|
program(1.3) |
|
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.5.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})] |
|
{ |
|
func main<ios18>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, state<tensor<fp16, [4, 1280, 1, 1536]>> encoder_attn_key_cache, state<tensor<fp16, [1, 1536]>> encoder_attn_key_padding_mask, state<tensor<fp16, [4, 1280, 1, 1536]>> encoder_attn_value_cache, tensor<int32, [1]> input_ids, tensor<fp16, [1, 448]> kv_cache_update_mask, state<tensor<fp16, [4, 1280, 1, 448]>> self_attn_key_cache, state<tensor<fp16, [4, 1280, 1, 448]>> self_attn_value_cache) { |
|
int32 var_26_axis_0 = const()[name = string("op_26_axis_0"), val = int32(0)]; |
|
int32 var_26_batch_dims_0 = const()[name = string("op_26_batch_dims_0"), val = int32(0)]; |
|
bool var_26_validate_indices_0 = const()[name = string("op_26_validate_indices_0"), val = bool(false)]; |
|
tensor<fp16, [51866, 1280]> embed_tokens_weight_to_fp16 = const()[name = string("embed_tokens_weight_to_fp16"), val = tensor<fp16, [51866, 1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))]; |
|
tensor<fp16, [1, 1280]> var_26_cast_fp16 = gather(axis = var_26_axis_0, batch_dims = var_26_batch_dims_0, indices = input_ids, validate_indices = var_26_validate_indices_0, x = embed_tokens_weight_to_fp16)[name = string("op_26_cast_fp16")]; |
|
int32 var_30_axis_0 = const()[name = string("op_30_axis_0"), val = int32(0)]; |
|
int32 var_30_batch_dims_0 = const()[name = string("op_30_batch_dims_0"), val = int32(0)]; |
|
bool var_30_validate_indices_0 = const()[name = string("op_30_validate_indices_0"), val = bool(false)]; |
|
tensor<fp16, [448, 1280]> embed_positions_weight_to_fp16 = const()[name = string("embed_positions_weight_to_fp16"), val = tensor<fp16, [448, 1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(132777088)))]; |
|
string cache_length_to_uint16_dtype_0 = const()[name = string("cache_length_to_uint16_dtype_0"), val = string("uint16")]; |
|
tensor<uint16, [1]> cache_length_to_uint16 = cast(dtype = cache_length_to_uint16_dtype_0, x = cache_length)[name = string("cast_71")]; |
|
tensor<fp16, [1, 1280]> var_30_cast_fp16_cast_uint16 = gather(axis = var_30_axis_0, batch_dims = var_30_batch_dims_0, indices = cache_length_to_uint16, validate_indices = var_30_validate_indices_0, x = embed_positions_weight_to_fp16)[name = string("op_30_cast_fp16_cast_uint16")]; |
|
tensor<fp16, [1, 1280]> hidden_states_1_cast_fp16 = add(x = var_26_cast_fp16, y = var_30_cast_fp16_cast_uint16)[name = string("hidden_states_1_cast_fp16")]; |
|
tensor<int32, [1]> var_44_axes_0 = const()[name = string("op_44_axes_0"), val = tensor<int32, [1]>([2])]; |
|
tensor<fp16, [1, 1280, 1]> var_44_cast_fp16 = expand_dims(axes = var_44_axes_0, x = hidden_states_1_cast_fp16)[name = string("op_44_cast_fp16")]; |
|
tensor<int32, [1]> inputs_1_axes_0 = const()[name = string("inputs_1_axes_0"), val = tensor<int32, [1]>([3])]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_44_cast_fp16)[name = string("inputs_1_cast_fp16")]; |
|
tensor<fp16, [4, 1280, 1, 448]> read_state_0 = read_state(input = self_attn_key_cache)[name = string("read_state_0")]; |
|
tensor<int32, [4]> tile_0 = const()[name = string("tile_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
int32 var_49_axis_0 = const()[name = string("op_49_axis_0"), val = int32(0)]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_49_cast_fp16_0, tensor<fp16, [1, 1280, 1, 448]> var_49_cast_fp16_1, tensor<fp16, [1, 1280, 1, 448]> var_49_cast_fp16_2, tensor<fp16, [1, 1280, 1, 448]> var_49_cast_fp16_3 = split(axis = var_49_axis_0, split_sizes = tile_0, x = read_state_0)[name = string("op_49_cast_fp16")]; |
|
tensor<fp16, [4, 1280, 1, 448]> read_state_1 = read_state(input = self_attn_value_cache)[name = string("read_state_1")]; |
|
tensor<int32, [4]> tile_1 = const()[name = string("tile_1"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
int32 var_56_axis_0 = const()[name = string("op_56_axis_0"), val = int32(0)]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_56_cast_fp16_0, tensor<fp16, [1, 1280, 1, 448]> var_56_cast_fp16_1, tensor<fp16, [1, 1280, 1, 448]> var_56_cast_fp16_2, tensor<fp16, [1, 1280, 1, 448]> var_56_cast_fp16_3 = split(axis = var_56_axis_0, split_sizes = tile_1, x = read_state_1)[name = string("op_56_cast_fp16")]; |
|
tensor<fp16, [4, 1280, 1, 1536]> read_state_2 = read_state(input = encoder_attn_key_cache)[name = string("read_state_2")]; |
|
tensor<int32, [4]> obj_17_begin_0 = const()[name = string("obj_17_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_17_end_0 = const()[name = string("obj_17_end_0"), val = tensor<int32, [4]>([1, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_17_end_mask_0 = const()[name = string("obj_17_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_17_cast_fp16 = slice_by_index(begin = obj_17_begin_0, end = obj_17_end_0, end_mask = obj_17_end_mask_0, x = read_state_2)[name = string("obj_17_cast_fp16")]; |
|
tensor<fp16, [4, 1280, 1, 1536]> read_state_3 = read_state(input = encoder_attn_value_cache)[name = string("read_state_3")]; |
|
tensor<int32, [4]> obj_19_begin_0 = const()[name = string("obj_19_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_19_end_0 = const()[name = string("obj_19_end_0"), val = tensor<int32, [4]>([1, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_19_end_mask_0 = const()[name = string("obj_19_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_19_cast_fp16 = slice_by_index(begin = obj_19_begin_0, end = obj_19_end_0, end_mask = obj_19_end_mask_0, x = read_state_3)[name = string("obj_19_cast_fp16")]; |
|
int32 var_76 = const()[name = string("op_76"), val = int32(3)]; |
|
tensor<int32, [1]> out_1_axes_0 = const()[name = string("out_1_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_101_to_fp16 = const()[name = string("op_101_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_101_to_fp16, x = inputs_1_cast_fp16)[name = string("out_1_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_5_mean_0_to_fp16 = const()[name = string("obj_5_mean_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133924032)))]; |
|
tensor<fp16, [1280]> obj_5_variance_0_to_fp16 = const()[name = string("obj_5_variance_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133926656)))]; |
|
tensor<fp16, [1280]> obj_5_gamma_0_to_fp16 = const()[name = string("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133929280)))]; |
|
tensor<fp16, [1280]> obj_5_beta_0_to_fp16 = const()[name = string("obj_5_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133931904)))]; |
|
fp16 obj_5_epsilon_0_to_fp16 = const()[name = string("obj_5_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_1_cast_fp16)[name = string("obj_5_cast_fp16")]; |
|
string query_1_pad_type_0 = const()[name = string("query_1_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_1_strides_0 = const()[name = string("query_1_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_1_pad_0 = const()[name = string("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_1_dilations_0 = const()[name = string("query_1_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_1_groups_0 = const()[name = string("query_1_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = string("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133934528)))]; |
|
tensor<fp16, [1280]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = string("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(137211392)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = query_1_dilations_0, groups = query_1_groups_0, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = query_1_strides_0, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = string("query_1_cast_fp16")]; |
|
string current_key_1_pad_type_0 = const()[name = string("current_key_1_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_key_1_strides_0 = const()[name = string("current_key_1_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_key_1_pad_0 = const()[name = string("current_key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_key_1_dilations_0 = const()[name = string("current_key_1_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_key_1_groups_0 = const()[name = string("current_key_1_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = string("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(137214016)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_key_1_cast_fp16 = conv(dilations = current_key_1_dilations_0, groups = current_key_1_groups_0, pad = current_key_1_pad_0, pad_type = current_key_1_pad_type_0, strides = current_key_1_strides_0, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = string("current_key_1_cast_fp16")]; |
|
string current_value_1_pad_type_0 = const()[name = string("current_value_1_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_value_1_strides_0 = const()[name = string("current_value_1_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_value_1_pad_0 = const()[name = string("current_value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_value_1_dilations_0 = const()[name = string("current_value_1_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_value_1_groups_0 = const()[name = string("current_value_1_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = string("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(140490880)))]; |
|
tensor<fp16, [1280]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = string("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(143767744)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = current_value_1_dilations_0, groups = current_value_1_groups_0, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = current_value_1_strides_0, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = string("current_value_1_cast_fp16")]; |
|
tensor<int32, [1]> var_136_axes_0 = const()[name = string("op_136_axes_0"), val = tensor<int32, [1]>([1])]; |
|
tensor<fp16, [1, 1, 448]> var_136_cast_fp16 = expand_dims(axes = var_136_axes_0, x = kv_cache_update_mask)[name = string("op_136_cast_fp16")]; |
|
tensor<int32, [1]> var_137_axes_0 = const()[name = string("op_137_axes_0"), val = tensor<int32, [1]>([2])]; |
|
tensor<fp16, [1, 1, 1, 448]> var_137_cast_fp16 = expand_dims(axes = var_137_axes_0, x = var_136_cast_fp16)[name = string("op_137_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_139_cast_fp16 = mul(x = current_key_1_cast_fp16, y = var_137_cast_fp16)[name = string("op_139_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> key_1_cast_fp16 = add(x = var_49_cast_fp16_0, y = var_139_cast_fp16)[name = string("key_1_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_141_cast_fp16 = mul(x = current_value_1_cast_fp16, y = var_137_cast_fp16)[name = string("op_141_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> value_1_cast_fp16 = add(x = var_56_cast_fp16_0, y = var_141_cast_fp16)[name = string("value_1_cast_fp16")]; |
|
tensor<int32, [4]> var_144 = const()[name = string("op_144"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_1_cast_fp16 = reshape(shape = var_144, x = query_1_cast_fp16)[name = string("mh_q_1_cast_fp16")]; |
