--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen3-8B-Base tags: - axolotl - generated_from_trainer model-index: - name: 858325b3-3f7f-4cca-8e72-c9c7f57952a4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: Qwen/Qwen3-8B-Base bf16: true chat_template: llama3 datasets: - data_files: - 45c346a7c1e52747_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: None field_instruction: instruct field_output: output field_system: None format: None no_input_format: None system_format: '{system}' system_prompt: None eval_max_new_tokens: 256 evals_per_epoch: 2 flash_attention: false fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: apriasmoro/858325b3-3f7f-4cca-8e72-c9c7f57952a4 learning_rate: 0.0002 logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 1 micro_batch_size: 4 mlflow_experiment_name: /tmp/45c346a7c1e52747_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true sample_packing: false save_steps: 380 sequence_len: 2048 tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c732d2b4-46df-4ed8-83ee-7525f648965h wandb_project: Gradients-On-Demand wandb_run: apriasmoro wandb_runid: c732d2b4-46df-4ed8-83ee-7525f648965h warmup_steps: 100 weight_decay: 0.01 ```

# 858325b3-3f7f-4cca-8e72-c9c7f57952a4 This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0031 | 1 | 1.3931 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1