--- library_name: transformers tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xml-roberta-large-v3 results: [] --- # xml-roberta-large-v3 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0792 - Precision: 0.9448 - Recall: 0.9726 - F1: 0.9585 - Accuracy: 0.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3722 | 1.0 | 204 | 0.2039 | 0.8490 | 0.8680 | 0.8584 | 0.9440 | | 0.1353 | 2.0 | 408 | 0.0930 | 0.9324 | 0.9626 | 0.9473 | 0.9759 | | 0.0969 | 3.0 | 612 | 0.0869 | 0.9407 | 0.9684 | 0.9543 | 0.9776 | | 0.0785 | 4.0 | 816 | 0.0818 | 0.9411 | 0.9729 | 0.9568 | 0.9793 | | 0.0498 | 5.0 | 1020 | 0.0792 | 0.9448 | 0.9726 | 0.9585 | 0.9806 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3