--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xml-roberta-large-ner-finetuned-biomedical-conT4-16 results: [] --- # xml-roberta-large-ner-finetuned-biomedical This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0755 - Precision: 0.9291 - Recall: 0.9569 - F1: 0.9428 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 306 | 0.1016 | 0.9102 | 0.9308 | 0.9204 | 0.9711 | | 0.6706 | 2.0 | 612 | 0.0809 | 0.9237 | 0.9598 | 0.9414 | 0.9784 | | 0.6706 | 3.0 | 918 | 0.0696 | 0.9371 | 0.9612 | 0.9490 | 0.9817 | | 0.079 | 4.0 | 1224 | 0.0738 | 0.9318 | 0.9582 | 0.9448 | 0.9803 | | 0.0564 | 5.0 | 1530 | 0.0755 | 0.9291 | 0.9569 | 0.9428 | 0.9798 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3