Text Generation
GGUF
Hungarian
English
conversational
ariel-ml commited on
Commit
b22169b
·
verified ·
1 Parent(s): 9346839

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ datasets:
4
+ - HuggingFaceH4/ultrachat_200k
5
+ - HuggingFaceH4/ultrafeedback_binarized
6
+ - HuggingFaceH4/cai-conversation-harmless
7
+ language:
8
+ - hu
9
+ - en
10
+ ---
11
+
12
+
13
+
14
+ # SambaLingo-Hungarian-Chat
15
+
16
+ <img src="SambaLingo_Logo.png" width="340" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
17
+
18
+ <!-- Provide a quick summary of what the model is/does. -->
19
+ SambaLingo-Hungarian-Chat is a human aligned chat model trained in Hungarian and English. It is trained using direct preference optimization on top the base model [SambaLingo-Hungarian-Base](https://huggingface.co/sambanovasystems/SambaLingo-Hungarian-Base). The base model adapts [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) to Hungarian by training on 59 billion tokens from the Hungarian split of the [Cultura-X](https://huggingface.co/datasets/uonlp/CulturaX) dataset. Try This Model at [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space).
20
+
21
+ ## Model Description
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+ - **Developed by:** [SambaNova Systems](https://sambanova.ai/)
25
+ - **Model type:** Language Model
26
+ - **Language(s):** Hungarian, English
27
+ - **Finetuned from model:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)
28
+ - **Try This Model:** [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space)
29
+ - **Paper:** [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829)
30
+ - **Blog Post**: [sambalingo-open-source-language-experts](https://sambanova.ai/blog/sambalingo-open-source-language-experts)
31
+
32
+ ## Getting Started
33
+
34
+ ### Loading Model With Hugging Face
35
+ Please make sure to set use_fast=False when loading the tokenizer.
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", use_fast=False)
40
+ model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", torch_dtype="auto")
41
+ ```
42
+
43
+ ### Interacting With Model Pipeline
44
+ Please make sure to set use_fast=False when loading the tokenizer.
45
+ ```python
46
+ from transformers import pipeline
47
+ pipe = pipeline("text-generation", model="sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", use_fast=False)
48
+ messages = [
49
+ {"role": "user", "content": {YOUR_QUESTION}},
50
+ ]
51
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
+ outputs = pipe(prompt)[0]
53
+ outputs = outputs["generated_text"]
54
+ ```
55
+
56
+ ### Suggested Inference Parameters
57
+ - Temperature: 0.8
58
+ - Repetition penalty: 1.0
59
+ - Top-p: 0.9
60
+
61
+ ### Prompting Guidelines
62
+ To prompt this model, please use the following chat template:
63
+ ```
64
+ <|user|>\n{question}</s>\n<|assistant|>\n
65
+ ```
66
+
67
+ ### Example Prompts and Generations
68
+ ```
69
+ <|user|>
70
+ Mi a jelentőssége a magyar szürkemarhának?</s>
71
+ <|assistant|>
72
+ A magyar szürkemarha jelentős kulturális és gazdasági jelentőséggel bír Magyarország számára. Íme néhány ok, amiért:
73
+
74
+ 1. Kulturális örökség: A magyar szürkemarha a magyar kultúra és örökség szimbóluma. A fajta évszázadok óta létezik, és a magyar puszta ikonikus szimbólumává vált.
75
+
76
+ 2. Élelmiszer: A magyar szürkemarha húsa és teje kiváló minőségű, és keresett a magyar és a nemzetközi piacokon. A hús sovány, zsírszegény, és magas a fehérje- és vastartalma.
77
+
78
+ 3. Turizmus: A magyar szürkemarha fontos turisztikai attrakció Magyarországon. A látogatók szívesen látogatják a szürkemarha farmokat, és megismerkednek a fajta történetével és tenyésztésével.
79
+
80
+ 4. Génmegőrzés: A magyar szürkemarha fontos génmegőrző faj, amely segít megőrizni a hagyományos gazdálkodási gyakorlatokat és a helyi ökoszisztémákat.
