--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xml-roberta-large-finetuned-corregido-tokenizadorES-mama results: [] --- # xml-roberta-large-finetuned-corregido-tokenizadorES-mama This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It achieves the following results on the evaluation set: - Loss: 0.0460 - Precision: 0.9110 - Recall: 0.9394 - F1: 0.9250 - Accuracy: 0.9866 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.6643 | 1.0 | 86 | 2.5267 | 0.0 | 0.0 | 0.0 | 0.5837 | | 1.9359 | 2.0 | 172 | 1.9628 | 0.0 | 0.0 | 0.0 | 0.6009 | | 1.6777 | 3.0 | 258 | 1.6615 | 0.0357 | 0.0242 | 0.0289 | 0.6589 | | 1.4374 | 4.0 | 344 | 1.3392 | 0.0945 | 0.0474 | 0.0632 | 0.7071 | | 1.1194 | 5.0 | 430 | 1.0558 | 0.1712 | 0.1270 | 0.1458 | 0.7528 | | 0.9551 | 6.0 | 516 | 0.8403 | 0.2826 | 0.2219 | 0.2486 | 0.7989 | | 0.7683 | 7.0 | 602 | 0.6553 | 0.3573 | 0.3927 | 0.3742 | 0.8331 | | 0.6506 | 8.0 | 688 | 0.4905 | 0.5 | 0.5087 | 0.5043 | 0.8727 | | 0.5431 | 9.0 | 774 | 0.3954 | 0.5765 | 0.5941 | 0.5852 | 0.8949 | | 0.4028 | 10.0 | 860 | 0.3061 | 0.6303 | 0.6632 | 0.6463 | 0.9178 | | 0.3332 | 11.0 | 946 | 0.2540 | 0.6569 | 0.7296 | 0.6913 | 0.9313 | | 0.2715 | 12.0 | 1032 | 0.2007 | 0.7223 | 0.7707 | 0.7457 | 0.9461 | | 0.2678 | 13.0 | 1118 | 0.1619 | 0.7506 | 0.8013 | 0.7751 | 0.9557 | | 0.2267 | 14.0 | 1204 | 0.1468 | 0.7608 | 0.8318 | 0.7948 | 0.9603 | | 0.1875 | 15.0 | 1290 | 0.1357 | 0.7759 | 0.8413 | 0.8073 | 0.9640 | | 0.1753 | 16.0 | 1376 | 0.1166 | 0.8112 | 0.8651 | 0.8372 | 0.9692 | | 0.1616 | 17.0 | 1462 | 0.0967 | 0.8204 | 0.8788 | 0.8486 | 0.9731 | | 0.1337 | 18.0 | 1548 | 0.0854 | 0.8389 | 0.8951 | 0.8661 | 0.9762 | | 0.1298 | 19.0 | 1634 | 0.0676 | 0.8623 | 0.9014 | 0.8814 | 0.9804 | | 0.1115 | 20.0 | 1720 | 0.0701 | 0.8687 | 0.9135 | 0.8905 | 0.9808 | | 0.1139 | 21.0 | 1806 | 0.0602 | 0.8916 | 0.9278 | 0.9093 | 0.9830 | | 0.114 | 22.0 | 1892 | 0.0543 | 0.8957 | 0.9278 | 0.9114 | 0.9842 | | 0.0944 | 23.0 | 1978 | 0.0569 | 0.8922 | 0.9341 | 0.9127 | 0.9843 | | 0.0893 | 24.0 | 2064 | 0.0517 | 0.8986 | 0.9346 | 0.9163 | 0.9852 | | 0.0836 | 25.0 | 2150 | 0.0476 | 0.9057 | 0.9367 | 0.9210 | 0.9862 | | 0.0841 | 26.0 | 2236 | 0.0489 | 0.9062 | 0.9367 | 0.9212 | 0.9859 | | 0.0865 | 27.0 | 2322 | 0.0459 | 0.9095 | 0.9378 | 0.9234 | 0.9866 | | 0.0859 | 28.0 | 2408 | 0.0464 | 0.9096 | 0.9394 | 0.9243 | 0.9866 | | 0.0796 | 29.0 | 2494 | 0.0461 | 0.9101 | 0.9394 | 0.9245 | 0.9866 | | 0.0774 | 29.6550 | 2550 | 0.0460 | 0.9110 | 0.9394 | 0.9250 | 0.9866 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1