See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-128k
bf16: false
bnb_4bit_compute_dtype: float16
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 12015d7c9ee7f3df_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: None
field_instruction: instruct
field_output: output
field_system: None
format: None
no_input_format: None
system_format: '{system}'
system_prompt: None
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: apriasmoro/a82a4c0f-d00b-4fc8-a7fd-50686dfbfdfa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 15
micro_batch_size: 2
mlflow_experiment_name: /tmp/12015d7c9ee7f3df_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0aa91fdd-f464-4c35-9e87-5ba2524c6ece
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0aa91fdd-f464-4c35-9e87-5ba2524c6ece
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a82a4c0f-d00b-4fc8-a7fd-50686dfbfdfa
This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-128k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5445
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9751 | 0.0833 | 1 | 2.3940 |
2.0094 | 0.3333 | 4 | 2.4003 |
2.8711 | 0.6667 | 8 | 2.4059 |
1.9125 | 1.0 | 12 | 2.5445 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for apriasmoro/a82a4c0f-d00b-4fc8-a7fd-50686dfbfdfa
Base model
NousResearch/Yarn-Mistral-7b-128k