apriasmoro commited on
Commit
ca58dac
·
verified ·
1 Parent(s): dbbfa80

End of training

Browse files
Files changed (1) hide show
  1. README.md +158 -0
README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen3-8B-Base
5
+ tags:
6
+ - axolotl
7
+ - base_model:adapter:Qwen/Qwen3-8B-Base
8
+ - lora
9
+ - transformers
10
+ pipeline_tag: text-generation
11
+ model-index:
12
+ - name: 095d4331-de34-4132-bce0-29cbd9134a0e
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
20
+ <details><summary>See axolotl config</summary>
21
+
22
+ axolotl version: `0.12.0.dev0`
23
+ ```yaml
24
+ adapter: lora
25
+ base_model: Qwen/Qwen3-8B-Base
26
+ bf16: true
27
+ chat_template: llama3
28
+ dataloader_num_workers: 12
29
+ dataset_prepared_path: null
30
+ datasets:
31
+ - data_files:
32
+ - 45c346a7c1e52747_train_data.json
33
+ ds_type: json
34
+ format: custom
35
+ path: /workspace/input_data/
36
+ type:
37
+ field_input: None
38
+ field_instruction: instruct
39
+ field_output: output
40
+ field_system: None
41
+ format: None
42
+ no_input_format: None
43
+ system_format: '{system}'
44
+ system_prompt: None
45
+ ddp: true
46
+ debug: null
47
+ deepspeed: null
48
+ device_map: cuda
49
+ early_stopping_patience: null
50
+ eval_max_new_tokens: 128
51
+ eval_steps: null
52
+ eval_table_size: null
53
+ evals_per_epoch: null
54
+ flash_attention: true
55
+ fp16: false
56
+ fsdp: null
57
+ fsdp_config: null
58
+ gradient_accumulation_steps: 1
59
+ gradient_checkpointing: true
60
+ gradient_checkpointing_kwargs:
61
+ use_reentrant: false
62
+ group_by_length: true
63
+ hub_model_id: apriasmoro/095d4331-de34-4132-bce0-29cbd9134a0e
64
+ hub_repo: null
65
+ hub_strategy: checkpoint
66
+ hub_token: null
67
+ learning_rate: 0.0002
68
+ load_in_4bit: false
69
+ load_in_8bit: false
70
+ local_rank: null
71
+ logging_steps: null
72
+ lora_alpha: 64
73
+ lora_dropout: 0.05
74
+ lora_fan_in_fan_out: null
75
+ lora_model_dir: null
76
+ lora_r: 32
77
+ lora_target_linear: true
78
+ loraplus_lr_embedding: 1.0e-06
79
+ loraplus_lr_ratio: 16
80
+ lr_scheduler: cosine
81
+ max_grad_norm: 1
82
+ max_steps: 20
83
+ micro_batch_size: 40
84
+ mlflow_experiment_name: /tmp/45c346a7c1e52747_train_data.json
85
+ model_card: false
86
+ model_type: AutoModelForCausalLM
87
+ num_epochs: 200
88
+ optimizer: adamw_bnb_8bit
89
+ output_dir: miner_id_24
90
+ pad_to_sequence_len: true
91
+ resume_from_checkpoint: null
92
+ rl: null
93
+ s2_attention: null
94
+ sample_packing: true
95
+ save_steps: 100
96
+ save_total_limit: 10
97
+ saves_per_epoch: 0
98
+ sequence_len: 1024
99
+ strict: false
100
+ tf32: true
101
+ tokenizer_type: AutoTokenizer
102
+ train_on_inputs: false
103
+ trl: null
104
+ trust_remote_code: false
105
+ val_set_size: 0.0
106
+ wandb_name: c732d2b4-46df-4ed8-83ee-7525f648965f
107
+ wandb_project: Gradients-On-Demand
108
+ wandb_run: apriasmoro
109
+ wandb_runid: c732d2b4-46df-4ed8-83ee-7525f648965f
110
+ warmup_steps: 200
111
+ weight_decay: 0
112
+ xformers_attention: null
113
+
114
+ ```
115
+
116
+ </details><br>
117
+
118
+ # 095d4331-de34-4132-bce0-29cbd9134a0e
119
+
120
+ This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on an unknown dataset.
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 0.0002
140
+ - train_batch_size: 40
141
+ - eval_batch_size: 40
142
+ - seed: 42
143
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
144
+ - lr_scheduler_type: cosine
145
+ - lr_scheduler_warmup_steps: 200
146
+ - training_steps: 20
147
+
148
+ ### Training results
149
+
150
+
151
+
152
+ ### Framework versions
153
+
154
+ - PEFT 0.16.0
155
+ - Transformers 4.53.2
156
+ - Pytorch 2.7.1+cu128
157
+ - Datasets 4.0.0
158
+ - Tokenizers 0.21.2