241 |
+
self.num_key_value_heads = config.num_key_value_heads
|
242 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
243 |
+
self.max_position_embeddings = config.max_position_embeddings
|
244 |
+
self.rope_theta = config.rope_theta
|
245 |
+
self.is_causal = True
|
246 |
+
|
247 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
248 |
+
raise ValueError(
|
249 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
250 |
+
f" and `num_heads`: {self.num_heads})."
|
251 |
+
)
|
252 |
+
|
253 |
+
self.q_proj = BitLinear(
|
254 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias,
|
255 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
256 |
+
)
|
257 |
+
self.k_proj = BitLinear(
|
258 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
|
259 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
260 |
+
)
|
261 |
+
self.v_proj = BitLinear(
|
262 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
|
263 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
264 |
+
)
|
265 |
+
self.o_proj = BitLinear(
|
266 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias,
|
267 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
268 |
+
)
|
269 |
+
self._init_rope()
|
270 |
+
self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
|
271 |
+
|
272 |
+
def _init_rope(self):
|
273 |
+
if self.config.rope_scaling is None:
|
274 |
+
self.rotary_emb = BitnetRotaryEmbedding(
|
275 |
+
self.head_dim,
|
276 |
+
max_position_embeddings=self.max_position_embeddings,
|
277 |
+
base=self.rope_theta,
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
raise NotImplementedError
|
281 |
+
|
282 |
+
def forward(
|
283 |
+
self,
|
284 |
+
hidden_states: torch.Tensor,
|
285 |
+
attention_mask: Optional[torch.Tensor] = None,
|
286 |
+
position_ids: Optional[torch.LongTensor] = None,
|
287 |
+
past_key_value: Optional[Cache] = None,
|
288 |
+
output_attentions: bool = False,
|
289 |
+
use_cache: bool = False,
|
290 |
+
cache_position: Optional[torch.LongTensor] = None,
|
291 |
+
**kwargs,
|
292 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
293 |
+
bsz, q_len, _ = hidden_states.size()
|
294 |
+
|
295 |
+
query_states = self.q_proj(hidden_states)
|
296 |
+
key_states = self.k_proj(hidden_states)
|
297 |
+
value_states = self.v_proj(hidden_states)
|
298 |
+
|
299 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
300 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
301 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
302 |
+
|
303 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
304 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
305 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
306 |
+
|
307 |
+
if past_key_value is not None:
|
308 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
309 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
310 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
311 |
+
|
312 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
313 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
314 |
+
|
315 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
316 |
+
|
317 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
318 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
319 |
+
attn_weights = attn_weights + causal_mask
|
320 |
+
|
321 |
+
# upcast attention to fp32
|
322 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
323 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
324 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
325 |
+
|
326 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
327 |
+
raise ValueError(
|
328 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
329 |
+
f" {attn_output.size()}"
|
330 |
+
)
|
331 |
+
|
332 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
333 |
+
|
334 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
335 |
+
|
336 |
+
attn_output = self.inner_attn_ln(attn_output)
|
337 |
+
attn_output = self.o_proj(attn_output)
|
338 |
+
|
339 |
+
if not output_attentions:
|
340 |
+
attn_weights = None
|
341 |
+
|
342 |
+
return attn_output, attn_weights, past_key_value
|
343 |
+
|
344 |
+
|
345 |
+
class BitnetFlashAttention2(BitnetAttention):
|
346 |
+
"""
|
347 |
+
Bitnet flash attention module. This module inherits from `BitnetAttention` as the weights of the module stays
|
348 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
349 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(self, *args, **kwargs):
|
353 |
+
super().__init__(*args, **kwargs)
|
354 |
+
|
355 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
356 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
357 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
358 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
359 |
+
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
hidden_states: torch.Tensor,
|
363 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
365 |
+
past_key_value: Optional[Cache] = None,
|
366 |
+
output_attentions: bool = False,
|
367 |
+
use_cache: bool = False,
|
368 |
+
cache_position: Optional[torch.LongTensor] = None,
|
369 |
+
**kwargs,
|
370 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
371 |
+
output_attentions = False
|
372 |
+
|
373 |
+
bsz, q_len, _ = hidden_states.size()
|
374 |
+
|
375 |
+
query_states = self.q_proj(hidden_states)
|
376 |
+
key_states = self.k_proj(hidden_states)
|
377 |
+
value_states = self.v_proj(hidden_states)
|
378 |
+
|
379 |
+
# Flash attention requires the input to have the shape
|
380 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
381 |
+
# therefore we just need to keep the original shape
|
382 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
383 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
384 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
385 |
+
|
386 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
387 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
388 |
+
|
389 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
390 |
+
|
391 |
+
if past_key_value is not None:
|
392 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
393 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
394 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
395 |
+
|
396 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
397 |
+
# to be able to avoid many of these transpose/reshape/view.
|
398 |
+
query_states = query_states.transpose(1, 2)
|
399 |
+
key_states = key_states.transpose(1, 2)
|
400 |
+
value_states = value_states.transpose(1, 2)
|
401 |
+
|
402 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
403 |
+
|
404 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
405 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
406 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
407 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
408 |
+
# in fp32. (BitnetRMSNorm handles it correctly)
|
409 |
+
|
410 |
+
input_dtype = query_states.dtype
|
411 |
+
if input_dtype == torch.float32:
|
412 |
+
if torch.is_autocast_enabled():
|
413 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
414 |
+
# Handle the case where the model is quantized
|
415 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
416 |
+
target_dtype = self.config._pre_quantization_dtype
|
417 |
+
else:
|
418 |
+
target_dtype = self.q_proj.weight.dtype
|
419 |
+
|
420 |
+
logger.warning_once(
|
421 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
422 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
423 |
+
f" {target_dtype}."
