--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: breast-cancer-biomedical-ner-sp results: [] language: - es pipeline_tag: token-classification --- # breast-cancer-biomedical-ner-sp This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the breast cancer dataset in spanish: [anvorja/breast_cancer_es_dataset](https://huggingface.co/datasets/anvorja/breast_cancer_es_dataset). It achieves the following results on the evaluation set: - Loss: 0.0178 - Precision: 0.9793 - Recall: 0.9867 - F1: 0.9830 - Accuracy: 0.9948 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.1649 | 1.0 | 112 | 1.9231 | 0.0099 | 0.0051 | 0.0067 | 0.6051 | | 0.8237 | 2.0 | 224 | 0.6627 | 0.5850 | 0.5669 | 0.5758 | 0.8329 | | 0.391 | 3.0 | 336 | 0.3065 | 0.7703 | 0.8068 | 0.7882 | 0.9269 | | 0.2341 | 4.0 | 448 | 0.1873 | 0.8221 | 0.875 | 0.8477 | 0.9558 | | 0.1588 | 5.0 | 560 | 0.1463 | 0.8642 | 0.9078 | 0.8855 | 0.9641 | | 0.129 | 6.0 | 672 | 0.1099 | 0.8836 | 0.9205 | 0.9017 | 0.9720 | | 0.1098 | 7.0 | 784 | 0.0902 | 0.9166 | 0.9501 | 0.9330 | 0.9798 | | 0.0764 | 8.0 | 896 | 0.0772 | 0.9167 | 0.9444 | 0.9303 | 0.9822 | | 0.0745 | 9.0 | 1008 | 0.0613 | 0.9358 | 0.9577 | 0.9466 | 0.9856 | | 0.0645 | 10.0 | 1120 | 0.0496 | 0.9564 | 0.9691 | 0.9627 | 0.9891 | | 0.0623 | 11.0 | 1232 | 0.0426 | 0.9595 | 0.9722 | 0.9658 | 0.9898 | | 0.0489 | 12.0 | 1344 | 0.0393 | 0.9596 | 0.9741 | 0.9668 | 0.9901 | | 0.0389 | 13.0 | 1456 | 0.0307 | 0.9646 | 0.9798 | 0.9721 | 0.9917 | | 0.0371 | 14.0 | 1568 | 0.0255 | 0.9737 | 0.9798 | 0.9767 | 0.9934 | | 0.0232 | 15.0 | 1680 | 0.0228 | 0.9756 | 0.9830 | 0.9792 | 0.9939 | | 0.0237 | 16.0 | 1792 | 0.0205 | 0.9762 | 0.9842 | 0.9802 | 0.9939 | | 0.0262 | 17.0 | 1904 | 0.0178 | 0.9793 | 0.9867 | 0.9830 | 0.9948 | | 0.0189 | 18.0 | 2016 | 0.0174 | 0.9793 | 0.9855 | 0.9824 | 0.9947 | | 0.0188 | 19.0 | 2128 | 0.0170 | 0.9774 | 0.9848 | 0.9811 | 0.9946 | | 0.0214 | 20.0 | 2240 | 0.0172 | 0.9781 | 0.9855 | 0.9818 | 0.9945 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1 ## License CC-BY-SA-4.0