|
fp16 var_146_to_fp16 = const()[name = string("op_146_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_147_cast_fp16 = mul(x = mh_q_1_cast_fp16, y = var_146_to_fp16)[name = string("op_147_cast_fp16")]; |
|
tensor<int32, [4]> var_148 = const()[name = string("op_148"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_149_cast_fp16 = reshape(shape = var_148, x = key_1_cast_fp16)[name = string("op_149_cast_fp16")]; |
|
bool mh_w_1_transpose_x_0 = const()[name = string("mh_w_1_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_1_transpose_y_0 = const()[name = string("mh_w_1_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_147_cast_fp16, y = var_149_cast_fp16)[name = string("mh_w_1_cast_fp16")]; |
|
tensor<int32, [1]> var_153_axes_0 = const()[name = string("op_153_axes_0"), val = tensor<int32, [1]>([1])]; |
|
tensor<fp16, [1, 1, 448]> var_153_cast_fp16 = expand_dims(axes = var_153_axes_0, x = decoder_key_padding_mask)[name = string("op_153_cast_fp16")]; |
|
tensor<int32, [1]> var_154_axes_0 = const()[name = string("op_154_axes_0"), val = tensor<int32, [1]>([2])]; |
|
tensor<fp16, [1, 1, 1, 448]> var_154_cast_fp16 = expand_dims(axes = var_154_axes_0, x = var_153_cast_fp16)[name = string("op_154_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_3_cast_fp16 = add(x = mh_w_1_cast_fp16, y = var_154_cast_fp16)[name = string("mh_w_3_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> var_157_cast_fp16 = softmax(axis = var_76, x = mh_w_3_cast_fp16)[name = string("op_157_cast_fp16")]; |
|
tensor<int32, [4]> var_158 = const()[name = string("op_158"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_159_cast_fp16 = reshape(shape = var_158, x = value_1_cast_fp16)[name = string("op_159_cast_fp16")]; |
|
bool attn_1_transpose_x_0 = const()[name = string("attn_1_transpose_x_0"), val = bool(false)]; |
|
bool attn_1_transpose_y_0 = const()[name = string("attn_1_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_159_cast_fp16, y = var_157_cast_fp16)[name = string("attn_1_cast_fp16")]; |
|
tensor<int32, [4]> var_162 = const()[name = string("op_162"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_1_cast_fp16 = reshape(shape = var_162, x = attn_1_cast_fp16)[name = string("input_1_cast_fp16")]; |
|
string obj_11_pad_type_0 = const()[name = string("obj_11_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_11_strides_0 = const()[name = string("obj_11_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_11_pad_0 = const()[name = string("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_11_dilations_0 = const()[name = string("obj_11_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_11_groups_0 = const()[name = string("obj_11_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = string("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(143770368)))]; |
|
tensor<fp16, [1280]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = string("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(147047232)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = obj_11_dilations_0, groups = obj_11_groups_0, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = obj_11_strides_0, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = string("obj_11_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_11_cast_fp16)[name = string("inputs_3_cast_fp16")]; |
|
tensor<int32, [1]> out_3_axes_0 = const()[name = string("out_3_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_184_to_fp16 = const()[name = string("op_184_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_184_to_fp16, x = inputs_3_cast_fp16)[name = string("out_3_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_13_gamma_0_to_fp16 = const()[name = string("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(147049856)))]; |
|
tensor<fp16, [1280]> obj_13_beta_0_to_fp16 = const()[name = string("obj_13_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(147052480)))]; |
|
fp16 obj_13_epsilon_0_to_fp16 = const()[name = string("obj_13_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_3_cast_fp16)[name = string("obj_13_cast_fp16")]; |
|
string query_3_pad_type_0 = const()[name = string("query_3_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_3_strides_0 = const()[name = string("query_3_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_3_pad_0 = const()[name = string("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_3_dilations_0 = const()[name = string("query_3_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_3_groups_0 = const()[name = string("query_3_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_q_proj_weight_to_fp16 = const()[name = string("layers_0_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(147055104)))]; |
|
tensor<fp16, [1280]> layers_0_encoder_attn_q_proj_bias_to_fp16 = const()[name = string("layers_0_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(150331968)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_3_cast_fp16 = conv(bias = layers_0_encoder_attn_q_proj_bias_to_fp16, dilations = query_3_dilations_0, groups = query_3_groups_0, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = query_3_strides_0, weight = layers_0_encoder_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = string("query_3_cast_fp16")]; |
|
tensor<int32, [4]> var_204 = const()[name = string("op_204"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_3_cast_fp16 = reshape(shape = var_204, x = query_3_cast_fp16)[name = string("mh_q_3_cast_fp16")]; |
|
fp16 var_206_to_fp16 = const()[name = string("op_206_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_207_cast_fp16 = mul(x = mh_q_3_cast_fp16, y = var_206_to_fp16)[name = string("op_207_cast_fp16")]; |
|
tensor<int32, [4]> var_208 = const()[name = string("op_208"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_209_cast_fp16 = reshape(shape = var_208, x = obj_17_cast_fp16)[name = string("op_209_cast_fp16")]; |
|
bool mh_w_5_transpose_x_0 = const()[name = string("mh_w_5_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_5_transpose_y_0 = const()[name = string("mh_w_5_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_5_cast_fp16 = matmul(transpose_x = mh_w_5_transpose_x_0, transpose_y = mh_w_5_transpose_y_0, x = var_207_cast_fp16, y = var_209_cast_fp16)[name = string("mh_w_5_cast_fp16")]; |
|
tensor<fp16, [1, 1536]> read_state_4 = read_state(input = encoder_attn_key_padding_mask)[name = string("read_state_4")]; |
|
tensor<int32, [1]> var_213_axes_0 = const()[name = string("op_213_axes_0"), val = tensor<int32, [1]>([1])]; |
|
tensor<fp16, [1, 1, 1536]> var_213_cast_fp16 = expand_dims(axes = var_213_axes_0, x = read_state_4)[name = string("op_213_cast_fp16")]; |
|
tensor<int32, [1]> var_214_axes_0 = const()[name = string("op_214_axes_0"), val = tensor<int32, [1]>([2])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_214_cast_fp16 = expand_dims(axes = var_214_axes_0, x = var_213_cast_fp16)[name = string("op_214_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_7_cast_fp16 = add(x = mh_w_5_cast_fp16, y = var_214_cast_fp16)[name = string("mh_w_7_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> obj_23_cast_fp16 = softmax(axis = var_76, x = mh_w_7_cast_fp16)[name = string("obj_23_cast_fp16")]; |
|
tensor<int32, [4]> var_218 = const()[name = string("op_218"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_219_cast_fp16 = reshape(shape = var_218, x = obj_19_cast_fp16)[name = string("op_219_cast_fp16")]; |
|
bool attn_3_transpose_x_0 = const()[name = string("attn_3_transpose_x_0"), val = bool(false)]; |
|
bool attn_3_transpose_y_0 = const()[name = string("attn_3_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_219_cast_fp16, y = obj_23_cast_fp16)[name = string("attn_3_cast_fp16")]; |
|
tensor<int32, [4]> var_222 = const()[name = string("op_222"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_3_cast_fp16 = reshape(shape = var_222, x = attn_3_cast_fp16)[name = string("input_3_cast_fp16")]; |
|
string obj_21_pad_type_0 = const()[name = string("obj_21_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_21_strides_0 = const()[name = string("obj_21_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_21_pad_0 = const()[name = string("obj_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_21_dilations_0 = const()[name = string("obj_21_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_21_groups_0 = const()[name = string("obj_21_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_0_encoder_attn_o_proj_weight_to_fp16 = const()[name = string("layers_0_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(150334592)))]; |
|
tensor<fp16, [1280]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = string("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(153611456)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = obj_21_dilations_0, groups = obj_21_groups_0, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = obj_21_strides_0, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = string("obj_21_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_21_cast_fp16)[name = string("inputs_5_cast_fp16")]; |
|
tensor<int32, [1]> out_5_axes_0 = const()[name = string("out_5_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_240_to_fp16 = const()[name = string("op_240_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_240_to_fp16, x = inputs_5_cast_fp16)[name = string("out_5_cast_fp16")]; |
|
tensor<fp16, [1280]> input_5_gamma_0_to_fp16 = const()[name = string("input_5_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(153614080)))]; |
|
tensor<fp16, [1280]> input_5_beta_0_to_fp16 = const()[name = string("input_5_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(153616704)))]; |
|
fp16 input_5_epsilon_0_to_fp16 = const()[name = string("input_5_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_5_cast_fp16 = batch_norm(beta = input_5_beta_0_to_fp16, epsilon = input_5_epsilon_0_to_fp16, gamma = input_5_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_5_cast_fp16)[name = string("input_5_cast_fp16")]; |
|
string input_7_pad_type_0 = const()[name = string("input_7_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> input_7_strides_0 = const()[name = string("input_7_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> input_7_pad_0 = const()[name = string("input_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> input_7_dilations_0 = const()[name = string("input_7_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 input_7_groups_0 = const()[name = string("input_7_groups_0"), val = int32(1)]; |
|
tensor<fp16, [5120, 1280, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = string("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(153619328)))]; |
|
tensor<fp16, [5120]> layers_0_fc1_bias_to_fp16 = const()[name = string("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(166726592)))]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_7_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = input_7_dilations_0, groups = input_7_groups_0, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = input_7_strides_0, weight = layers_0_fc1_weight_to_fp16, x = input_5_cast_fp16)[name = string("input_7_cast_fp16")]; |
