annasoli commited on
Commit
906b4c6
·
verified ·
1 Parent(s): a0309a7

Training in progress, step 360, checkpoint

Browse files
.gitattributes CHANGED
@@ -69,3 +69,4 @@ checkpoint-320/tokenizer.json filter=lfs diff=lfs merge=lfs -text
69
  checkpoint-330/tokenizer.json filter=lfs diff=lfs merge=lfs -text
70
  checkpoint-340/tokenizer.json filter=lfs diff=lfs merge=lfs -text
71
  checkpoint-350/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
69
  checkpoint-330/tokenizer.json filter=lfs diff=lfs merge=lfs -text
70
  checkpoint-340/tokenizer.json filter=lfs diff=lfs merge=lfs -text
71
  checkpoint-350/tokenizer.json filter=lfs diff=lfs merge=lfs -text
72
+ checkpoint-360/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-360/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gpt-oss-20b
3
+ library_name: peft
4
+ tags:
5
+ - base_model:adapter:unsloth/gpt-oss-20b
6
+ - lora
7
+ - sft
8
+ - transformers
9
+ - trl
10
+ - unsloth
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.0
checkpoint-360/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "GptOssForCausalLM",
5
+ "parent_library": "transformers.models.gpt_oss.modeling_gpt_oss"
6
+ },
7
+ "base_model_name_or_path": "unsloth/gpt-oss-20b",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.0,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 1,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "k_proj",
32
+ "q_proj",
33
+ "v_proj",
34
+ "o_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": null,
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": true
42
+ }
checkpoint-360/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2294f6c1bbec80fb543f022ff4dea2e22559686bb01c66a800e1aaf47ff0ba0d
3
+ size 2015696
checkpoint-360/chat_template.jinja ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {# Copyright 2025-present Unsloth. Apache 2.0 License. Unsloth chat template fixes. Edited from ggml-org & OpenAI #}
2
+ {#-
3
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
4
+ following kwargs:
5
+ - "builtin_tools": A list, can contain "browser" and/or "python".
6
+ - "model_identity": A string that optionally describes the model identity.
7
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
8
+ #}
9
+
10
+ {#- Tool Definition Rendering ============================================== #}
11
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
12
+ {%- if param_spec.type == "array" -%}
13
+ {%- if param_spec['items'] -%}
14
+ {%- if param_spec['items']['type'] == "string" -%}
15
+ {{- "string[]" }}
16
+ {%- elif param_spec['items']['type'] == "number" -%}
17
+ {{- "number[]" }}
18
+ {%- elif param_spec['items']['type'] == "integer" -%}
19
+ {{- "number[]" }}
20
+ {%- elif param_spec['items']['type'] == "boolean" -%}
21
+ {{- "boolean[]" }}
22
+ {%- else -%}
23
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
24
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
25
+ {{- "any[]" }}
26
+ {%- else -%}
27
+ {{- inner_type + "[]" }}
28
+ {%- endif -%}
29
+ {%- endif -%}
30
+ {%- if param_spec.nullable -%}
31
+ {{- " | null" }}
32
+ {%- endif -%}
33
+ {%- else -%}
34
+ {{- "any[]" }}
35
+ {%- if param_spec.nullable -%}
36
+ {{- " | null" }}
37
+ {%- endif -%}
38
+ {%- endif -%}
39
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
40
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
41
+ {%- if param_spec.type | length > 1 -%}
42
+ {{- param_spec.type | join(" | ") }}
43
+ {%- else -%}
44
+ {{- param_spec.type[0] }}
45
+ {%- endif -%}
46
+ {%- elif param_spec.oneOf -%}
47
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
48
+ {%- set has_object_variants = false -%}
49
+ {%- for variant in param_spec.oneOf -%}
50
+ {%- if variant.type == "object" -%}
51