|
424 |
+
)
|
425 |
+
|
426 |
+
query_states = query_states.to(target_dtype)
|
427 |
+
key_states = key_states.to(target_dtype)
|
428 |
+
value_states = value_states.to(target_dtype)
|
429 |
+
|
430 |
+
attn_output = self._flash_attention_forward(
|
431 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
432 |
+
)
|
433 |
+
|
434 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
435 |
+
attn_output = self.inner_attn_ln(attn_output)
|
436 |
+
attn_output = self.o_proj(attn_output)
|
437 |
+
|
438 |
+
if not output_attentions:
|
439 |
+
attn_weights = None
|
440 |
+
|
441 |
+
return attn_output, attn_weights, past_key_value
|
442 |
+
|
443 |
+
def _flash_attention_forward(
|
444 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
445 |
+
):
|
446 |
+
"""
|
447 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
448 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
449 |
+
|
450 |
+
Args:
|
451 |
+
query_states (`torch.Tensor`):
|
452 |
+
Input query states to be passed to Flash Attention API
|
453 |
+
key_states (`torch.Tensor`):
|
454 |
+
Input key states to be passed to Flash Attention API
|
455 |
+
value_states (`torch.Tensor`):
|
456 |
+
Input value states to be passed to Flash Attention API
|
457 |
+
attention_mask (`torch.Tensor`):
|
458 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
459 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
460 |
+
dropout (`float`):
|
461 |
+
Attention dropout
|
462 |
+
softmax_scale (`float`, *optional*):
|
463 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
464 |
+
"""
|
465 |
+
if not self._flash_attn_uses_top_left_mask:
|
466 |
+
causal = self.is_causal
|
467 |
+
else:
|
468 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BitnetFlashAttention2 __init__.
|
469 |
+
causal = self.is_causal and query_length != 1
|
470 |
+
|
471 |
+
# Contains at least one padding token in the sequence
|
472 |
+
if attention_mask is not None:
|
473 |
+
batch_size = query_states.shape[0]
|
474 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
475 |
+
query_states, key_states, value_states, attention_mask, query_length
|
476 |
+
)
|
477 |
+
|
478 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
479 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
480 |
+
|
481 |
+
attn_output_unpad = flash_attn_varlen_func(
|
482 |
+
query_states,
|
483 |
+
key_states,
|
484 |
+
value_states,
|
485 |
+
cu_seqlens_q=cu_seqlens_q,
|
486 |
+
cu_seqlens_k=cu_seqlens_k,
|
487 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
488 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
489 |
+
dropout_p=dropout,
|
490 |
+
softmax_scale=softmax_scale,
|
491 |
+
causal=causal,
|
492 |
+
)
|
493 |
+
|
494 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
495 |
+
else:
|
496 |
+
attn_output = flash_attn_func(
|
497 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
498 |
+
)
|
499 |
+
|
500 |
+
return attn_output
|
501 |
+
|
502 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
503 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
504 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
505 |
+
|
506 |
+
key_layer = index_first_axis(
|
507 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
508 |
+
)
|
509 |
+
value_layer = index_first_axis(
|
510 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
511 |
+
)
|
512 |
+
if query_length == kv_seq_len:
|
513 |
+
query_layer = index_first_axis(
|
514 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
515 |
+
)
|
516 |
+
cu_seqlens_q = cu_seqlens_k
|
517 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
518 |
+
indices_q = indices_k
|
519 |
+
elif query_length == 1:
|
520 |
+
max_seqlen_in_batch_q = 1
|
521 |
+
cu_seqlens_q = torch.arange(
|
522 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
523 |
+
) # There is a memcpy here, that is very bad.
|
524 |
+
indices_q = cu_seqlens_q[:-1]
|
525 |
+
query_layer = query_layer.squeeze(1)
|
526 |
+
else:
|
527 |
+
# The -q_len: slice assumes left padding.
|
528 |
+
attention_mask = attention_mask[:, -query_length:]
|
529 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
530 |
+
|
531 |
+
return (
|
532 |
+
query_layer,
|
533 |
+
key_layer,
|
534 |
+
value_layer,
|
535 |
+
indices_q,
|
536 |
+
(cu_seqlens_q, cu_seqlens_k),
|
537 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
538 |
+
)
|
539 |
+
|
540 |
+
|
541 |
+
|
542 |
+
LLAMA_ATTENTION_CLASSES = {
|
543 |
+
"eager": BitnetAttention,
|
544 |
+
"flash_attention_2": BitnetFlashAttention2,
|
545 |
+
}
|
546 |
+
|
547 |
+
|
548 |
+
class BitnetDecoderLayer(nn.Module):
|
549 |
+
def __init__(self, config: BitNetConfig, layer_idx: int):
|
550 |
+
super().__init__()
|
551 |
+
self.hidden_size = config.hidden_size
|
552 |
+
|
553 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
554 |
+
|
555 |
+
self.mlp = BitnetMLP(config)
|
556 |
+
self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
557 |
+
self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
558 |
+
|
559 |
+
def forward(
|
560 |
+
self,
|
561 |
+
hidden_states: torch.Tensor,
|
562 |
+
attention_mask: Optional[torch.Tensor] = None,
|
563 |
+
position_ids: Optional[torch.LongTensor] = None,
|
564 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
565 |
+
output_attentions: Optional[bool] = False,
|
566 |
+
use_cache: Optional[bool] = False,
|
567 |
+
cache_position: Optional[torch.LongTensor] = None,
|
568 |
+
**kwargs,
|
569 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
570 |
+
"""
|
571 |
+
Args:
|
572 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
573 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
574 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
575 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
576 |
+
output_attentions (`bool`, *optional*):
|
577 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
578 |
+
returned tensors for more detail.