|
string input_9_mode_0 = const()[name = string("input_9_mode_0"), val = string("EXACT")]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_9_cast_fp16 = gelu(mode = input_9_mode_0, x = input_7_cast_fp16)[name = string("input_9_cast_fp16")]; |
|
string hidden_states_3_pad_type_0 = const()[name = string("hidden_states_3_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> hidden_states_3_strides_0 = const()[name = string("hidden_states_3_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> hidden_states_3_pad_0 = const()[name = string("hidden_states_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> hidden_states_3_dilations_0 = const()[name = string("hidden_states_3_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 hidden_states_3_groups_0 = const()[name = string("hidden_states_3_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 5120, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = string("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(166736896)))]; |
|
tensor<fp16, [1280]> layers_0_fc2_bias_to_fp16 = const()[name = string("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(179844160)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> hidden_states_3_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = hidden_states_3_dilations_0, groups = hidden_states_3_groups_0, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = hidden_states_3_strides_0, weight = layers_0_fc2_weight_to_fp16, x = input_9_cast_fp16)[name = string("hidden_states_3_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = string("inputs_7_cast_fp16")]; |
|
tensor<int32, [4]> obj_35_begin_0 = const()[name = string("obj_35_begin_0"), val = tensor<int32, [4]>([1, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_35_end_0 = const()[name = string("obj_35_end_0"), val = tensor<int32, [4]>([2, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_35_end_mask_0 = const()[name = string("obj_35_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_35_cast_fp16 = slice_by_index(begin = obj_35_begin_0, end = obj_35_end_0, end_mask = obj_35_end_mask_0, x = read_state_2)[name = string("obj_35_cast_fp16")]; |
|
tensor<int32, [4]> obj_37_begin_0 = const()[name = string("obj_37_begin_0"), val = tensor<int32, [4]>([1, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_37_end_0 = const()[name = string("obj_37_end_0"), val = tensor<int32, [4]>([2, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_37_end_mask_0 = const()[name = string("obj_37_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_37_cast_fp16 = slice_by_index(begin = obj_37_begin_0, end = obj_37_end_0, end_mask = obj_37_end_mask_0, x = read_state_3)[name = string("obj_37_cast_fp16")]; |
|
int32 var_285 = const()[name = string("op_285"), val = int32(3)]; |
|
tensor<int32, [1]> out_7_axes_0 = const()[name = string("out_7_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_310_to_fp16 = const()[name = string("op_310_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_310_to_fp16, x = inputs_7_cast_fp16)[name = string("out_7_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_25_gamma_0_to_fp16 = const()[name = string("obj_25_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(179846784)))]; |
|
tensor<fp16, [1280]> obj_25_beta_0_to_fp16 = const()[name = string("obj_25_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(179849408)))]; |
|
fp16 obj_25_epsilon_0_to_fp16 = const()[name = string("obj_25_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_25_cast_fp16 = batch_norm(beta = obj_25_beta_0_to_fp16, epsilon = obj_25_epsilon_0_to_fp16, gamma = obj_25_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_7_cast_fp16)[name = string("obj_25_cast_fp16")]; |
|
string query_5_pad_type_0 = const()[name = string("query_5_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_5_strides_0 = const()[name = string("query_5_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_5_pad_0 = const()[name = string("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_5_dilations_0 = const()[name = string("query_5_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_5_groups_0 = const()[name = string("query_5_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = string("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(179852032)))]; |
|
tensor<fp16, [1280]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = string("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(183128896)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_5_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = query_5_dilations_0, groups = query_5_groups_0, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = query_5_strides_0, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = string("query_5_cast_fp16")]; |
|
string current_key_3_pad_type_0 = const()[name = string("current_key_3_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_key_3_strides_0 = const()[name = string("current_key_3_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_key_3_pad_0 = const()[name = string("current_key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_key_3_dilations_0 = const()[name = string("current_key_3_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_key_3_groups_0 = const()[name = string("current_key_3_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = string("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(183131520)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_key_3_cast_fp16 = conv(dilations = current_key_3_dilations_0, groups = current_key_3_groups_0, pad = current_key_3_pad_0, pad_type = current_key_3_pad_type_0, strides = current_key_3_strides_0, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = string("current_key_3_cast_fp16")]; |
|
string current_value_3_pad_type_0 = const()[name = string("current_value_3_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_value_3_strides_0 = const()[name = string("current_value_3_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_value_3_pad_0 = const()[name = string("current_value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_value_3_dilations_0 = const()[name = string("current_value_3_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_value_3_groups_0 = const()[name = string("current_value_3_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = string("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(186408384)))]; |
|
tensor<fp16, [1280]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = string("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(189685248)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = current_value_3_dilations_0, groups = current_value_3_groups_0, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = current_value_3_strides_0, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = string("current_value_3_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_348_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_137_cast_fp16)[name = string("op_348_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> key_3_cast_fp16 = add(x = var_49_cast_fp16_1, y = var_348_cast_fp16)[name = string("key_3_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_350_cast_fp16 = mul(x = current_value_3_cast_fp16, y = var_137_cast_fp16)[name = string("op_350_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> value_3_cast_fp16 = add(x = var_56_cast_fp16_1, y = var_350_cast_fp16)[name = string("value_3_cast_fp16")]; |
|
tensor<int32, [4]> var_353 = const()[name = string("op_353"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_5_cast_fp16 = reshape(shape = var_353, x = query_5_cast_fp16)[name = string("mh_q_5_cast_fp16")]; |
|
fp16 var_355_to_fp16 = const()[name = string("op_355_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_356_cast_fp16 = mul(x = mh_q_5_cast_fp16, y = var_355_to_fp16)[name = string("op_356_cast_fp16")]; |
|
tensor<int32, [4]> var_357 = const()[name = string("op_357"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_358_cast_fp16 = reshape(shape = var_357, x = key_3_cast_fp16)[name = string("op_358_cast_fp16")]; |
|
bool mh_w_9_transpose_x_0 = const()[name = string("mh_w_9_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_9_transpose_y_0 = const()[name = string("mh_w_9_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_9_cast_fp16 = matmul(transpose_x = mh_w_9_transpose_x_0, transpose_y = mh_w_9_transpose_y_0, x = var_356_cast_fp16, y = var_358_cast_fp16)[name = string("mh_w_9_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_11_cast_fp16 = add(x = mh_w_9_cast_fp16, y = var_154_cast_fp16)[name = string("mh_w_11_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> var_366_cast_fp16 = softmax(axis = var_285, x = mh_w_11_cast_fp16)[name = string("op_366_cast_fp16")]; |
|
tensor<int32, [4]> var_367 = const()[name = string("op_367"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_368_cast_fp16 = reshape(shape = var_367, x = value_3_cast_fp16)[name = string("op_368_cast_fp16")]; |
|
bool attn_5_transpose_x_0 = const()[name = string("attn_5_transpose_x_0"), val = bool(false)]; |
|
bool attn_5_transpose_y_0 = const()[name = string("attn_5_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_368_cast_fp16, y = var_366_cast_fp16)[name = string("attn_5_cast_fp16")]; |
|
tensor<int32, [4]> var_371 = const()[name = string("op_371"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_11_cast_fp16 = reshape(shape = var_371, x = attn_5_cast_fp16)[name = string("input_11_cast_fp16")]; |
|
string obj_31_pad_type_0 = const()[name = string("obj_31_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_31_strides_0 = const()[name = string("obj_31_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_31_pad_0 = const()[name = string("obj_31_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_31_dilations_0 = const()[name = string("obj_31_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_31_groups_0 = const()[name = string("obj_31_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = string("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(189687872)))]; |
|
tensor<fp16, [1280]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = string("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(192964736)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_31_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = obj_31_dilations_0, groups = obj_31_groups_0, pad = obj_31_pad_0, pad_type = obj_31_pad_type_0, strides = obj_31_strides_0, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = string("obj_31_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_31_cast_fp16)[name = string("inputs_9_cast_fp16")]; |
|
tensor<int32, [1]> out_9_axes_0 = const()[name = string("out_9_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_393_to_fp16 = const()[name = string("op_393_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_393_to_fp16, x = inputs_9_cast_fp16)[name = string("out_9_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_33_gamma_0_to_fp16 = const()[name = string("obj_33_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(192967360)))]; |