+ {%- set has_object_variants = true -%}
52
+ {%- endif -%}
53
+ {%- endfor -%}
54
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
55
+ {{- "any" }}
56
+ {%- else -%}
57
+ {%- for variant in param_spec.oneOf -%}
58
+ {{- render_typescript_type(variant, required_params) -}}
59
+ {%- if variant.description %}
60
+ {{- "// " + variant.description }}
61
+ {%- endif -%}
62
+ {%- if variant.default is defined %}
63
+ {{ "// default: " + variant.default|tojson }}
64
+ {%- endif -%}
65
+ {%- if not loop.last %}
66
+ {{- " | " }}
67
+ {% endif -%}
68
+ {%- endfor -%}
69
+ {%- endif -%}
70
+ {%- elif param_spec.type == "string" -%}
71
+ {%- if param_spec.enum -%}
72
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
73
+ {%- else -%}
74
+ {{- "string" }}
75
+ {%- if param_spec.nullable %}
76
+ {{- " | null" }}
77
+ {%- endif -%}
78
+ {%- endif -%}
79
+ {%- elif param_spec.type == "number" -%}
80
+ {{- "number" }}
81
+ {%- elif param_spec.type == "integer" -%}
82
+ {{- "number" }}
83
+ {%- elif param_spec.type == "boolean" -%}
84
+ {{- "boolean" }}
85
+
86
+ {%- elif param_spec.type == "object" -%}
87
+ {%- if param_spec.properties -%}
88
+ {{- "{\n" }}
89
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
90
+ {{- prop_name -}}
91
+ {%- if prop_name not in (param_spec.required or []) -%}
92
+ {{- "?" }}
93
+ {%- endif -%}
94
+ {{- ": " }}
95
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
96
+ {%- if not loop.last -%}
97
+ {{-", " }}
98
+ {%- endif -%}
99
+ {%- endfor -%}
100
+ {{- "}" }}
101
+ {%- else -%}
102
+ {{- "object" }}
103
+ {%- endif -%}
104
+ {%- else -%}
105
+ {{- "any" }}
106
+ {%- endif -%}
107
+ {%- endmacro -%}
108
+
109
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
110
+ {{- "## " + namespace_name + "\n\n" }}
111
+ {{- "namespace " + namespace_name + " {\n\n" }}
112
+ {%- for tool in tools %}
113
+ {%- set tool = tool.function %}
114
+ {{- "// " + tool.description + "\n" }}
115
+ {{- "type "+ tool.name + " = " }}
116
+ {%- if tool.parameters and tool.parameters.properties -%}
117
+ {{- "(_: " }}
118
+ {{- "{\n" }}
119
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
120
+ {{- "// " + param_spec.description + "\n" }}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- "\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {{- "You are ChatGPT, a large language model trained by OpenAI.\n" -}}
199
+ {%- else %}
200
+ {{- model_identity }}
201
+ {%- endif %}
202
+ {{- "Knowledge cutoff: 2024-06\n" }}
203
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
204
+ {%- if reasoning_effort is not defined %}
205
+ {%- set reasoning_effort = "medium" %}
206
+ {%- endif %}
207
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
208
+ {%- if builtin_tools is defined %}
209
+ {{- "# Tools\n\n" }}
210
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
211
+ {%- for tool in builtin_tools %}
212
+ {%- if tool == "browser" %}
213
+ {%- set available_builtin_tools.browser = true %}
214
+ {%- elif tool == "python" %}
215
+ {%- set available_builtin_tools.python = true %}
216
+ {%- endif %}
217
+ {%- endfor %}
218
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
219
+ {%- endif -%}
220
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
221
+ {%- if tools is defined -%}
222
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
223
+ {%- endif -%}
224
+ {%- endmacro -%}
225
+
226
+ {#- Main Template Logic ================================================= #}
227
+ {#- Set defaults #}
228
+
229
+ {#- Render system message #}
230
+ {{- "<|start|>system<|message|>" }}
231
+ {{- build_system_message() }}
232
+ {{- "<|end|>" }}
233
+
234
+ {#- Extract developer message #}
235
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
236
