File size: 1,661 Bytes
04aa4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3433f7
 
04aa4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b043afd
 
04aa4f4
 
 
b043afd
04aa4f4
 
 
b043afd
 
e3433f7
 
 
 
 
04aa4f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7875
- Accuracy: 0.8361

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4516        | 1.0   | 3272  | 0.4798          | 0.7979   |
| 0.3258        | 2.0   | 6544  | 0.4744          | 0.8218   |
| 0.217         | 3.0   | 9816  | 0.5014          | 0.8340   |
| 0.1633        | 4.0   | 13088 | 0.6027          | 0.8474   |
| 0.1122        | 5.0   | 16360 | 0.7875          | 0.8361   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3