|
579 |
+
use_cache (`bool`, *optional*):
|
580 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
581 |
+
(see `past_key_values`).
|
582 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
583 |
+
"""
|
584 |
+
if "padding_mask" in kwargs:
|
585 |
+
warnings.warn(
|
586 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
587 |
+
)
|
588 |
+
|
589 |
+
residual = hidden_states
|
590 |
+
|
591 |
+
hidden_states = self.input_layernorm(hidden_states)
|
592 |
+
|
593 |
+
# Self Attention
|
594 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
595 |
+
hidden_states=hidden_states,
|
596 |
+
attention_mask=attention_mask,
|
597 |
+
position_ids=position_ids,
|
598 |
+
past_key_value=past_key_value,
|
599 |
+
output_attentions=output_attentions,
|
600 |
+
use_cache=use_cache,
|
601 |
+
cache_position=cache_position,
|
602 |
+
**kwargs,
|
603 |
+
)
|
604 |
+
hidden_states = residual + hidden_states
|
605 |
+
|
606 |
+
# Fully Connected
|
607 |
+
residual = hidden_states
|
608 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
609 |
+
hidden_states = self.mlp(hidden_states)
|
610 |
+
hidden_states = residual + hidden_states
|
611 |
+
|
612 |
+
outputs = (hidden_states,)
|
613 |
+
|
614 |
+
if output_attentions:
|
615 |
+
outputs += (self_attn_weights,)
|
616 |
+
|
617 |
+
if use_cache:
|
618 |
+
outputs += (present_key_value,)
|
619 |
+
|
620 |
+
return outputs
|
621 |
+
|
622 |
+
|
623 |
+
LLAMA_START_DOCSTRING = r"""
|
624 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
625 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
626 |
+
etc.)
|
627 |
+
|
628 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
629 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
630 |
+
and behavior.
|
631 |
+
|
632 |
+
Parameters:
|
633 |
+
config ([`BitNetConfig`]):
|
634 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
635 |
+
load the weights associated with the model, only the configuration. Check out the
|
636 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
637 |
+
"""
|
638 |
+
|
639 |
+
|
640 |
+
@add_start_docstrings(
|
641 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
642 |
+
LLAMA_START_DOCSTRING,
|
643 |
+
)
|
644 |
+
class BitnetPreTrainedModel(PreTrainedModel):
|
645 |
+
config_class = BitNetConfig
|
646 |
+
base_model_prefix = "model"
|
647 |
+
supports_gradient_checkpointing = True
|
648 |
+
_no_split_modules = ["BitnetDecoderLayer"]
|
649 |
+
_skip_keys_device_placement = ["past_key_values"]
|
650 |
+
_supports_flash_attn_2 = True
|
651 |
+
_supports_sdpa = False
|
652 |
+
_supports_cache_class = True
|
653 |
+
|
654 |
+
def _init_weights(self, module):
|
655 |
+
std = self.config.initializer_range
|
656 |
+
if isinstance(module, nn.Linear):
|
657 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
658 |
+
if module.bias is not None:
|
659 |
+
module.bias.data.zero_()
|
660 |
+
elif isinstance(module, nn.Embedding):
|
661 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
662 |
+
if module.padding_idx is not None:
|
663 |
+
module.weight.data[module.padding_idx].zero_()
|
664 |
+
|
665 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
666 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
667 |
+
raise ValueError(
|
668 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
669 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
670 |
+
)
|
671 |
+
|
672 |
+
for layer in self.model.layers:
|
673 |
+
device = layer.input_layernorm.weight.device
|
674 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
675 |
+
dtype = self.config._pre_quantization_dtype
|
676 |
+
else:
|
677 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
678 |
+
layer.self_attn.past_key_value = cache_cls(
|
679 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
680 |
+
)
|
681 |
+
|
682 |
+
def _reset_cache(self):
|
683 |
+
for layer in self.model.layers:
|
684 |
+
layer.self_attn.past_key_value = None
|
685 |
+
|
686 |
+
|
687 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
688 |
+
Args:
|
689 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
690 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
691 |
+
it.
|
692 |
+
|
693 |
+
Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
694 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
695 |
+
|
696 |
+
[What are input IDs?](../glossary#input-ids)
|
697 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
698 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
699 |
+
|
700 |
+
- 1 for tokens that are **not masked**,
|
701 |
+
- 0 for tokens that are **masked**.
|
702 |
+
|
703 |
+
[What are attention masks?](../glossary#attention-mask)
|
704 |
+
|
705 |
+
Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
706 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
707 |
+
|
708 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
709 |
+
`past_key_values`).
|
710 |
+
|
711 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
712 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
713 |
+
information on the default strategy.
|
714 |
+
|
715 |
+
- 1 indicates the head is **not masked**,
|
716 |
+
- 0 indicates the head is **masked**.
|
717 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
718 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
719 |
+
config.n_positions - 1]`.
|
720 |
+
|
721 |
+
[What are position IDs?](../glossary#position-ids)
|
722 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
723 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
724 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
725 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
726 |
+
|
727 |
+
Two formats are allowed:
|
728 |
+
- a [`~cache_utils.Cache`] instance;
|
729 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
730 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
731 |
+
cache format.
|
732 |
+
|
733 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
734 |
+
legacy cache format will be returned.