|
tensor<fp16, [1280]> obj_33_beta_0_to_fp16 = const()[name = string("obj_33_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(192969984)))]; |
|
fp16 obj_33_epsilon_0_to_fp16 = const()[name = string("obj_33_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_33_cast_fp16 = batch_norm(beta = obj_33_beta_0_to_fp16, epsilon = obj_33_epsilon_0_to_fp16, gamma = obj_33_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_9_cast_fp16)[name = string("obj_33_cast_fp16")]; |
|
string query_7_pad_type_0 = const()[name = string("query_7_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_7_strides_0 = const()[name = string("query_7_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_7_pad_0 = const()[name = string("query_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_7_dilations_0 = const()[name = string("query_7_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_7_groups_0 = const()[name = string("query_7_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_q_proj_weight_to_fp16 = const()[name = string("layers_1_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(192972608)))]; |
|
tensor<fp16, [1280]> layers_1_encoder_attn_q_proj_bias_to_fp16 = const()[name = string("layers_1_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(196249472)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_7_cast_fp16 = conv(bias = layers_1_encoder_attn_q_proj_bias_to_fp16, dilations = query_7_dilations_0, groups = query_7_groups_0, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = query_7_strides_0, weight = layers_1_encoder_attn_q_proj_weight_to_fp16, x = obj_33_cast_fp16)[name = string("query_7_cast_fp16")]; |
|
tensor<int32, [4]> var_413 = const()[name = string("op_413"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_7_cast_fp16 = reshape(shape = var_413, x = query_7_cast_fp16)[name = string("mh_q_7_cast_fp16")]; |
|
fp16 var_415_to_fp16 = const()[name = string("op_415_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_416_cast_fp16 = mul(x = mh_q_7_cast_fp16, y = var_415_to_fp16)[name = string("op_416_cast_fp16")]; |
|
tensor<int32, [4]> var_417 = const()[name = string("op_417"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_418_cast_fp16 = reshape(shape = var_417, x = obj_35_cast_fp16)[name = string("op_418_cast_fp16")]; |
|
bool mh_w_13_transpose_x_0 = const()[name = string("mh_w_13_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_13_transpose_y_0 = const()[name = string("mh_w_13_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_416_cast_fp16, y = var_418_cast_fp16)[name = string("mh_w_13_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_214_cast_fp16)[name = string("mh_w_15_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> obj_41_cast_fp16 = softmax(axis = var_285, x = mh_w_15_cast_fp16)[name = string("obj_41_cast_fp16")]; |
|
tensor<int32, [4]> var_427 = const()[name = string("op_427"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_428_cast_fp16 = reshape(shape = var_427, x = obj_37_cast_fp16)[name = string("op_428_cast_fp16")]; |
|
bool attn_7_transpose_x_0 = const()[name = string("attn_7_transpose_x_0"), val = bool(false)]; |
|
bool attn_7_transpose_y_0 = const()[name = string("attn_7_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_428_cast_fp16, y = obj_41_cast_fp16)[name = string("attn_7_cast_fp16")]; |
|
tensor<int32, [4]> var_431 = const()[name = string("op_431"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_13_cast_fp16 = reshape(shape = var_431, x = attn_7_cast_fp16)[name = string("input_13_cast_fp16")]; |
|
string obj_39_pad_type_0 = const()[name = string("obj_39_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_39_strides_0 = const()[name = string("obj_39_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_39_pad_0 = const()[name = string("obj_39_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_39_dilations_0 = const()[name = string("obj_39_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_39_groups_0 = const()[name = string("obj_39_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_1_encoder_attn_o_proj_weight_to_fp16 = const()[name = string("layers_1_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(196252096)))]; |
|
tensor<fp16, [1280]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = string("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(199528960)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = obj_39_dilations_0, groups = obj_39_groups_0, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = obj_39_strides_0, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = string("obj_39_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_39_cast_fp16)[name = string("inputs_11_cast_fp16")]; |
|
tensor<int32, [1]> out_11_axes_0 = const()[name = string("out_11_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_449_to_fp16 = const()[name = string("op_449_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_449_to_fp16, x = inputs_11_cast_fp16)[name = string("out_11_cast_fp16")]; |
|
tensor<fp16, [1280]> input_15_gamma_0_to_fp16 = const()[name = string("input_15_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(199531584)))]; |
|
tensor<fp16, [1280]> input_15_beta_0_to_fp16 = const()[name = string("input_15_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(199534208)))]; |
|
fp16 input_15_epsilon_0_to_fp16 = const()[name = string("input_15_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_15_cast_fp16 = batch_norm(beta = input_15_beta_0_to_fp16, epsilon = input_15_epsilon_0_to_fp16, gamma = input_15_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_11_cast_fp16)[name = string("input_15_cast_fp16")]; |
|
string input_17_pad_type_0 = const()[name = string("input_17_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> input_17_strides_0 = const()[name = string("input_17_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> input_17_pad_0 = const()[name = string("input_17_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> input_17_dilations_0 = const()[name = string("input_17_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 input_17_groups_0 = const()[name = string("input_17_groups_0"), val = int32(1)]; |
|
tensor<fp16, [5120, 1280, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = string("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(199536832)))]; |
|
tensor<fp16, [5120]> layers_1_fc1_bias_to_fp16 = const()[name = string("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(212644096)))]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_17_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = layers_1_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = string("input_17_cast_fp16")]; |
|
string input_19_mode_0 = const()[name = string("input_19_mode_0"), val = string("EXACT")]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_19_cast_fp16 = gelu(mode = input_19_mode_0, x = input_17_cast_fp16)[name = string("input_19_cast_fp16")]; |
|
string hidden_states_5_pad_type_0 = const()[name = string("hidden_states_5_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> hidden_states_5_strides_0 = const()[name = string("hidden_states_5_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = string("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> hidden_states_5_dilations_0 = const()[name = string("hidden_states_5_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 hidden_states_5_groups_0 = const()[name = string("hidden_states_5_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 5120, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = string("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(212654400)))]; |
|
tensor<fp16, [1280]> layers_1_fc2_bias_to_fp16 = const()[name = string("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(225761664)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> hidden_states_5_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = layers_1_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = string("hidden_states_5_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = string("inputs_13_cast_fp16")]; |
|
tensor<int32, [4]> obj_53_begin_0 = const()[name = string("obj_53_begin_0"), val = tensor<int32, [4]>([2, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_53_end_0 = const()[name = string("obj_53_end_0"), val = tensor<int32, [4]>([3, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_53_end_mask_0 = const()[name = string("obj_53_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_53_cast_fp16 = slice_by_index(begin = obj_53_begin_0, end = obj_53_end_0, end_mask = obj_53_end_mask_0, x = read_state_2)[name = string("obj_53_cast_fp16")]; |
|
tensor<int32, [4]> obj_55_begin_0 = const()[name = string("obj_55_begin_0"), val = tensor<int32, [4]>([2, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_55_end_0 = const()[name = string("obj_55_end_0"), val = tensor<int32, [4]>([3, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_55_end_mask_0 = const()[name = string("obj_55_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_55_cast_fp16 = slice_by_index(begin = obj_55_begin_0, end = obj_55_end_0, end_mask = obj_55_end_mask_0, x = read_state_3)[name = string("obj_55_cast_fp16")]; |
|
int32 var_494 = const()[name = string("op_494"), val = int32(3)]; |
|
tensor<int32, [1]> out_13_axes_0 = const()[name = string("out_13_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_519_to_fp16 = const()[name = string("op_519_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_519_to_fp16, x = inputs_13_cast_fp16)[name = string("out_13_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_43_gamma_0_to_fp16 = const()[name = string("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(225764288)))]; |
|
tensor<fp16, [1280]> obj_43_beta_0_to_fp16 = const()[name = string("obj_43_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(225766912)))]; |
|
fp16 obj_43_epsilon_0_to_fp16 = const()[name = string("obj_43_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_43_cast_fp16 = batch_norm(beta = obj_43_beta_0_to_fp16, epsilon = obj_43_epsilon_0_to_fp16, gamma = obj_43_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_13_cast_fp16)[name = string("obj_43_cast_fp16")]; |
|
string query_9_pad_type_0 = const()[name = string("query_9_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_9_strides_0 = const()[name = string("query_9_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_9_pad_0 = const()[name = string("query_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_9_dilations_0 = const()[name = string("query_9_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_9_groups_0 = const()[name = string("query_9_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = string("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(225769536)))]; |
|