+ {%- set developer_message = messages[0].content %}
237
+ {%- set loop_messages = messages[1:] %}
238
+ {%- else %}
239
+ {%- set developer_message = "" %}
240
+ {%- set loop_messages = messages %}
241
+ {%- endif %}
242
+
243
+ {#- Render developer message #}
244
+ {%- if developer_message or tools %}
245
+ {{- "<|start|>developer<|message|>" }}
246
+ {%- if developer_message %}
247
+ {{- "# Instructions\n\n" }}
248
+ {{- developer_message }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "\n\n" }}
252
+ {{- "# Tools\n\n" }}
253
+ {{- render_tool_namespace("functions", tools) }}
254
+ {%- endif -%}
255
+ {{- "<|end|>" }}
256
+ {%- endif %}
257
+
258
+ {#- Render messages #}
259
+ {%- set last_tool_call = namespace(name=none) %}
260
+ {%- for message in loop_messages -%}
261
+ {#- At this point only assistant/user/tool messages should remain #}
262
+ {%- if message.role == 'assistant' -%}
263
+ {%- if "tool_calls" in message %}
264
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
265
+ {#- in "tool" messages from the most recent assistant tool call name #}
266
+ {%- set tool_call = message.tool_calls[0] %}
267
+ {%- if tool_call.function %}
268
+ {%- set tool_call = tool_call.function %}
269
+ {%- endif %}
270
+ {%- if message.content %}
271
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
272
+ {%- endif %}
273
+ {{- "<|start|>assistant to=" }}
274
+ {{- "functions." + tool_call.name + "<|channel|>commentary json<|message|>" }}
275
+ {{- tool_call.arguments|tojson }}
276
+ {{- "<|call|>" }}
277
+ {%- set last_tool_call.name = tool_call.name %}
278
+ {%- elif "thinking" in message and loop.last and not add_generation_prompt %}
279
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
280
+ {#- This is a situation that should only occur in training, never in inference. #}
281
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
282
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
283
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
284
+ {#- when training, so the model learns to emit it. #}
285
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
286
+ {%- set last_tool_call.name = none %}
287
+ {%- elif "thinking" in message %}
288
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
289
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
290
+ {%- set last_tool_call.name = none %}
291
+ {%- elif loop.last and not add_generation_prompt %}
292
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
293
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
294
+ {#- when training, so the model learns to emit it. #}
295
+ {{- "<|start|>assistant<|message|>" + message.content + "<|return|>" }}
296
+ {%- else %}
297
+ {{- "<|start|>assistant<|message|>" + message.content + "<|end|>" }}
298
+ {%- set last_tool_call.name = none %}
299
+ {%- endif %}
300
+ {%- elif message.role == 'tool' -%}
301
+ {%- if last_tool_call.name is none %}
302
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
303
+ {%- endif %}
304
+ {{- "<|start|>functions." + last_tool_call.name }}
305
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
306
+ {%- else -%}
307
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
308
+ {%- endif -%}
309
+ {%- endfor -%}
310
+
311
+ {#- Generation prompt #}
312
+ {%- if add_generation_prompt -%}
313
+ <|start|>assistant
314
+ {%- endif -%}
315
+ {# Copyright 2025-present Unsloth. Apache 2.0 License. Unsloth chat template fixes. Edited from ggml-org & OpenAI #}
checkpoint-360/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44198396bc962bb870a42e487f4a6005f5e0e1ef920134740e06c9d30c51bab4
3
+ size 2951883
checkpoint-360/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ebec17b971eb9c9b0000555ab5c026d4861f9670689f3ff26c3fde67b03bcc3
3
+ size 14581