|
735 |
+
|
736 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
737 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
738 |
+
of shape `(batch_size, sequence_length)`.
|
739 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
740 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
741 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
742 |
+
model's internal embedding lookup matrix.
|
743 |
+
use_cache (`bool`, *optional*):
|
744 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
745 |
+
`past_key_values`).
|
746 |
+
output_attentions (`bool`, *optional*):
|
747 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
748 |
+
tensors for more detail.
|
749 |
+
output_hidden_states (`bool`, *optional*):
|
750 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
751 |
+
more detail.
|
752 |
+
return_dict (`bool`, *optional*):
|
753 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
754 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
755 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
756 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
757 |
+
the complete sequence length.
|
758 |
+
"""
|
759 |
+
|
760 |
+
|
761 |
+
@add_start_docstrings(
|
762 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
763 |
+
LLAMA_START_DOCSTRING,
|
764 |
+
)
|
765 |
+
class BitnetModel(BitnetPreTrainedModel):
|
766 |
+
"""
|
767 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`]
|
768 |
+
|
769 |
+
Args:
|
770 |
+
config: BitNetConfig
|
771 |
+
"""
|
772 |
+
|
773 |
+
def __init__(self, config: BitNetConfig):
|
774 |
+
super().__init__(config)
|
775 |
+
self.padding_idx = config.pad_token_id
|
776 |
+
self.vocab_size = config.vocab_size
|
777 |
+
|
778 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
779 |
+
self.layers = nn.ModuleList(
|
780 |
+
[BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
781 |
+
)
|
782 |
+
self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
783 |
+
self.gradient_checkpointing = False
|
784 |
+
|
785 |
+
# Initialize weights and apply final processing
|
786 |
+
self.post_init()
|
787 |
+
|
788 |
+
def get_input_embeddings(self):
|
789 |
+
return self.embed_tokens
|
790 |
+
|
791 |
+
def set_input_embeddings(self, value):
|
792 |
+
self.embed_tokens = value
|
793 |
+
|
794 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
795 |
+
def forward(
|
796 |
+
self,
|
797 |
+
input_ids: torch.LongTensor = None,
|
798 |
+
attention_mask: Optional[torch.Tensor] = None,
|
799 |
+
position_ids: Optional[torch.LongTensor] = None,
|
800 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
801 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
802 |
+
use_cache: Optional[bool] = None,
|
803 |
+
output_attentions: Optional[bool] = None,
|
804 |
+
output_hidden_states: Optional[bool] = None,
|
805 |
+
return_dict: Optional[bool] = None,
|
806 |
+
cache_position: Optional[torch.LongTensor] = None,
|
807 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
809 |
+
output_hidden_states = (
|
810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
811 |
+
)
|
812 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
814 |
+
|
815 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
816 |
+
raise ValueError(
|
817 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
818 |
+
)
|
819 |
+
|
820 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
821 |
+
logger.warning_once(
|
822 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
823 |
+
)
|
824 |
+
use_cache = False
|
825 |
+
|
826 |
+
if inputs_embeds is None:
|
827 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
828 |
+
|
829 |
+
past_seen_tokens = 0
|
830 |
+
if use_cache: # kept for BC (cache positions)
|
831 |
+
if not isinstance(past_key_values, StaticCache):
|
832 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
833 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
834 |
+
|
835 |
+
if cache_position is None:
|
836 |
+
if isinstance(past_key_values, StaticCache):
|
837 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
838 |
+
cache_position = torch.arange(
|
839 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
840 |
+
)
|
841 |
+
|
842 |
+
if position_ids is None:
|
843 |
+
position_ids = cache_position.unsqueeze(0)
|
844 |
+
|
845 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
846 |
+
|
847 |
+
# embed positions
|
848 |
+
hidden_states = inputs_embeds
|
849 |
+
|
850 |
+
# decoder layers
|
851 |
+
all_hidden_states = () if output_hidden_states else None
|
852 |
+
all_self_attns = () if output_attentions else None
|
853 |
+
next_decoder_cache = None
|
854 |
+
|
855 |
+
for decoder_layer in self.layers:
|
856 |
+
if output_hidden_states:
|
857 |
+
all_hidden_states += (hidden_states,)
|
858 |
+
|
859 |
+
if self.gradient_checkpointing and self.training:
|
860 |
+
layer_outputs = self._gradient_checkpointing_func(
|
861 |
+
decoder_layer.__call__,
|
862 |
+
hidden_states,
|
863 |
+
causal_mask,
|
864 |
+
position_ids,
|
865 |
+
past_key_values,
|
866 |
+
output_attentions,
|
867 |
+
use_cache,
|
868 |
+
cache_position,
|
869 |
+
)
|
870 |
+
else:
|
871 |
+
layer_outputs = decoder_layer(
|
872 |
+
hidden_states,
|
873 |
+
attention_mask=causal_mask,
|
874 |
+
position_ids=position_ids,
|
875 |
+
past_key_value=past_key_values,
|
876 |
+
output_attentions=output_attentions,
|
877 |
+
use_cache=use_cache,
|
878 |
+
cache_position=cache_position,
|
879 |
+
)
|
880 |
+
|
881 |
+
hidden_states = layer_outputs[0]
|
882 |
+
|
883 |
+
if use_cache:
|
884 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
885 |
+
|
886 |
+
if output_attentions:
|
887 |
+
all_self_attns += (layer_outputs[1],)
|
888 |
+
|
889 |
+
hidden_states = self.norm(hidden_states)
|
890 |
+
|
891 |
+
# add hidden states from the last decoder layer
|
892 |
+
if output_hidden_states:
|
893 |
+
all_hidden_states += (hidden_states,)
|
894 |
+
|
895 |
+
next_cache = None
|
896 |
+
if use_cache:
|
897 |
+
next_cache = (
|
898 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
899 |
+
)
|
900 |
+
if not return_dict:
|
901 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
902 |
+
return BaseModelOutputWithPast(
|
903 |
+
last_hidden_state=hidden_states,
|
904 |
+
past_key_values=next_cache,
|
905 |
+
hidden_states=all_hidden_states,
|
906 |
+
attentions=all_self_attns,
|
907 |
+
)
|
908 |
+
|
909 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
910 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
911 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
912 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
913 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
914 |
+
if self.config._attn_implementation == "flash_attention_2":
|
915 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
916 |
+
return attention_mask
|
917 |
+
return None
|
918 |
+
|
919 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
920 |
+
min_dtype = torch.finfo(dtype).min
|
921 |
+
sequence_length = input_tensor.shape[1]
|
922 |
+
if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache
|
923 |
+
target_length = self.config.max_position_embeddings