tensor<fp16, [1280]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = string("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(229046400)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_9_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = query_9_dilations_0, groups = query_9_groups_0, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = query_9_strides_0, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = string("query_9_cast_fp16")]; |
|
string current_key_5_pad_type_0 = const()[name = string("current_key_5_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_key_5_strides_0 = const()[name = string("current_key_5_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_key_5_pad_0 = const()[name = string("current_key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_key_5_dilations_0 = const()[name = string("current_key_5_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_key_5_groups_0 = const()[name = string("current_key_5_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = string("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(229049024)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_key_5_cast_fp16 = conv(dilations = current_key_5_dilations_0, groups = current_key_5_groups_0, pad = current_key_5_pad_0, pad_type = current_key_5_pad_type_0, strides = current_key_5_strides_0, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = string("current_key_5_cast_fp16")]; |
|
string current_value_5_pad_type_0 = const()[name = string("current_value_5_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_value_5_strides_0 = const()[name = string("current_value_5_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_value_5_pad_0 = const()[name = string("current_value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_value_5_dilations_0 = const()[name = string("current_value_5_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_value_5_groups_0 = const()[name = string("current_value_5_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = string("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(232325888)))]; |
|
tensor<fp16, [1280]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = string("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(235602752)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = current_value_5_dilations_0, groups = current_value_5_groups_0, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = current_value_5_strides_0, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = string("current_value_5_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_557_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_137_cast_fp16)[name = string("op_557_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> key_5_cast_fp16 = add(x = var_49_cast_fp16_2, y = var_557_cast_fp16)[name = string("key_5_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_559_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_137_cast_fp16)[name = string("op_559_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> value_5_cast_fp16 = add(x = var_56_cast_fp16_2, y = var_559_cast_fp16)[name = string("value_5_cast_fp16")]; |
|
tensor<int32, [4]> var_562 = const()[name = string("op_562"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_9_cast_fp16 = reshape(shape = var_562, x = query_9_cast_fp16)[name = string("mh_q_9_cast_fp16")]; |
|
fp16 var_564_to_fp16 = const()[name = string("op_564_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_565_cast_fp16 = mul(x = mh_q_9_cast_fp16, y = var_564_to_fp16)[name = string("op_565_cast_fp16")]; |
|
tensor<int32, [4]> var_566 = const()[name = string("op_566"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_567_cast_fp16 = reshape(shape = var_566, x = key_5_cast_fp16)[name = string("op_567_cast_fp16")]; |
|
bool mh_w_17_transpose_x_0 = const()[name = string("mh_w_17_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_17_transpose_y_0 = const()[name = string("mh_w_17_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_565_cast_fp16, y = var_567_cast_fp16)[name = string("mh_w_17_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_19_cast_fp16 = add(x = mh_w_17_cast_fp16, y = var_154_cast_fp16)[name = string("mh_w_19_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> var_575_cast_fp16 = softmax(axis = var_494, x = mh_w_19_cast_fp16)[name = string("op_575_cast_fp16")]; |
|
tensor<int32, [4]> var_576 = const()[name = string("op_576"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_577_cast_fp16 = reshape(shape = var_576, x = value_5_cast_fp16)[name = string("op_577_cast_fp16")]; |
|
bool attn_9_transpose_x_0 = const()[name = string("attn_9_transpose_x_0"), val = bool(false)]; |
|
bool attn_9_transpose_y_0 = const()[name = string("attn_9_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_577_cast_fp16, y = var_575_cast_fp16)[name = string("attn_9_cast_fp16")]; |
|
tensor<int32, [4]> var_580 = const()[name = string("op_580"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_21_cast_fp16 = reshape(shape = var_580, x = attn_9_cast_fp16)[name = string("input_21_cast_fp16")]; |
|
string obj_49_pad_type_0 = const()[name = string("obj_49_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_49_strides_0 = const()[name = string("obj_49_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_49_pad_0 = const()[name = string("obj_49_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_49_dilations_0 = const()[name = string("obj_49_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_49_groups_0 = const()[name = string("obj_49_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = string("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(235605376)))]; |
|
tensor<fp16, [1280]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = string("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(238882240)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = obj_49_dilations_0, groups = obj_49_groups_0, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = obj_49_strides_0, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = string("obj_49_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_49_cast_fp16)[name = string("inputs_15_cast_fp16")]; |
|
tensor<int32, [1]> out_15_axes_0 = const()[name = string("out_15_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_602_to_fp16 = const()[name = string("op_602_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_602_to_fp16, x = inputs_15_cast_fp16)[name = string("out_15_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_51_gamma_0_to_fp16 = const()[name = string("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(238884864)))]; |
|
tensor<fp16, [1280]> obj_51_beta_0_to_fp16 = const()[name = string("obj_51_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(238887488)))]; |
|
fp16 obj_51_epsilon_0_to_fp16 = const()[name = string("obj_51_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_51_cast_fp16 = batch_norm(beta = obj_51_beta_0_to_fp16, epsilon = obj_51_epsilon_0_to_fp16, gamma = obj_51_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_15_cast_fp16)[name = string("obj_51_cast_fp16")]; |
|
string query_11_pad_type_0 = const()[name = string("query_11_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_11_strides_0 = const()[name = string("query_11_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_11_pad_0 = const()[name = string("query_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_11_dilations_0 = const()[name = string("query_11_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_11_groups_0 = const()[name = string("query_11_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_q_proj_weight_to_fp16 = const()[name = string("layers_2_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(238890112)))]; |
|
tensor<fp16, [1280]> layers_2_encoder_attn_q_proj_bias_to_fp16 = const()[name = string("layers_2_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(242166976)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_11_cast_fp16 = conv(bias = layers_2_encoder_attn_q_proj_bias_to_fp16, dilations = query_11_dilations_0, groups = query_11_groups_0, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = query_11_strides_0, weight = layers_2_encoder_attn_q_proj_weight_to_fp16, x = obj_51_cast_fp16)[name = string("query_11_cast_fp16")]; |
|
tensor<int32, [4]> var_622 = const()[name = string("op_622"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_11_cast_fp16 = reshape(shape = var_622, x = query_11_cast_fp16)[name = string("mh_q_11_cast_fp16")]; |
|
fp16 var_624_to_fp16 = const()[name = string("op_624_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_625_cast_fp16 = mul(x = mh_q_11_cast_fp16, y = var_624_to_fp16)[name = string("op_625_cast_fp16")]; |
|
tensor<int32, [4]> var_626 = const()[name = string("op_626"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_627_cast_fp16 = reshape(shape = var_626, x = obj_53_cast_fp16)[name = string("op_627_cast_fp16")]; |
|
bool mh_w_21_transpose_x_0 = const()[name = string("mh_w_21_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_21_transpose_y_0 = const()[name = string("mh_w_21_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_21_cast_fp16 = matmul(transpose_x = mh_w_21_transpose_x_0, transpose_y = mh_w_21_transpose_y_0, x = var_625_cast_fp16, y = var_627_cast_fp16)[name = string("mh_w_21_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_23_cast_fp16 = add(x = mh_w_21_cast_fp16, y = var_214_cast_fp16)[name = string("mh_w_23_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> obj_59_cast_fp16 = softmax(axis = var_494, x = mh_w_23_cast_fp16)[name = string("obj_59_cast_fp16")]; |
|
tensor<int32, [4]> var_636 = const()[name = string("op_636"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_637_cast_fp16 = reshape(shape = var_636, x = obj_55_cast_fp16)[name = string("op_637_cast_fp16")]; |
|
bool attn_11_transpose_x_0 = const()[name = string("attn_11_transpose_x_0"), val = bool(false)]; |
|
bool attn_11_transpose_y_0 = const()[name = string("attn_11_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_637_cast_fp16, y = obj_59_cast_fp16)[name = string("attn_11_cast_fp16")]; |
|
tensor<int32, [4]> var_640 = const()[name = string("op_640"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_23_cast_fp16 = reshape(shape = var_640, x = attn_11_cast_fp16)[name = string("input_23_cast_fp16")]; |
|
string obj_57_pad_type_0 = const()[name = string("obj_57_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_57_strides_0 = const()[name = string("obj_57_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_57_pad_0 = const()[name = string("obj_57_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_57_dilations_0 = const()[name = string("obj_57_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_57_groups_0 = const()[name = string("obj_57_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_2_encoder_attn_o_proj_weight_to_fp16 = const()[name = string("layers_2_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(242169600)))]; |
|
