--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-ner-finetuned-con-kaggle results: [] --- # biobert-ner-finetuned This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0894 - Precision: 0.9293 - Recall: 0.9551 - F1: 0.9420 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 306 | 0.2575 | 0.7864 | 0.8034 | 0.7948 | 0.9322 | | 0.8692 | 2.0 | 612 | 0.0949 | 0.9170 | 0.9451 | 0.9308 | 0.9759 | | 0.8692 | 3.0 | 918 | 0.0854 | 0.9234 | 0.9607 | 0.9417 | 0.9791 | | 0.1096 | 4.0 | 1224 | 0.0768 | 0.9333 | 0.9585 | 0.9457 | 0.9809 | | 0.0656 | 5.0 | 1530 | 0.0772 | 0.9320 | 0.9562 | 0.9439 | 0.9806 | | 0.0656 | 6.0 | 1836 | 0.0810 | 0.9360 | 0.9575 | 0.9466 | 0.9806 | | 0.0468 | 7.0 | 2142 | 0.0827 | 0.9308 | 0.9580 | 0.9442 | 0.9803 | | 0.0468 | 8.0 | 2448 | 0.0890 | 0.9248 | 0.9568 | 0.9405 | 0.9788 | | 0.038 | 9.0 | 2754 | 0.0859 | 0.9345 | 0.9579 | 0.9460 | 0.9806 | | 0.031 | 10.0 | 3060 | 0.0894 | 0.9293 | 0.9551 | 0.9420 | 0.9795 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0