|
924 |
+
else: # dynamic cache
|
925 |
+
target_length = (
|
926 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
927 |
+
)
|
928 |
+
|
929 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
930 |
+
if sequence_length != 1:
|
931 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
932 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
933 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
934 |
+
if attention_mask is not None:
|
935 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
936 |
+
if attention_mask.dim() == 2:
|
937 |
+
mask_length = attention_mask.shape[-1]
|
938 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
939 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
940 |
+
elif attention_mask.dim() == 4:
|
941 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
942 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
943 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
944 |
+
offset = cache_position[0]
|
945 |
+
else:
|
946 |
+
offset = 0
|
947 |
+
mask_shape = attention_mask.shape
|
948 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
949 |
+
causal_mask[
|
950 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
951 |
+
] = mask_slice
|
952 |
+
|
953 |
+
return causal_mask
|
954 |
+
|
955 |
+
|
956 |
+
class BitnetForCausalLM(BitnetPreTrainedModel):
|
957 |
+
_tied_weights_keys = ["lm_head.weight"]
|
958 |
+
|
959 |
+
def __init__(self, config):
|
960 |
+
super().__init__(config)
|
961 |
+
self.model = BitnetModel(config)
|
962 |
+
self.vocab_size = config.vocab_size
|
963 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
964 |
+
|
965 |
+
# Initialize weights and apply final processing
|
966 |
+
self.post_init()
|
967 |
+
|
968 |
+
def get_input_embeddings(self):
|
969 |
+
return self.model.embed_tokens
|
970 |
+
|
971 |
+
def set_input_embeddings(self, value):
|
972 |
+
self.model.embed_tokens = value
|
973 |
+
|
974 |
+
def get_output_embeddings(self):
|
975 |
+
return self.lm_head
|
976 |
+
|
977 |
+
def set_output_embeddings(self, new_embeddings):
|
978 |
+
self.lm_head = new_embeddings
|
979 |
+
|
980 |
+
def set_decoder(self, decoder):
|
981 |
+
self.model = decoder
|
982 |
+
|
983 |
+
def get_decoder(self):
|
984 |
+
return self.model
|
985 |
+
|
986 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
987 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
988 |
+
def forward(
|
989 |
+
self,
|
990 |
+
input_ids: torch.LongTensor = None,
|
991 |
+
attention_mask: Optional[torch.Tensor] = None,
|
992 |
+
position_ids: Optional[torch.LongTensor] = None,
|
993 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
994 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
995 |
+
labels: Optional[torch.LongTensor] = None,
|
996 |
+
use_cache: Optional[bool] = None,
|
997 |
+
output_attentions: Optional[bool] = None,
|
998 |
+
output_hidden_states: Optional[bool] = None,
|
999 |
+
return_dict: Optional[bool] = None,
|
1000 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1001 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1002 |
+
r"""
|
1003 |
+
Args:
|
1004 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1005 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1006 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1007 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1008 |
+
|
1009 |
+
Returns:
|
1010 |
+
|
1011 |
+
Example:
|
1012 |
+
|
1013 |
+
```python
|
1014 |
+
>>> from transformers import LlamaTokenizer, LlamaForCausalLM
|
1015 |
+
|
1016 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf")
|
1017 |
+
>>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf")
|
1018 |
+
|
1019 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1020 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1021 |
+
|
1022 |
+
>>> # Generate
|
1023 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1024 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1025 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1026 |
+
```"""
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1034 |
+
outputs = self.model(
|
1035 |
+
input_ids=input_ids,
|
1036 |
+
attention_mask=attention_mask,
|
1037 |
+
position_ids=position_ids,
|
1038 |
+
past_key_values=past_key_values,
|
1039 |
+
inputs_embeds=inputs_embeds,
|
1040 |
+
use_cache=use_cache,
|
1041 |
+
output_attentions=output_attentions,
|
1042 |
+
output_hidden_states=output_hidden_states,
|
1043 |
+
return_dict=return_dict,
|
1044 |
+
cache_position=cache_position,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
hidden_states = outputs[0]
|
1048 |
+
logits = self.lm_head(hidden_states)
|
1049 |
+
logits = logits.float()
|
1050 |
+
|
1051 |
+
loss = None
|
1052 |
+
if labels is not None:
|
1053 |
+
# Shift so that tokens < n predict n
|
1054 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1055 |
+
shift_labels = labels[..., 1:].contiguous()
|
1056 |
+
# Flatten the tokens
|
1057 |
+
loss_fct = CrossEntropyLoss()
|
1058 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1059 |
+
shift_labels = shift_labels.view(-1)
|
1060 |
+
# Enable model parallelism
|
1061 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1062 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1063 |
+
|
1064 |
+
if not return_dict:
|
1065 |
+
output = (logits,) + outputs[1:]
|
1066 |
+
return (loss,) + output if loss is not None else output
|
1067 |
+
|
1068 |
+
return CausalLMOutputWithPast(
|
1069 |
+
loss=loss,
|
1070 |
+
logits=logits,
|
1071 |
+
past_key_values=outputs.past_key_values,
|
1072 |
+
hidden_states=outputs.hidden_states,
|
1073 |
+
attentions=outputs.attentions,
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
def prepare_inputs_for_generation(
|
1077 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1078 |
+
):
|
1079 |
+
# With static cache, the `past_key_values` is None
|
1080 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1081 |
+
has_static_cache = False
|
1082 |
+
if past_key_values is None:
|
1083 |
+
past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
|
1084 |
+
has_static_cache = past_key_values is not None
|
1085 |
+
|
1086 |
+
past_length = 0
|
1087 |
+
if past_key_values is not None:
|
1088 |
+
if isinstance(past_key_values, Cache):
|
1089 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1090 |
+
max_cache_length = (
|
1091 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1092 |
+
if past_key_values.get_max_length() is not None
|
1093 |
+
else None
|
1094 |
+
)
|
1095 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1096 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1097 |
+
else:
|
1098 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1099 |
+
max_cache_length = None
|
1100 |
+
|
1101 |
+
# Keep only the unprocessed tokens:
|
1102 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1103 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1104 |
+
# input)
|
1105 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1106 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1107 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1108 |
