--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: la-xml-roberta-large-ner-finetuned-biomedical results: [] --- # xml-roberta-large-ner-finetuned-biomedical This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0856 - Precision: 0.9255 - Recall: 0.9564 - F1: 0.9407 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6562 | 1.0 | 612 | 0.0902 | 0.9225 | 0.9397 | 0.9310 | 0.9740 | | 0.1069 | 2.0 | 1224 | 0.0833 | 0.9143 | 0.9550 | 0.9342 | 0.9771 | | 0.0788 | 3.0 | 1836 | 0.0873 | 0.9242 | 0.9576 | 0.9406 | 0.9785 | | 0.0619 | 4.0 | 2448 | 0.0863 | 0.9282 | 0.9557 | 0.9417 | 0.9790 | | 0.0466 | 5.0 | 3060 | 0.0856 | 0.9255 | 0.9564 | 0.9407 | 0.9788 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3