tensor<fp16, [1280]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = string("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(245446464)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_57_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = obj_57_dilations_0, groups = obj_57_groups_0, pad = obj_57_pad_0, pad_type = obj_57_pad_type_0, strides = obj_57_strides_0, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = string("obj_57_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_57_cast_fp16)[name = string("inputs_17_cast_fp16")]; |
|
tensor<int32, [1]> out_17_axes_0 = const()[name = string("out_17_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_661_to_fp16 = const()[name = string("op_661_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_661_to_fp16, x = inputs_17_cast_fp16)[name = string("out_17_cast_fp16")]; |
|
tensor<fp16, [1280]> input_25_gamma_0_to_fp16 = const()[name = string("input_25_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(245449088)))]; |
|
tensor<fp16, [1280]> input_25_beta_0_to_fp16 = const()[name = string("input_25_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(245451712)))]; |
|
fp16 input_25_epsilon_0_to_fp16 = const()[name = string("input_25_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_25_cast_fp16 = batch_norm(beta = input_25_beta_0_to_fp16, epsilon = input_25_epsilon_0_to_fp16, gamma = input_25_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_17_cast_fp16)[name = string("input_25_cast_fp16")]; |
|
string input_27_pad_type_0 = const()[name = string("input_27_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> input_27_strides_0 = const()[name = string("input_27_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> input_27_pad_0 = const()[name = string("input_27_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> input_27_dilations_0 = const()[name = string("input_27_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 input_27_groups_0 = const()[name = string("input_27_groups_0"), val = int32(1)]; |
|
tensor<fp16, [5120, 1280, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = string("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(245454336)))]; |
|
tensor<fp16, [5120]> layers_2_fc1_bias_to_fp16 = const()[name = string("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(258561600)))]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_27_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = input_27_dilations_0, groups = input_27_groups_0, pad = input_27_pad_0, pad_type = input_27_pad_type_0, strides = input_27_strides_0, weight = layers_2_fc1_weight_to_fp16, x = input_25_cast_fp16)[name = string("input_27_cast_fp16")]; |
|
string input_29_mode_0 = const()[name = string("input_29_mode_0"), val = string("EXACT")]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_29_cast_fp16 = gelu(mode = input_29_mode_0, x = input_27_cast_fp16)[name = string("input_29_cast_fp16")]; |
|
string hidden_states_7_pad_type_0 = const()[name = string("hidden_states_7_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> hidden_states_7_strides_0 = const()[name = string("hidden_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = string("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> hidden_states_7_dilations_0 = const()[name = string("hidden_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 hidden_states_7_groups_0 = const()[name = string("hidden_states_7_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 5120, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = string("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(258571904)))]; |
|
tensor<fp16, [1280]> layers_2_fc2_bias_to_fp16 = const()[name = string("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(271679168)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> hidden_states_7_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = layers_2_fc2_weight_to_fp16, x = input_29_cast_fp16)[name = string("hidden_states_7_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = string("inputs_19_cast_fp16")]; |
|
tensor<int32, [4]> obj_71_begin_0 = const()[name = string("obj_71_begin_0"), val = tensor<int32, [4]>([3, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_71_end_0 = const()[name = string("obj_71_end_0"), val = tensor<int32, [4]>([4, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_71_end_mask_0 = const()[name = string("obj_71_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_71_cast_fp16 = slice_by_index(begin = obj_71_begin_0, end = obj_71_end_0, end_mask = obj_71_end_mask_0, x = read_state_2)[name = string("obj_71_cast_fp16")]; |
|
tensor<int32, [4]> obj_73_begin_0 = const()[name = string("obj_73_begin_0"), val = tensor<int32, [4]>([3, 0, 0, 0])]; |
|
tensor<int32, [4]> obj_73_end_0 = const()[name = string("obj_73_end_0"), val = tensor<int32, [4]>([4, 1280, 1, 1536])]; |
|
tensor<bool, [4]> obj_73_end_mask_0 = const()[name = string("obj_73_end_mask_0"), val = tensor<bool, [4]>([false, true, true, true])]; |
|
tensor<fp16, [1, 1280, 1, 1536]> obj_73_cast_fp16 = slice_by_index(begin = obj_73_begin_0, end = obj_73_end_0, end_mask = obj_73_end_mask_0, x = read_state_3)[name = string("obj_73_cast_fp16")]; |
|
int32 var_707 = const()[name = string("op_707"), val = int32(3)]; |
|
tensor<int32, [1]> out_19_axes_0 = const()[name = string("out_19_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_732_to_fp16 = const()[name = string("op_732_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_732_to_fp16, x = inputs_19_cast_fp16)[name = string("out_19_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_61_gamma_0_to_fp16 = const()[name = string("obj_61_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(271681792)))]; |
|
tensor<fp16, [1280]> obj_61_beta_0_to_fp16 = const()[name = string("obj_61_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(271684416)))]; |
|
fp16 obj_61_epsilon_0_to_fp16 = const()[name = string("obj_61_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_61_cast_fp16 = batch_norm(beta = obj_61_beta_0_to_fp16, epsilon = obj_61_epsilon_0_to_fp16, gamma = obj_61_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_19_cast_fp16)[name = string("obj_61_cast_fp16")]; |
|
string query_13_pad_type_0 = const()[name = string("query_13_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_13_strides_0 = const()[name = string("query_13_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_13_pad_0 = const()[name = string("query_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_13_dilations_0 = const()[name = string("query_13_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_13_groups_0 = const()[name = string("query_13_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = string("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(271687040)))]; |
|
tensor<fp16, [1280]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = string("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(274963904)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_13_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = query_13_dilations_0, groups = query_13_groups_0, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = query_13_strides_0, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = string("query_13_cast_fp16")]; |
|
string current_key_pad_type_0 = const()[name = string("current_key_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_key_strides_0 = const()[name = string("current_key_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_key_pad_0 = const()[name = string("current_key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_key_dilations_0 = const()[name = string("current_key_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_key_groups_0 = const()[name = string("current_key_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = string("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(274966528)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_key_cast_fp16 = conv(dilations = current_key_dilations_0, groups = current_key_groups_0, pad = current_key_pad_0, pad_type = current_key_pad_type_0, strides = current_key_strides_0, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = string("current_key_cast_fp16")]; |
|
string current_value_pad_type_0 = const()[name = string("current_value_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> current_value_strides_0 = const()[name = string("current_value_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> current_value_pad_0 = const()[name = string("current_value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> current_value_dilations_0 = const()[name = string("current_value_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 current_value_groups_0 = const()[name = string("current_value_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = string("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278243392)))]; |
|
tensor<fp16, [1280]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = string("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(281520256)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = current_value_dilations_0, groups = current_value_groups_0, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = current_value_strides_0, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = string("current_value_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_770_cast_fp16 = mul(x = current_key_cast_fp16, y = var_137_cast_fp16)[name = string("op_770_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> key_cast_fp16 = add(x = var_49_cast_fp16_3, y = var_770_cast_fp16)[name = string("key_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> var_772_cast_fp16 = mul(x = current_value_cast_fp16, y = var_137_cast_fp16)[name = string("op_772_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 448]> value_cast_fp16 = add(x = var_56_cast_fp16_3, y = var_772_cast_fp16)[name = string("value_cast_fp16")]; |
|
tensor<int32, [4]> var_775 = const()[name = string("op_775"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_13_cast_fp16 = reshape(shape = var_775, x = query_13_cast_fp16)[name = string("mh_q_13_cast_fp16")]; |
|
fp16 var_777_to_fp16 = const()[name = string("op_777_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_778_cast_fp16 = mul(x = mh_q_13_cast_fp16, y = var_777_to_fp16)[name = string("op_778_cast_fp16")]; |
|
tensor<int32, [4]> var_779 = const()[name = string("op_779"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_780_cast_fp16 = reshape(shape = var_779, x = key_cast_fp16)[name = string("op_780_cast_fp16")]; |
|
bool mh_w_25_transpose_x_0 = const()[name = string("mh_w_25_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_25_transpose_y_0 = const()[name = string("mh_w_25_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_25_cast_fp16 = matmul(transpose_x = mh_w_25_transpose_x_0, transpose_y = mh_w_25_transpose_y_0, x = var_778_cast_fp16, y = var_780_cast_fp16)[name = string("mh_w_25_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> mh_w_27_cast_fp16 = add(x = mh_w_25_cast_fp16, y = var_154_cast_fp16)[name = string("mh_w_27_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 448]> var_788_cast_fp16 = softmax(axis = var_707, x = mh_w_27_cast_fp16)[name = string("op_788_cast_fp16")]; |
|