checkpoint-360/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2818b64f9cd0a70101bd5151abd0c26c64b74e3f433772a1257adee80610dc76
3
+ size 1465
checkpoint-360/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|reserved_200017|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-360/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
checkpoint-360/tokenizer_config.json ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 131072,
181
+ "pad_token": "<|reserved_200017|>",
182
+ "padding_side": "right",
183
+ "tokenizer_class": "PreTrainedTokenizerFast",
184
+ "unk_token": null
185
+ }
checkpoint-360/trainer_state.json ADDED
@@ -0,0 +1,2842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.96,
6
+ "eval_steps": 10,
7
+ "global_step": 360,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0026666666666666666,
14
+ "grad_norm": 932.6458129882812,
15
+ "learning_rate": 0.0,
16
+ "loss": 16.4322,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.005333333333333333,
21
+ "grad_norm": 906.1286010742188,
22
+ "learning_rate": 2.0000000000000003e-06,
23
+ "loss": 17.1074,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.008,
28
+ "grad_norm": 957.1098022460938,
29
+ "learning_rate": 4.000000000000001e-06,
30
+ "loss": 16.2636,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.010666666666666666,
35
+ "grad_norm": 999.4998779296875,
36
+ "learning_rate": 6e-06,
37
+ "loss": 16.7171,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.013333333333333334,
42
+ "grad_norm": 952.225341796875,
43
+ "learning_rate": 8.000000000000001e-06,
44
+ "loss": 16.0368,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.016,
49
+ "grad_norm": 967.4716186523438,
50
+ "learning_rate": 1e-05,
51
+ "loss": 15.3585,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.018666666666666668,
56
+ "grad_norm": 1014.7380981445312,
57
+ "learning_rate": 9.972972972972975e-06,
58
+ "loss": 14.1371,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.021333333333333333,
63
+ "grad_norm": 1001.39404296875,
64
+ "learning_rate": 9.945945945945947e-06,
65
+ "loss": 12.4417,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.024,
70
+ "grad_norm": 956.663818359375,
71
+ "learning_rate": 9.91891891891892e-06,
72
+ "loss": 11.2694,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.02666666666666667,
77
+ "grad_norm": 851.0857543945312,
78
+ "learning_rate": 9.891891891891893e-06,
79
+ "loss": 10.1807,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02666666666666667,
84
+ "eval_loss": 8.908344268798828,
85
+ "eval_runtime": 6.3541,
86
+ "eval_samples_per_second": 4.721,
87
+ "eval_steps_per_second": 2.361,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.029333333333333333,
92
+ "grad_norm": 689.436767578125,
93
+ "learning_rate": 9.864864864864865e-06,
94
+ "loss": 8.85,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.032,
99
+ "grad_norm": 591.1151123046875,
100
+ "learning_rate": 9.83783783783784e-06,
101
+ "loss": 8.4188,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.034666666666666665,
106
+ "grad_norm": 414.6604919433594,
107
+ "learning_rate": 9.810810810810811e-06,
108
+ "loss": 7.1033,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.037333333333333336,
113
+ "grad_norm": 339.56982421875,
114
+ "learning_rate": 9.783783783783785e-06,
115
+ "loss": 7.1921,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.04,
120
+ "grad_norm": 304.45819091796875,
121
+ "learning_rate": 9.756756756756758e-06,
122
+ "loss": 6.5019,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.042666666666666665,
127
+ "grad_norm": 244.03823852539062,
128
+ "learning_rate": 9.729729729729732e-06,
129
+ "loss": 6.4202,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.04533333333333334,