+
# input_ids based on the past_length.
|
1109 |
+
elif past_length < input_ids.shape[1]:
|
1110 |
+
input_ids = input_ids[:, past_length:]
|
1111 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1112 |
+
|
1113 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1114 |
+
if (
|
1115 |
+
max_cache_length is not None
|
1116 |
+
and attention_mask is not None
|
1117 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1118 |
+
):
|
1119 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1120 |
+
|
1121 |
+
position_ids = kwargs.get("position_ids", None)
|
1122 |
+
if attention_mask is not None and position_ids is None:
|
1123 |
+
# create position_ids on the fly for batch generation
|
1124 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1125 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1126 |
+
if past_key_values:
|
1127 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1128 |
+
|
1129 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1130 |
+
if inputs_embeds is not None and past_key_values is None:
|
1131 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1132 |
+
else:
|
1133 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1134 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1135 |
+
# TODO: use `next_tokens` directly instead.
|
1136 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1137 |
+
|
1138 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1139 |
+
if cache_position is None:
|
1140 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1141 |
+
else:
|
1142 |
+
cache_position = cache_position[-input_length:]
|
1143 |
+
|
1144 |
+
if has_static_cache:
|
1145 |
+
past_key_values = None
|
1146 |
+
|
1147 |
+
model_inputs.update(
|
1148 |
+
{
|
1149 |
+
"position_ids": position_ids,
|
1150 |
+
"cache_position": cache_position,
|
1151 |
+
"past_key_values": past_key_values,
|
1152 |
+
"use_cache": kwargs.get("use_cache"),
|
1153 |
+
"attention_mask": attention_mask,
|
1154 |
+
}
|
1155 |
+
)
|
1156 |
+
return model_inputs
|
1157 |
+
|
1158 |
+
@staticmethod
|
1159 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1160 |
+
reordered_past = ()
|
1161 |
+
for layer_past in past_key_values:
|
1162 |
+
reordered_past += (
|
1163 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1164 |
+
)
|
1165 |
+
return reordered_past
|
1166 |
+
|
1167 |
+
|
1168 |
+
@add_start_docstrings(
|
1169 |
+
"""
|
1170 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1171 |
+
|
1172 |
+
[`BitnetForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1173 |
+
(e.g. GPT-2) do.
|
1174 |
+
|
1175 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1176 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1177 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1178 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1179 |
+
each row of the batch).