tensor<int32, [4]> var_789 = const()[name = string("op_789"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 448]> var_790_cast_fp16 = reshape(shape = var_789, x = value_cast_fp16)[name = string("op_790_cast_fp16")]; |
|
bool attn_13_transpose_x_0 = const()[name = string("attn_13_transpose_x_0"), val = bool(false)]; |
|
bool attn_13_transpose_y_0 = const()[name = string("attn_13_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_790_cast_fp16, y = var_788_cast_fp16)[name = string("attn_13_cast_fp16")]; |
|
tensor<int32, [4]> var_793 = const()[name = string("op_793"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_31_cast_fp16 = reshape(shape = var_793, x = attn_13_cast_fp16)[name = string("input_31_cast_fp16")]; |
|
string obj_67_pad_type_0 = const()[name = string("obj_67_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_67_strides_0 = const()[name = string("obj_67_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_67_pad_0 = const()[name = string("obj_67_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_67_dilations_0 = const()[name = string("obj_67_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_67_groups_0 = const()[name = string("obj_67_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = string("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(281522880)))]; |
|
tensor<fp16, [1280]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = string("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(284799744)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_67_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = obj_67_dilations_0, groups = obj_67_groups_0, pad = obj_67_pad_0, pad_type = obj_67_pad_type_0, strides = obj_67_strides_0, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = string("obj_67_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_67_cast_fp16)[name = string("inputs_21_cast_fp16")]; |
|
tensor<int32, [1]> out_21_axes_0 = const()[name = string("out_21_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_815_to_fp16 = const()[name = string("op_815_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_815_to_fp16, x = inputs_21_cast_fp16)[name = string("out_21_cast_fp16")]; |
|
tensor<fp16, [1280]> obj_69_gamma_0_to_fp16 = const()[name = string("obj_69_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(284802368)))]; |
|
tensor<fp16, [1280]> obj_69_beta_0_to_fp16 = const()[name = string("obj_69_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(284804992)))]; |
|
fp16 obj_69_epsilon_0_to_fp16 = const()[name = string("obj_69_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_69_cast_fp16 = batch_norm(beta = obj_69_beta_0_to_fp16, epsilon = obj_69_epsilon_0_to_fp16, gamma = obj_69_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_21_cast_fp16)[name = string("obj_69_cast_fp16")]; |
|
string query_pad_type_0 = const()[name = string("query_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> query_strides_0 = const()[name = string("query_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> query_pad_0 = const()[name = string("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> query_dilations_0 = const()[name = string("query_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 query_groups_0 = const()[name = string("query_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_q_proj_weight_to_fp16 = const()[name = string("layers_3_encoder_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(284807616)))]; |
|
tensor<fp16, [1280]> layers_3_encoder_attn_q_proj_bias_to_fp16 = const()[name = string("layers_3_encoder_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(288084480)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> query_cast_fp16 = conv(bias = layers_3_encoder_attn_q_proj_bias_to_fp16, dilations = query_dilations_0, groups = query_groups_0, pad = query_pad_0, pad_type = query_pad_type_0, strides = query_strides_0, weight = layers_3_encoder_attn_q_proj_weight_to_fp16, x = obj_69_cast_fp16)[name = string("query_cast_fp16")]; |
|
tensor<int32, [4]> var_835 = const()[name = string("op_835"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1]> mh_q_cast_fp16 = reshape(shape = var_835, x = query_cast_fp16)[name = string("mh_q_cast_fp16")]; |
|
fp16 var_837_to_fp16 = const()[name = string("op_837_to_fp16"), val = fp16(0x1p-3)]; |
|
tensor<fp16, [1, 20, 64, 1]> var_838_cast_fp16 = mul(x = mh_q_cast_fp16, y = var_837_to_fp16)[name = string("op_838_cast_fp16")]; |
|
tensor<int32, [4]> var_839 = const()[name = string("op_839"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_840_cast_fp16 = reshape(shape = var_839, x = obj_71_cast_fp16)[name = string("op_840_cast_fp16")]; |
|
bool mh_w_29_transpose_x_0 = const()[name = string("mh_w_29_transpose_x_0"), val = bool(true)]; |
|
bool mh_w_29_transpose_y_0 = const()[name = string("mh_w_29_transpose_y_0"), val = bool(false)]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_29_cast_fp16 = matmul(transpose_x = mh_w_29_transpose_x_0, transpose_y = mh_w_29_transpose_y_0, x = var_838_cast_fp16, y = var_840_cast_fp16)[name = string("mh_w_29_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> mh_w_cast_fp16 = add(x = mh_w_29_cast_fp16, y = var_214_cast_fp16)[name = string("mh_w_cast_fp16")]; |
|
tensor<fp16, [1, 20, 1, 1536]> obj_77_cast_fp16 = softmax(axis = var_707, x = mh_w_cast_fp16)[name = string("obj_77_cast_fp16")]; |
|
tensor<int32, [4]> var_849 = const()[name = string("op_849"), val = tensor<int32, [4]>([1, 20, 64, -1])]; |
|
tensor<fp16, [1, 20, 64, 1536]> var_850_cast_fp16 = reshape(shape = var_849, x = obj_73_cast_fp16)[name = string("op_850_cast_fp16")]; |
|
bool attn_transpose_x_0 = const()[name = string("attn_transpose_x_0"), val = bool(false)]; |
|
bool attn_transpose_y_0 = const()[name = string("attn_transpose_y_0"), val = bool(true)]; |
|
tensor<fp16, [1, 20, 64, 1]> attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_850_cast_fp16, y = obj_77_cast_fp16)[name = string("attn_cast_fp16")]; |
|
tensor<int32, [4]> var_853 = const()[name = string("op_853"), val = tensor<int32, [4]>([1, 1280, 1, -1])]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_33_cast_fp16 = reshape(shape = var_853, x = attn_cast_fp16)[name = string("input_33_cast_fp16")]; |
|
string obj_75_pad_type_0 = const()[name = string("obj_75_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> obj_75_strides_0 = const()[name = string("obj_75_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> obj_75_pad_0 = const()[name = string("obj_75_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> obj_75_dilations_0 = const()[name = string("obj_75_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 obj_75_groups_0 = const()[name = string("obj_75_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 1280, 1, 1]> layers_3_encoder_attn_o_proj_weight_to_fp16 = const()[name = string("layers_3_encoder_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [1280, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(288087104)))]; |
|
tensor<fp16, [1280]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = string("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291363968)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> obj_75_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = obj_75_dilations_0, groups = obj_75_groups_0, pad = obj_75_pad_0, pad_type = obj_75_pad_type_0, strides = obj_75_strides_0, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = string("obj_75_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_75_cast_fp16)[name = string("inputs_23_cast_fp16")]; |
|
tensor<int32, [1]> out_23_axes_0 = const()[name = string("out_23_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_874_to_fp16 = const()[name = string("op_874_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_874_to_fp16, x = inputs_23_cast_fp16)[name = string("out_23_cast_fp16")]; |
|
tensor<fp16, [1280]> input_35_gamma_0_to_fp16 = const()[name = string("input_35_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291366592)))]; |
|
tensor<fp16, [1280]> input_35_beta_0_to_fp16 = const()[name = string("input_35_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291369216)))]; |
|
fp16 input_35_epsilon_0_to_fp16 = const()[name = string("input_35_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> input_35_cast_fp16 = batch_norm(beta = input_35_beta_0_to_fp16, epsilon = input_35_epsilon_0_to_fp16, gamma = input_35_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_23_cast_fp16)[name = string("input_35_cast_fp16")]; |
|
string input_37_pad_type_0 = const()[name = string("input_37_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> input_37_strides_0 = const()[name = string("input_37_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> input_37_pad_0 = const()[name = string("input_37_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> input_37_dilations_0 = const()[name = string("input_37_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 input_37_groups_0 = const()[name = string("input_37_groups_0"), val = int32(1)]; |
|
tensor<fp16, [5120, 1280, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = string("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [5120, 1280, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291371840)))]; |
|
tensor<fp16, [5120]> layers_3_fc1_bias_to_fp16 = const()[name = string("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [5120]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(304479104)))]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_37_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = input_37_dilations_0, groups = input_37_groups_0, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = input_37_strides_0, weight = layers_3_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = string("input_37_cast_fp16")]; |
|
string input_mode_0 = const()[name = string("input_mode_0"), val = string("EXACT")]; |
|
tensor<fp16, [1, 5120, 1, 1]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_37_cast_fp16)[name = string("input_cast_fp16")]; |
|
string hidden_states_9_pad_type_0 = const()[name = string("hidden_states_9_pad_type_0"), val = string("valid")]; |
|
tensor<int32, [2]> hidden_states_9_strides_0 = const()[name = string("hidden_states_9_strides_0"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = string("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [2]> hidden_states_9_dilations_0 = const()[name = string("hidden_states_9_dilations_0"), val = tensor<int32, [2]>([1, 1])]; |
|
int32 hidden_states_9_groups_0 = const()[name = string("hidden_states_9_groups_0"), val = int32(1)]; |
|
tensor<fp16, [1280, 5120, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = string("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [1280, 5120, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(304489408)))]; |
|
tensor<fp16, [1280]> layers_3_fc2_bias_to_fp16 = const()[name = string("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(317596672)))]; |
|
tensor<fp16, [1, 1280, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = string("hidden_states_9_cast_fp16")]; |
|
tensor<fp16, [1, 1280, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = string("inputs_cast_fp16")]; |