134
+ "grad_norm": 204.49368286132812,
135
+ "learning_rate": 9.702702702702704e-06,
136
+ "loss": 5.91,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.048,
141
+ "grad_norm": 162.0959014892578,
142
+ "learning_rate": 9.675675675675676e-06,
143
+ "loss": 5.9435,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.050666666666666665,
148
+ "grad_norm": 160.5931396484375,
149
+ "learning_rate": 9.64864864864865e-06,
150
+ "loss": 5.6556,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.05333333333333334,
155
+ "grad_norm": 146.50758361816406,
156
+ "learning_rate": 9.621621621621622e-06,
157
+ "loss": 5.459,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.05333333333333334,
162
+ "eval_loss": 5.419591426849365,
163
+ "eval_runtime": 2.1235,
164
+ "eval_samples_per_second": 14.127,
165
+ "eval_steps_per_second": 7.064,
166
+ "step": 20
167
+ },
168
+ {
169
+ "epoch": 0.056,
170
+ "grad_norm": 131.01402282714844,
171
+ "learning_rate": 9.594594594594594e-06,
172
+ "loss": 5.5075,
173
+ "step": 21
174
+ },
175
+ {
176
+ "epoch": 0.058666666666666666,
177
+ "grad_norm": 130.70143127441406,
178
+ "learning_rate": 9.567567567567568e-06,
179
+ "loss": 5.2305,
180
+ "step": 22
181
+ },
182
+ {
183
+ "epoch": 0.06133333333333333,
184
+ "grad_norm": 118.18517303466797,
185
+ "learning_rate": 9.540540540540542e-06,
186
+ "loss": 5.0906,
187
+ "step": 23
188
+ },
189
+ {
190
+ "epoch": 0.064,
191
+ "grad_norm": 117.36890411376953,
192
+ "learning_rate": 9.513513513513514e-06,
193
+ "loss": 4.939,
194
+ "step": 24
195
+ },
196
+ {
197
+ "epoch": 0.06666666666666667,
198
+ "grad_norm": 116.87814331054688,
199
+ "learning_rate": 9.486486486486487e-06,
200
+ "loss": 4.7326,
201
+ "step": 25
202
+ },
203
+ {
204
+ "epoch": 0.06933333333333333,
205
+ "grad_norm": 113.54383850097656,
206
+ "learning_rate": 9.45945945945946e-06,
207
+ "loss": 4.812,
208
+ "step": 26
209
+ },
210
+ {
211
+ "epoch": 0.072,
212
+ "grad_norm": 104.74027252197266,
213
+ "learning_rate": 9.432432432432433e-06,
214
+ "loss": 4.6992,
215
+ "step": 27
216
+ },
217
+ {
218
+ "epoch": 0.07466666666666667,
219
+ "grad_norm": 93.894287109375,
220
+ "learning_rate": 9.405405405405407e-06,
221
+ "loss": 4.2069,
222
+ "step": 28
223
+ },
224
+ {
225
+ "epoch": 0.07733333333333334,
226
+ "grad_norm": 97.65583801269531,
227
+ "learning_rate": 9.378378378378379e-06,
228
+ "loss": 4.323,
229
+ "step": 29
230
+ },
231
+ {
232
+ "epoch": 0.08,
233
+ "grad_norm": 96.1834487915039,
234
+ "learning_rate": 9.351351351351353e-06,
235
+ "loss": 4.2722,
236
+ "step": 30
237
+ },
238
+ {
239
+ "epoch": 0.08,
240
+ "eval_loss": 4.122442245483398,
241
+ "eval_runtime": 2.1149,
242
+ "eval_samples_per_second": 14.185,
243
+ "eval_steps_per_second": 7.092,
244
+ "step": 30
245
+ },
246
+ {
247
+ "epoch": 0.08266666666666667,
248
+ "grad_norm": 85.94340515136719,
249
+ "learning_rate": 9.324324324324325e-06,
250
+ "loss": 4.0937,
251
+ "step": 31
252
+ },
253
+ {
254
+ "epoch": 0.08533333333333333,
255
+ "grad_norm": 83.52753448486328,
256
+ "learning_rate": 9.297297297297299e-06,
257
+ "loss": 3.917,
258
+ "step": 32
259
+ },
260
+ {
261
+ "epoch": 0.088,
262
+ "grad_norm": 78.75122833251953,
263
+ "learning_rate": 9.270270270270271e-06,
264
+ "loss": 3.7462,
265
+ "step": 33
266
+ },
267
+ {
268
+ "epoch": 0.09066666666666667,
269
+ "grad_norm": 78.64039611816406,
270
+ "learning_rate": 9.243243243243243e-06,
271
+ "loss": 3.8485,
272
+ "step": 34
273
+ },
274
+ {
275
+ "epoch": 0.09333333333333334,
276
+ "grad_norm": 76.619384765625,
277
+ "learning_rate": 9.216216216216217e-06,
278
+ "loss": 3.8375,
279
+ "step": 35
280
+ },
281
+ {
282
+ "epoch": 0.096,
283
+ "grad_norm": 67.17459869384766,
284
