Shamane commited on
Commit
786d7b1
·
verified ·
1 Parent(s): a00b097

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +180 -195
README.md CHANGED
@@ -1,199 +1,184 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - mergekit
5
+ - block expansion
6
+ - progressive mistral
7
+ - arcee cpt
8
  ---
9
 
10
+ # Mistral-7B-Instruct-v0.2-expanded
11
+
12
+ This method employs mergekit's passthrough method to expand blocks within the "mistralai/Mistral-7B-Instruct-v0.2" model. For every fourth layer,
13
+ a new layer is added, with the `o_proj` and `down_proj` parameters of these added layers initialized to zero, mirroring the approach used in LLaMA Pro.
14
+ It's important to note that this configuration has not undergone fine-tuning. Therefore, when fine-tuning, ensure that only every fourth layer is adjusted,
15
+ while all other layers remain frozen.
16
+
17
+ ## 🧩 Configuration
18
+
19
+ ```yaml
20
+ slices:
21
+ - sources:
22
+ - model: mistralai/Mistral-7B-Instruct-v0.2
23
+ layer_range: [0, 4]
24
+ - sources:
25
+ - model: mistralai/Mistral-7B-Instruct-v0.2
26
+ layer_range: [3, 4]
27
+ parameters:
28
+ scale:
29
+ - filter: o_proj
30
+ value: 0.0
31
+ - filter: down_proj
32
+ value: 0.0
33
+ - value: 1.0
34
+
35
+ - sources:
36
+ - model: mistralai/Mistral-7B-Instruct-v0.2
37
+ layer_range: [4, 8]
38
+ - sources:
39
+ - model: mistralai/Mistral-7B-Instruct-v0.2
40
+ layer_range: [7, 8]
41
+ parameters:
42
+ scale:
43
+ - filter: o_proj
44
+ value: 0.0
45
+ - filter: down_proj
46
+ value: 0.0
47
+ - value: 1.0
48
+
49
+ - sources:
50
+ - model: mistralai/Mistral-7B-Instruct-v0.2
51
+ layer_range: [8, 12]
52
+ - sources:
53
+ - model: mistralai/Mistral-7B-Instruct-v0.2
54
+ layer_range: [11, 12]
55
+ parameters:
56
+ scale:
57
+ - filter: o_proj
58
+ value: 0.0
59
+ - filter: down_proj
60
+ value: 0.0
61
+ - value: 1.0
62
+
63
+ - sources:
64
+ - model: mistralai/Mistral-7B-Instruct-v0.2
65
+ layer_range: [12, 16]
66
+ - sources:
67
+ - model: mistralai/Mistral-7B-Instruct-v0.2
68
+ layer_range: [15, 16]
69
+ parameters:
70
+ scale:
71
+ - filter: o_proj
72
+ value: 0.0
73
+ - filter: down_proj
74
+ value: 0.0
75
+ - value: 1.0
76
+
77
+ - sources:
78
+ - model: mistralai/Mistral-7B-Instruct-v0.2
79
+ layer_range: [16, 20]
80
+ - sources:
81
+ - model: mistralai/Mistral-7B-Instruct-v0.2
82
+ layer_range: [19, 20]
83
+ parameters:
84
+ scale:
85
+ - filter: o_proj
86
+ value: 0.0
87
+ - filter: down_proj
88
+ value: 0.0
89
+ - value: 1.0
90
+
91
+ - sources:
92
+ - model: mistralai/Mistral-7B-Instruct-v0.2
93
+ layer_range: [20, 24]
94
+ - sources:
95
+ - model: mistralai/Mistral-7B-Instruct-v0.2
96
+ layer_range: [23, 24]
97
+ parameters:
98
+ scale:
99
+ - filter: o_proj
100
+ value: 0.0
101
+ - filter: down_proj
102
+ value: 0.0
103
+ - value: 1.0
104
+
105
+ - sources:
106
+ - model: mistralai/Mistral-7B-Instruct-v0.2
107
+ layer_range: [24, 28]
108
+ - sources:
109
+ - model: mistralai/Mistral-7B-Instruct-v0.2
110
+ layer_range: [27, 28]
111
+ parameters:
112
+ scale:
113
+ - filter: o_proj
114
+ value: 0.0
115
+ - filter: down_proj
116
+ value: 0.0
117
+ - value: 1.0
118
+
119
+ - sources:
120
+ - model: mistralai/Mistral-7B-Instruct-v0.2
121
+ layer_range: [28, 32]
122
+ - sources:
123
+ - model: mistralai/Mistral-7B-Instruct-v0.2
124
+ layer_range: [31, 32]
125
+ parameters:
126
+ scale:
127
+ - filter: o_proj
128
+ value: 0.0
129
+ - filter: down_proj
130
+ value: 0.0
131
+ - value: 1.0
132
+
133
+ merge_method: passthrough
134
+ dtype: bfloat16
135
+ ```
136
+
137
+ # Function to freeze layers
138
+
139
+ ```
140
+ from transformers import AutoModelForCausalLM
141
+
142
+ def enable_grad_only_every_nth(model, n):
143
+ """
144
+ This function configures the specified model to enable gradient calculations exclusively for every nth layer, starting
145
+ from the first layer (0-indexed), to accommodate newly added blocks for training. Concurrently, it freezes the gradients
146
+ for all other components of the model, including the embedding layers and the model's head. This setup is particularly
147
+ useful for fine-tuning processes where only a subset of layers are targeted for updates, ensuring efficient training and
148
+ adaptation of newly integrated layers while maintaining the pre-trained behavior of other model components.
149
+
150
+ :param model: The model instance, which is expected to have a structure compatible with selective layer training, such
151
+ as AutoModelForCausalLM.
152
+ :param n: The interval at which layers are selected for gradient enabling, starting with the first layer. This
153
+ parameter determines the sparsity of active training within the model's architecture, allowing for focused updates
154
+ on specific layers.
155
+ """
156
+
157
+ # Freeze embeddings.
158
+ for param in model.model.embed_tokens.parameters():
159
+ param.requires_grad = False
160
+
161
+ # Freeze lm_head.
162
+ for param in model.lm_head.parameters():
163
+ param.requires_grad = False
164
+
165
+ # Enable gradients for every nth layer
166
+ layers = model.model.layers # Access the ModuleList containing the layers
167
+
168
+ for index, layer in enumerate(layers):
169
+
170
+ if (index + 1) % n == 0: # Enables gradients for every nth layer, starting from the layer after the 0th
171
+ for param in layer.parameters():
172
+ param.requires_grad = True
173
+ else:
174
+ for param in layer.parameters():
175
+ param.requires_grad = False
176
+
177
+ model = transformers.AutoModelForCausalLM.from_pretrained(
178
+ "arcee-ai/Mistral-7B-Instruct-v0.2-expanded"
179
+ )
180
+ # Update layer gradients, specify the correct value for n based on your model's architecture
181
+ n =5
182
+ enable_grad_only_every_nth(model, n)
183
+ model_args.model_name_or_path = model
184
+ ```