|
1180 |
+
""",
|
1181 |
+
LLAMA_START_DOCSTRING,
|
1182 |
+
)
|
1183 |
+
class BitnetForSequenceClassification(BitnetPreTrainedModel):
|
1184 |
+
def __init__(self, config):
|
1185 |
+
super().__init__(config)
|
1186 |
+
self.num_labels = config.num_labels
|
1187 |
+
self.model = BitnetModel(config)
|
1188 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1189 |
+
|
1190 |
+
# Initialize weights and apply final processing
|
1191 |
+
self.post_init()
|
1192 |
+
|
1193 |
+
def get_input_embeddings(self):
|
1194 |
+
return self.model.embed_tokens
|
1195 |
+
|
1196 |
+
def set_input_embeddings(self, value):
|
1197 |
+
self.model.embed_tokens = value
|
1198 |
+
|
1199 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1200 |
+
def forward(
|
1201 |
+
self,
|
1202 |
+
input_ids: torch.LongTensor = None,
|
1203 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1204 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1205 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1206 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1207 |
+
labels: Optional[torch.LongTensor] = None,
|
1208 |
+
use_cache: Optional[bool] = None,
|
1209 |
+
output_attentions: Optional[bool] = None,
|
1210 |
+
output_hidden_states: Optional[bool] = None,
|
1211 |
+
return_dict: Optional[bool] = None,
|
1212 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1213 |
+
r"""
|
1214 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1215 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1216 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1217 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1218 |
+
"""
|
1219 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1220 |
+
|
1221 |
+
transformer_outputs = self.model(
|
1222 |
+
input_ids,
|
1223 |
+
attention_mask=attention_mask,
|
1224 |
+
position_ids=position_ids,
|
1225 |
+
past_key_values=past_key_values,
|
1226 |
+
inputs_embeds=inputs_embeds,
|
1227 |
+
use_cache=use_cache,
|
1228 |
+
output_attentions=output_attentions,
|
1229 |
+
output_hidden_states=output_hidden_states,
|
1230 |
+
return_dict=return_dict,
|
1231 |
+
)
|
1232 |
+
hidden_states = transformer_outputs[0]
|
1233 |
+
logits = self.score(hidden_states)
|
1234 |
+
|
1235 |
+
if input_ids is not None:
|
1236 |
+
batch_size = input_ids.shape[0]
|
1237 |
+
else:
|
1238 |
+
batch_size = inputs_embeds.shape[0]
|
1239 |
+
|
1240 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1241 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1242 |
+
if self.config.pad_token_id is None:
|
1243 |
+
sequence_lengths = -1
|
1244 |
+
else:
|
1245 |
+
if input_ids is not None:
|
1246 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1247 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1248 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1249 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1250 |
+
else:
|
1251 |
+
sequence_lengths = -1
|
1252 |
+
|
1253 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1254 |
+
|
1255 |
+
loss = None
|
1256 |
+
if labels is not None:
|
1257 |
+
labels = labels.to(logits.device)
|
1258 |
+
if self.config.problem_type is None:
|
1259 |
+
if self.num_labels == 1:
|
1260 |
+
self.config.problem_type = "regression"
|
1261 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1262 |
+
self.config.problem_type = "single_label_classification"
|
1263 |
+
else:
|
1264 |
+
self.config.problem_type = "multi_label_classification"
|
1265 |
+
|
1266 |
+
if self.config.problem_type == "regression":
|
1267 |
+
loss_fct = MSELoss()
|
1268 |
+
if self.num_labels == 1:
|
1269 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1270 |
+
else:
|
1271 |
+
loss = loss_fct(pooled_logits, labels)
|
1272 |
+
elif self.config.problem_type == "single_label_classification":
|
1273 |
+
loss_fct = CrossEntropyLoss()
|
1274 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1275 |
+
elif self.config.problem_type == "multi_label_classification":
|
1276 |
+
loss_fct = BCEWithLogitsLoss()
|
1277 |
+
loss = loss_fct(pooled_logits, labels)
|
1278 |
+
if not return_dict:
|
1279 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1280 |
+
return ((loss,) + output) if loss is not None else output
|
1281 |
+
|
1282 |
+
return SequenceClassifierOutputWithPast(
|
1283 |
+
loss=loss,
|
1284 |
+
logits=pooled_logits,
|
1285 |
+
past_key_values=transformer_outputs.past_key_values,
|
1286 |
+
hidden_states=transformer_outputs.hidden_states,
|
1287 |
+
attentions=transformer_outputs.attentions,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
|
1291 |
+
@add_start_docstrings(
|
1292 |
+
"""
|
1293 |
+
The Bitnet Model transformer with a span classification head on top for extractive question-answering tasks like
|
1294 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1295 |
+
""",
|
1296 |
+
LLAMA_START_DOCSTRING,
|
1297 |
+
)
|
1298 |
+
class BitnetForQuestionAnswering(BitnetPreTrainedModel):
|
1299 |
+
base_model_prefix = "transformer"
|
1300 |
+
|
1301 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Bitnet
|
1302 |
+
def __init__(self, config):
|
1303 |
+
super().__init__(config)
|
1304 |
+
self.transformer = BitnetModel(config)
|
1305 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1306 |
+
|
1307 |
+
# Initialize weights and apply final processing
|
1308 |
+
self.post_init()
|
1309 |
+
|
1310 |
+
def get_input_embeddings(self):
|
1311 |
+
return self.transformer.embed_tokens
|
1312 |
+
|
1313 |
+
def set_input_embeddings(self, value):
|
1314 |
+
self.transformer.embed_tokens = value
|
1315 |
+
|
1316 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1317 |
+
def forward(
|
1318 |
+
self,
|
1319 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1320 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1321 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1322 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1323 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1324 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1325 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1326 |
+
output_attentions: Optional[bool] = None,
|
1327 |
+
output_hidden_states: Optional[bool] = None,
|
1328 |
+
return_dict: Optional[bool] = None,
|
1329 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1330 |
+
r"""
|
1331 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1332 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1333 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1334 |
+
are not taken into account for computing the loss.
|
1335 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1336 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1337 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1338 |
+
are not taken into account for computing the loss.