81
+
82
+ 5. Gazdasági hatás: A magyar szürkemarha fontos gazdasági tevékenység Magyarország számára. A fajta tenyésztése és feldolgozása munkahelyeket teremt, és bevételt generál a gazdálkodók és a feldolgozók számára.
83
+
84
+ Összességében a magyar szürkemarha jelentős kulturális, gazdasági és ökológiai jelentőséggel bír Magyarország számára. A fajta megőrzése és népszerűsítése fontos a magyar kultúra és örökség, valamint a helyi gazdaság és ökoszisztémák szempontjából.
85
+ ```
86
+
87
+ ## Training Details
88
+ The alignment phase follows the recipe for [Zephyr-7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta), and comprises two stages: supervised fine-tuning (SFT) and Direct Performance Optimization (DPO).
89
+
90
+ The SFT phase was done on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset mixed with the Google translated version of the ultrachat_200k dataset. It was trained for one epoch with global batch size 512 and max sequence length 2048 tokens. We used a linear decay learning rate of 2e-5 and 10% warmup.
91
+
92
+ The DPO phase was done on the [ultrafeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset and [cai-conversation-harmless](https://huggingface.co/datasets/HuggingFaceH4/cai-conversation-harmless) dataset, mixed with 10% of the data Google translated. It was trained with global batch size 32 and for three epochs. We used a linear decay learning rate of 5e-7, 10% warmup and β=0.1 as the regularization factor for DPO.
93
+
94
+
95
+ ## Tokenizer Details
96
+ We extended the vocabulary of the base llama model from 32,000 tokens to 57,000 tokens by adding up to 25,000 non-overlapping tokens from the new language.
97
+
98
+ ## Evaluation
99
+ For evaluation results see our paper: [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829)
100
+
101
+ ## Uses
102
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
103
+
104
+ ### Direct Use
105
+
106
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
107
+ Use of this model is governed by the Meta’s [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/). Please review and accept the license before downloading the model weights.
108
+
109
+
110
+ ### Out-of-Scope Use
111
+
112
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
113
+ SambaLingo should NOT be used for:
114
+
115
+ - Mission-critical applications
116
+ - Applications that involve the safety of others
117
+ - Making highly important decisions
118
+
119
+ ## Bias, Risks, and Limitations
120
+
121
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
122
+
123
+ Like all LLMs, SambaLingo has certain limitations:
124
+ - Hallucination: Model may sometimes generate responses that contain plausible-sounding but factually incorrect or irrelevant information.
125
+ - Code Switching: The model might unintentionally switch between languages or dialects within a single response, affecting the coherence and understandability of the output.
126
+ - Repetition: The Model may produce repetitive phrases or sentences, leading to less engaging and informative responses.
127
+ - Coding and Math: The model's performance in generating accurate code or solving complex mathematical problems may be limited.
128
+ - Toxicity: The model could inadvertently generate responses containing inappropriate or harmful content.
129
+
130
+ ## Acknowledgments
131
+ We extend our heartfelt gratitude to the open-source AI community; this endeavor would not have been possible without open source. SambaNova embraces the open-source community and aspires to actively contribute to this initiative.
132
+
133
+ We would like to give a special thanks to the following groups:
134
+ - Meta for open sourcing LLama 2 and open sourcing FLORES-200 dataset
135
+ - Nguyen et al for open sourcing CulturaX dataset
136
+ - CohereAI for releasing AYA-101 and open sourcing a multilingual instruction tuning dataset
137
+ - EleutherAI for their open source evaluation framework
138
+ - Hugging Face-H4 team for open source the zephyr training recipe and alignment handbook repo
139
+
140
+
141
+ ## Cite SambaLingo
142
+ ```
143
+ @misc{csaki2024sambalingo,
144
+ title={SambaLingo: Teaching Large Language Models New Languages},
145
+ author={Zoltan Csaki and Bo Li and Jonathan Li and Qiantong Xu and Pian Pawakapan and Leon Zhang and Yun Du and Hengyu Zhao and Changran Hu and Urmish Thakker},
146
+ year={2024},
147
+ eprint={2404.05829},
148
+ archivePrefix={arXiv},
149
+ primaryClass={cs.CL}
150
+ }
151
+ ```