--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: insuff_supported_arguments results: [] --- # insuff_supported_arguments This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Negative: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 13620.0} - Positive: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 6960.0} - Accuracy: 1.0 - Macro avg: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} - Weighted avg: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Negative | Positive | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:-----:|:---------------:|:----------------------------------------------------------------------:|:---------------------------------------------------------------------:|:--------:|:----------------------------------------------------------------------:|:----------------------------------------------------------------------:| | 0.0025 | 1.0 | 4628 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 13620.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 6960.0} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | | 0.0 | 2.0 | 9256 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 13620.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 6960.0} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | | 0.0 | 3.0 | 13884 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 13620.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 6960.0} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 20580.0} | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2