--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned results: [] --- # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0396 - Accuracy: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.34 | 1.0 | 10500 | 0.3049 | 0.8909 | | 0.2648 | 2.0 | 21000 | 0.3869 | 0.8980 | | 0.203 | 3.0 | 31500 | 0.4494 | 0.8969 | | 0.1493 | 4.0 | 42000 | 0.5825 | 0.8958 | | 0.1103 | 5.0 | 52500 | 0.6355 | 0.8983 | | 0.0642 | 6.0 | 63000 | 0.7923 | 0.8981 | | 0.0593 | 7.0 | 73500 | 0.8063 | 0.8969 | | 0.0274 | 8.0 | 84000 | 0.8779 | 0.8997 | | 0.0142 | 9.0 | 94500 | 0.9841 | 0.8993 | | 0.0137 | 10.0 | 105000 | 1.0396 | 0.9000 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3