|
tensor<int32, [1]> out_axes_0 = const()[name = string("out_axes_0"), val = tensor<int32, [1]>([1])]; |
|
fp16 var_917_to_fp16 = const()[name = string("op_917_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_917_to_fp16, x = inputs_cast_fp16)[name = string("out_cast_fp16")]; |
|
tensor<fp16, [1280]> hidden_states_gamma_0_to_fp16 = const()[name = string("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(317599296)))]; |
|
tensor<fp16, [1280]> hidden_states_beta_0_to_fp16 = const()[name = string("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [1280]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(317601920)))]; |
|
fp16 hidden_states_epsilon_0_to_fp16 = const()[name = string("hidden_states_epsilon_0_to_fp16"), val = fp16(0x1.5p-17)]; |
|
tensor<fp16, [1, 1280, 1, 1]> hidden_states_cast_fp16 = batch_norm(beta = hidden_states_beta_0_to_fp16, epsilon = hidden_states_epsilon_0_to_fp16, gamma = hidden_states_gamma_0_to_fp16, mean = obj_5_mean_0_to_fp16, variance = obj_5_variance_0_to_fp16, x = out_cast_fp16)[name = string("hidden_states_cast_fp16")]; |
|
tensor<int32, [1]> var_928_axes_0 = const()[name = string("op_928_axes_0"), val = tensor<int32, [1]>([2])]; |
|
tensor<fp16, [1, 1280, 1]> var_928_cast_fp16 = squeeze(axes = var_928_axes_0, x = hidden_states_cast_fp16)[name = string("op_928_cast_fp16")]; |
|
tensor<int32, [3]> var_931_perm_0 = const()[name = string("op_931_perm_0"), val = tensor<int32, [3]>([0, 2, 1])]; |
|
tensor<fp16, [51866]> linear_0_bias_0_to_fp16 = const()[name = string("linear_0_bias_0_to_fp16"), val = tensor<fp16, [51866]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(317604544)))]; |
|
tensor<fp16, [1, 1, 1280]> var_931_cast_fp16 = transpose(perm = var_931_perm_0, x = var_928_cast_fp16)[name = string("transpose_0")]; |
|
tensor<fp16, [1, 1, 51866]> logits = linear(bias = linear_0_bias_0_to_fp16, weight = embed_tokens_weight_to_fp16, x = var_931_cast_fp16)[name = string("linear_0_cast_fp16")]; |
|
int32 var_935 = const()[name = string("op_935"), val = int32(1)]; |
|
bool obj_81_interleave_0 = const()[name = string("obj_81_interleave_0"), val = bool(false)]; |
|
tensor<fp16, [1, 5120, 1, 1]> key_cache_updates = concat(axis = var_935, interleave = obj_81_interleave_0, values = (current_key_1_cast_fp16, current_key_3_cast_fp16, current_key_5_cast_fp16, current_key_cast_fp16))[name = string("obj_81_cast_fp16")]; |
|
int32 var_938 = const()[name = string("op_938"), val = int32(1)]; |
|
bool obj_83_interleave_0 = const()[name = string("obj_83_interleave_0"), val = bool(false)]; |
|
tensor<fp16, [1, 5120, 1, 1]> value_cache_updates = concat(axis = var_938, interleave = obj_83_interleave_0, values = (current_value_1_cast_fp16, current_value_3_cast_fp16, current_value_5_cast_fp16, current_value_cast_fp16))[name = string("obj_83_cast_fp16")]; |
|
tensor<int32, [4]> var_949_begin_0 = const()[name = string("op_949_begin_0"), val = tensor<int32, [4]>([0, 4, 0, 0])]; |
|
tensor<int32, [4]> var_949_end_0 = const()[name = string("op_949_end_0"), val = tensor<int32, [4]>([1, 5, 1, 1536])]; |
|
tensor<bool, [4]> var_949_end_mask_0 = const()[name = string("op_949_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_949_cast_fp16 = slice_by_index(begin = var_949_begin_0, end = var_949_end_0, end_mask = var_949_end_mask_0, x = obj_59_cast_fp16)[name = string("op_949_cast_fp16")]; |
|
tensor<int32, [4]> var_952_begin_0 = const()[name = string("op_952_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_952_end_0 = const()[name = string("op_952_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_952_end_mask_0 = const()[name = string("op_952_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_952_squeeze_mask_0 = const()[name = string("op_952_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_952_cast_fp16 = slice_by_index(begin = var_952_begin_0, end = var_952_end_0, end_mask = var_952_end_mask_0, squeeze_mask = var_952_squeeze_mask_0, x = var_949_cast_fp16)[name = string("op_952_cast_fp16")]; |
|
tensor<int32, [4]> var_967_begin_0 = const()[name = string("op_967_begin_0"), val = tensor<int32, [4]>([0, 11, 0, 0])]; |
|
tensor<int32, [4]> var_967_end_0 = const()[name = string("op_967_end_0"), val = tensor<int32, [4]>([1, 12, 1, 1536])]; |
|
tensor<bool, [4]> var_967_end_mask_0 = const()[name = string("op_967_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_967_cast_fp16 = slice_by_index(begin = var_967_begin_0, end = var_967_end_0, end_mask = var_967_end_mask_0, x = obj_59_cast_fp16)[name = string("op_967_cast_fp16")]; |
|
tensor<int32, [4]> var_970_begin_0 = const()[name = string("op_970_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_970_end_0 = const()[name = string("op_970_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_970_end_mask_0 = const()[name = string("op_970_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_970_squeeze_mask_0 = const()[name = string("op_970_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_970_cast_fp16 = slice_by_index(begin = var_970_begin_0, end = var_970_end_0, end_mask = var_970_end_mask_0, squeeze_mask = var_970_squeeze_mask_0, x = var_967_cast_fp16)[name = string("op_970_cast_fp16")]; |
|
tensor<int32, [4]> var_985_begin_0 = const()[name = string("op_985_begin_0"), val = tensor<int32, [4]>([0, 3, 0, 0])]; |
|
tensor<int32, [4]> var_985_end_0 = const()[name = string("op_985_end_0"), val = tensor<int32, [4]>([1, 4, 1, 1536])]; |
|
tensor<bool, [4]> var_985_end_mask_0 = const()[name = string("op_985_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_985_cast_fp16 = slice_by_index(begin = var_985_begin_0, end = var_985_end_0, end_mask = var_985_end_mask_0, x = obj_77_cast_fp16)[name = string("op_985_cast_fp16")]; |
|
tensor<int32, [4]> var_988_begin_0 = const()[name = string("op_988_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_988_end_0 = const()[name = string("op_988_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_988_end_mask_0 = const()[name = string("op_988_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_988_squeeze_mask_0 = const()[name = string("op_988_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_988_cast_fp16 = slice_by_index(begin = var_988_begin_0, end = var_988_end_0, end_mask = var_988_end_mask_0, squeeze_mask = var_988_squeeze_mask_0, x = var_985_cast_fp16)[name = string("op_988_cast_fp16")]; |
|
tensor<int32, [4]> var_1003_begin_0 = const()[name = string("op_1003_begin_0"), val = tensor<int32, [4]>([0, 6, 0, 0])]; |
|
tensor<int32, [4]> var_1003_end_0 = const()[name = string("op_1003_end_0"), val = tensor<int32, [4]>([1, 7, 1, 1536])]; |
|
tensor<bool, [4]> var_1003_end_mask_0 = const()[name = string("op_1003_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_1003_cast_fp16 = slice_by_index(begin = var_1003_begin_0, end = var_1003_end_0, end_mask = var_1003_end_mask_0, x = obj_77_cast_fp16)[name = string("op_1003_cast_fp16")]; |
|
tensor<int32, [4]> var_1006_begin_0 = const()[name = string("op_1006_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_1006_end_0 = const()[name = string("op_1006_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_1006_end_mask_0 = const()[name = string("op_1006_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_1006_squeeze_mask_0 = const()[name = string("op_1006_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_1006_cast_fp16 = slice_by_index(begin = var_1006_begin_0, end = var_1006_end_0, end_mask = var_1006_end_mask_0, squeeze_mask = var_1006_squeeze_mask_0, x = var_1003_cast_fp16)[name = string("op_1006_cast_fp16")]; |
|
tensor<int32, [4]> var_1021_begin_0 = const()[name = string("op_1021_begin_0"), val = tensor<int32, [4]>([0, 11, 0, 0])]; |
|
tensor<int32, [4]> var_1021_end_0 = const()[name = string("op_1021_end_0"), val = tensor<int32, [4]>([1, 12, 1, 1536])]; |
|
tensor<bool, [4]> var_1021_end_mask_0 = const()[name = string("op_1021_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_1021_cast_fp16 = slice_by_index(begin = var_1021_begin_0, end = var_1021_end_0, end_mask = var_1021_end_mask_0, x = obj_77_cast_fp16)[name = string("op_1021_cast_fp16")]; |
|
tensor<int32, [4]> var_1024_begin_0 = const()[name = string("op_1024_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_1024_end_0 = const()[name = string("op_1024_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_1024_end_mask_0 = const()[name = string("op_1024_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_1024_squeeze_mask_0 = const()[name = string("op_1024_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_1024_cast_fp16 = slice_by_index(begin = var_1024_begin_0, end = var_1024_end_0, end_mask = var_1024_end_mask_0, squeeze_mask = var_1024_squeeze_mask_0, x = var_1021_cast_fp16)[name = string("op_1024_cast_fp16")]; |
|
tensor<int32, [4]> var_1039_begin_0 = const()[name = string("op_1039_begin_0"), val = tensor<int32, [4]>([0, 14, 0, 0])]; |
|
tensor<int32, [4]> var_1039_end_0 = const()[name = string("op_1039_end_0"), val = tensor<int32, [4]>([1, 15, 1, 1536])]; |
|
tensor<bool, [4]> var_1039_end_mask_0 = const()[name = string("op_1039_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])]; |
|
tensor<fp16, [1, 1, 1, 1536]> var_1039_cast_fp16 = slice_by_index(begin = var_1039_begin_0, end = var_1039_end_0, end_mask = var_1039_end_mask_0, x = obj_77_cast_fp16)[name = string("op_1039_cast_fp16")]; |
|
tensor<int32, [4]> var_1042_begin_0 = const()[name = string("op_1042_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<int32, [4]> var_1042_end_0 = const()[name = string("op_1042_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1536])]; |
|
tensor<bool, [4]> var_1042_end_mask_0 = const()[name = string("op_1042_end_mask_0"), val = tensor<bool, [4]>([true, true, false, true])]; |
|
tensor<bool, [4]> var_1042_squeeze_mask_0 = const()[name = string("op_1042_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, true, false])]; |
|
tensor<fp16, [1, 1, 1536]> var_1042_cast_fp16 = slice_by_index(begin = var_1042_begin_0, end = var_1042_end_0, end_mask = var_1042_end_mask_0, squeeze_mask = var_1042_squeeze_mask_0, x = var_1039_cast_fp16)[name = string("op_1042_cast_fp16")]; |
|
int32 var_1049 = const()[name = string("op_1049"), val = int32(1)]; |
|
bool var_1050_interleave_0 = const()[name = string("op_1050_interleave_0"), val = bool(false)]; |
|
tensor<fp16, [1, 6, 1536]> var_1050_cast_fp16 = concat(axis = var_1049, interleave = var_1050_interleave_0, values = (var_952_cast_fp16, var_970_cast_fp16, var_988_cast_fp16, var_1006_cast_fp16, var_1024_cast_fp16, var_1042_cast_fp16))[name = string("op_1050_cast_fp16")]; |
|
bool var_1053 = const()[name = string("op_1053"), val = bool(false)]; |
|
tensor<int32, [1]> obj_axes_0 = const()[name = string("obj_axes_0"), val = tensor<int32, [1]>([1])]; |
|
tensor<fp16, [1, 1536]> alignment_heads_weights = reduce_mean(axes = obj_axes_0, keep_dims = var_1053, x = var_1050_cast_fp16)[name = string("obj_cast_fp16")]; |
|
} -> (logits, key_cache_updates, value_cache_updates, alignment_heads_weights); |
|
} |