|
1339 |
+
"""
|
1340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1341 |
+
|
1342 |
+
outputs = self.transformer(
|
1343 |
+
input_ids,
|
1344 |
+
attention_mask=attention_mask,
|
1345 |
+
position_ids=position_ids,
|
1346 |
+
past_key_values=past_key_values,
|
1347 |
+
inputs_embeds=inputs_embeds,
|
1348 |
+
output_attentions=output_attentions,
|
1349 |
+
output_hidden_states=output_hidden_states,
|
1350 |
+
return_dict=return_dict,
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
sequence_output = outputs[0]
|
1354 |
+
|
1355 |
+
logits = self.qa_outputs(sequence_output)
|
1356 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1357 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1358 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1359 |
+
|
1360 |
+
total_loss = None
|
1361 |
+
if start_positions is not None and end_positions is not None:
|
1362 |
+
# If we are on multi-GPU, split add a dimension
|
1363 |
+
if len(start_positions.size()) > 1:
|
1364 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1365 |
+
if len(end_positions.size()) > 1:
|
1366 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1367 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1368 |
+
ignored_index = start_logits.size(1)
|
1369 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1370 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1371 |
+
|
1372 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1373 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1374 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1375 |
+
total_loss = (start_loss + end_loss) / 2
|
1376 |
+
|
1377 |
+
if not return_dict:
|
1378 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1379 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1380 |
+
|
1381 |
+
return QuestionAnsweringModelOutput(
|
1382 |
+
loss=total_loss,
|
1383 |
+
start_logits=start_logits,
|
1384 |
+
end_logits=end_logits,
|
1385 |
+
hidden_states=outputs.hidden_states,
|
1386 |
+
attentions=outputs.attentions,
|
1387 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|begin_of_text|>",
|
3 |
+
"eos_token": "<|end_of_text|>"
|
4 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|reserved_special_token_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|reserved_special_token_4|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|reserved_special_token_5|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_6|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_7|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_8|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_9|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_10|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_11|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_12|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_13|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_14|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_15|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_16|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_17|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_18|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_19|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_20|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_21|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_22|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_23|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_24|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_25|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_26|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_27|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_28|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_29|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_30|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_31|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_32|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_33|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_34|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_35|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_36|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_37|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_38|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_39|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_40|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_41|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_42|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_43|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_44|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_45|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_46|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_47|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_48|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_49|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_50|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_51|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_52|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_53|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_54|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_55|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_56|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_57|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_58|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_59|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_60|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_61|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_62|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_63|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_64|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_65|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_66|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_67|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_68|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_69|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_70|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_71|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_72|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_73|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_74|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_75|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_76|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_77|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_78|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_79|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_80|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_81|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_82|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_83|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_84|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_85|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_86|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_87|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_88|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_89|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_90|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_91|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_92|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_93|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_94|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_95|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_96|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_97|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_98|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_99|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_100|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_101|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_102|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_103|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_104|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_105|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_106|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_107|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_108|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_109|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_110|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_111|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_112|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_113|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_114|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_115|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_116|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_117|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_118|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_119|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_120|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_121|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_122|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_123|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_124|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_125|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_126|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_127|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_128|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_129|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_130|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_131|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_132|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_133|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_134|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_135|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_136|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_137|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_138|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_139|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_140|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_141|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_142|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_143|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_144|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_145|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_146|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_147|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_148|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_149|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_150|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_151|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_152|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_153|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_154|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_155|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_156|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_157|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_158|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_159|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_160|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_161|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_162|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_163|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_164|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_165|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_166|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_167|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_168|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_169|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_170|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_171|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_172|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_173|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_174|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_175|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_176|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_177|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_178|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_179|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_180|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_181|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_182|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_183|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_184|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_185|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_186|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_187|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_188|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_189|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_190|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_191|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_192|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_193|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_194|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_195|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_196|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_197|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_198|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_199|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_200|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_201|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_202|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_203|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_204|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_205|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_206|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_207|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_208|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_209|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_210|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_211|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_212|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_213|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_214|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_215|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_216|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_217|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_218|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_219|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_220|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_221|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_222|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_223|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_224|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_225|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_226|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_227|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_228|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_229|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_230|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_231|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_232|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_233|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_234|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_235|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_236|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_237|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_238|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_239|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_240|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_241|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_242|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_243|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_244|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_245|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_246|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_247|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_248|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_249|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_250|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = message['role'] | capitalize + ': '+ message['content'] | trim + '<|eot_id|>' %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant: ' }}{% endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 1000000000000000019884624838656,
|
2061 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2062 |
+
}
|
utils_quant.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
def weight_quant(weight, num_bits=1):
|
7 |
+
dtype = weight.dtype
|
8 |
+
weight = weight.float()
|
9 |
+
s = 1 / weight.abs().mean().clamp(min=1e-5)
|
10 |
+
result = (weight * s).round().clamp(-1, 1) / s
|
11 |
+
return result.type(dtype)
|
12 |
+
|
13 |
+
|
14 |
+
def activation_quant(x, num_bits=8):
|
15 |
+
dtype = x.dtype
|
16 |
+
x = x.float()
|
17 |
+
Qn = -2 ** (num_bits - 1)
|
18 |
+
Qp = 2 ** (num_bits - 1) - 1
|
19 |
+
s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
|
20 |
+
result = (x * s).round().clamp(Qn, Qp) / s
|
21 |
+
return result.type(dtype)
|
22 |
+
|
23 |
+
|
24 |
+
class BitLinear(nn.Linear):
|
25 |
+
|
26 |
+
def __init__(self,
|
27 |
+
*kargs,
|
28 |
+
weight_bits=1,
|
29 |
+
input_bits=8,
|
30 |
+
**kwargs
|
31 |
+
):
|
32 |
+
super(BitLinear, self).__init__(*kargs, **kwargs)
|
33 |
+
"""
|
34 |
+
RMSNorm is placed outside BitLinear
|
35 |
+
"""
|
36 |
+
self.weight_bits = weight_bits
|
37 |
+
self.input_bits = input_bits
|
38 |
+
|
39 |
+
def forward(self, input):
|
40 |
+
|
41 |
+
quant_input = input + (activation_quant(input, self.input_bits) - input).detach()
|
42 |
+
quant_weight = self.weight + (weight_quant(self.weight, self.weight_bits) - self.weight).detach()
|
43 |
+
|
44 |
+
out = nn.functional.linear(quant_input, quant_weight)
|
45 |
+
if not self.bias is None:
|
46 |
+
out += self.bias.view(1, -1).expand_as(out)
|
47 |
+
|
48 |
+
return out
|