anvorja commited on
Commit
f2006ab
·
verified ·
1 Parent(s): ec7e2f7

End of training

Browse files
Files changed (2) hide show
  1. README.md +73 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: raulgdp/xml-roberta-large-finetuned-ner
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: la-xml-roberta-large-ner-finetuned-biomedical-t4
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # la-xml-roberta-large-ner-finetuned-biomedical-t4
20
+
21
+ This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1139
24
+ - Precision: 0.9234
25
+ - Recall: 0.9548
26
+ - F1: 0.9388
27
+ - Accuracy: 0.9786
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 2
51
+ - total_train_batch_size: 4
52
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_steps: 200
55
+ - num_epochs: 5
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.1235 | 1.0 | 2447 | 0.0949 | 0.9076 | 0.9524 | 0.9294 | 0.9738 |
62
+ | 0.0859 | 2.0 | 4894 | 0.1034 | 0.9222 | 0.9597 | 0.9406 | 0.9778 |
63
+ | 0.063 | 3.0 | 7341 | 0.1005 | 0.9330 | 0.9600 | 0.9463 | 0.9807 |
64
+ | 0.059 | 4.0 | 9788 | 0.1065 | 0.9350 | 0.9577 | 0.9463 | 0.9806 |
65
+ | 0.0513 | 5.0 | 12235 | 0.1139 | 0.9234 | 0.9548 | 0.9388 | 0.9786 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.46.2
71
+ - Pytorch 2.5.1+cu121
72
+ - Datasets 3.1.0
73
+ - Tokenizers 0.20.3
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea7db0805d6e4a519c462bdc152b5f5568172fcba27dee93b8874647daed5d7f
3
  size 2235534864
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a83be4796faf3c491091829bf07de62d8381904e07a5f3cd4a936f66b1deba
3
  size 2235534864