--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium tags: - stuttered-speech - speech-recognition - asr - whisper - disfluency - generated_from_trainer datasets: - arielcerdap/TimeStamped metrics: - wer model-index: - name: Whisper Medium Optimized for Stuttered Speech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: TimeStamped type: arielcerdap/TimeStamped args: 'config: en, split: test' metrics: - name: Wer type: wer value: 14.050889439315469 --- # Whisper Medium Optimized for Stuttered Speech This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the TimeStamped dataset. It achieves the following results on the evaluation set: - Loss: 1.9889 - Wer: 14.0509 - Wer Ortho: 7.9350 - Cer: 7.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho | Cer | |:-------------:|:-------:|:----:|:---------------:|:-------:|:---------:|:-------:| | 1.4886 | 5.8187 | 500 | 1.6803 | 13.3866 | 6.8710 | 6.8779 | | 1.4379 | 11.6316 | 1000 | 1.7141 | 11.9117 | 7.1422 | 7.1376 | | 1.4115 | 17.4444 | 1500 | 1.7555 | 11.5740 | 6.3332 | 6.3308 | | 1.4093 | 23.2573 | 2000 | 1.7849 | 13.2177 | 7.8678 | 7.8655 | | 1.4068 | 29.0702 | 2500 | 1.8295 | 12.0243 | 6.7643 | 6.7527 | | 1.4178 | 34.8889 | 3000 | 1.8251 | 16.7530 | 10.8906 | 10.8790 | | 1.4169 | 40.7018 | 3500 | 1.8499 | 12.3959 | 6.8872 | 6.8802 | | 1.4005 | 46.5146 | 4000 | 1.8905 | 13.2740 | 7.4482 | 7.4366 | | 1.3999 | 52.3275 | 4500 | 1.9124 | 13.3191 | 7.4946 | 7.4830 | | 1.3999 | 58.1404 | 5000 | 1.9269 | 13.9045 | 7.8376 | 7.8237 | | 1.4135 | 63.9591 | 5500 | 1.9485 | 13.8257 | 7.8585 | 7.8446 | | 1.4133 | 69.7719 | 6000 | 1.9668 | 13.8820 | 7.8446 | 7.8284 | | 1.4132 | 75.5848 | 6500 | 1.9779 | 13.9833 | 7.8863 | 7.8724 | | 1.3989 | 81.3977 | 7000 | 1.9854 | 13.9946 | 7.8770 | 7.8608 | | 1.3989 | 87.2105 | 7500 | 1.9884 | 14.0396 | 7.9280 | 7.9118 | | 1.3989 | 93.0234 | 8000 | 1.9889 | 14.0509 | 7.9350 | 7.9188 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1