+ "learning_rate": 9.189189189189191e-06,
285
+ "loss": 3.6146,
286
+ "step": 36
287
+ },
288
+ {
289
+ "epoch": 0.09866666666666667,
290
+ "grad_norm": 77.51924896240234,
291
+ "learning_rate": 9.162162162162162e-06,
292
+ "loss": 3.5797,
293
+ "step": 37
294
+ },
295
+ {
296
+ "epoch": 0.10133333333333333,
297
+ "grad_norm": 65.51860046386719,
298
+ "learning_rate": 9.135135135135136e-06,
299
+ "loss": 3.4923,
300
+ "step": 38
301
+ },
302
+ {
303
+ "epoch": 0.104,
304
+ "grad_norm": 59.56484603881836,
305
+ "learning_rate": 9.10810810810811e-06,
306
+ "loss": 3.3492,
307
+ "step": 39
308
+ },
309
+ {
310
+ "epoch": 0.10666666666666667,
311
+ "grad_norm": 61.95277404785156,
312
+ "learning_rate": 9.081081081081082e-06,
313
+ "loss": 3.208,
314
+ "step": 40
315
+ },
316
+ {
317
+ "epoch": 0.10666666666666667,
318
+ "eval_loss": 3.2251017093658447,
319
+ "eval_runtime": 2.108,
320
+ "eval_samples_per_second": 14.231,
321
+ "eval_steps_per_second": 7.116,
322
+ "step": 40
323
+ },
324
+ {
325
+ "epoch": 0.10933333333333334,
326
+ "grad_norm": 58.99920654296875,
327
+ "learning_rate": 9.054054054054054e-06,
328
+ "loss": 3.0812,
329
+ "step": 41
330
+ },
331
+ {
332
+ "epoch": 0.112,
333
+ "grad_norm": 51.660400390625,
334
+ "learning_rate": 9.027027027027028e-06,
335
+ "loss": 3.0894,
336
+ "step": 42
337
+ },
338
+ {
339
+ "epoch": 0.11466666666666667,
340
+ "grad_norm": 41.950157165527344,
341
+ "learning_rate": 9e-06,
342
+ "loss": 3.0536,
343
+ "step": 43
344
+ },
345
+ {
346
+ "epoch": 0.11733333333333333,
347
+ "grad_norm": 44.57719421386719,
348
+ "learning_rate": 8.972972972972974e-06,
349
+ "loss": 3.1747,
350
+ "step": 44
351
+ },
352
+ {
353
+ "epoch": 0.12,
354
+ "grad_norm": 44.626502990722656,
355
+ "learning_rate": 8.945945945945946e-06,
356
+ "loss": 2.9056,
357
+ "step": 45
358
+ },
359
+ {
360
+ "epoch": 0.12266666666666666,
361
+ "grad_norm": 46.089561462402344,
362
+ "learning_rate": 8.91891891891892e-06,
363
+ "loss": 2.8722,
364
+ "step": 46
365
+ },
366
+ {
367
+ "epoch": 0.12533333333333332,
368
+ "grad_norm": 39.88739013671875,
369
+ "learning_rate": 8.891891891891893e-06,
370
+ "loss": 2.7787,
371
+ "step": 47
372
+ },
373
+ {
374
+ "epoch": 0.128,
375
+ "grad_norm": 48.06010055541992,
376
+ "learning_rate": 8.864864864864866e-06,
377
+ "loss": 2.6416,
378
+ "step": 48
379
+ },
380
+ {
381
+ "epoch": 0.13066666666666665,
382
+ "grad_norm": 43.671119689941406,
383
+ "learning_rate": 8.837837837837839e-06,
384
+ "loss": 2.7215,
385
+ "step": 49
386
+ },
387
+ {
388
+ "epoch": 0.13333333333333333,
389
+ "grad_norm": 51.33174514770508,
390
+ "learning_rate": 8.810810810810811e-06,
391
+ "loss": 2.7913,
392
+ "step": 50
393
+ },
394
+ {
395
+ "epoch": 0.13333333333333333,
396
+ "eval_loss": 2.6058502197265625,
397
+ "eval_runtime": 2.1101,
398
+ "eval_samples_per_second": 14.217,
399
+ "eval_steps_per_second": 7.109,
400
+ "step": 50
401
+ },
402
+ {
403
+ "epoch": 0.136,
404
+ "grad_norm": 34.640682220458984,
405
+ "learning_rate": 8.783783783783785e-06,
406
+ "loss": 2.554,
407
+ "step": 51
408
+ },
409
+ {
410
+ "epoch": 0.13866666666666666,
411
+ "grad_norm": 32.68441390991211,
412
+ "learning_rate": 8.756756756756759e-06,
413
+ "loss": 2.3897,
414
+ "step": 52
415
+ },
416
+ {
417
+ "epoch": 0.14133333333333334,
418
+ "grad_norm": 34.406028747558594,
419
+ "learning_rate": 8.72972972972973e-06,
420
+ "loss": 2.4736,
421
+ "step": 53
422
+ },
423
+ {
424
+ "epoch": 0.144,
425
+ "grad_norm": 38.37754821777344,
426
+ "learning_rate": 8.702702702702703e-06,
427
+ "loss": 2.4567,
428
+ "step": 54
429
+ },
430
+ {
431
+ "epoch": 0.14666666666666667,
432
+ "grad_norm": 37.39752197265625,
433
+ "learning_rate": 8.675675675675677e-06,
434
+ "loss": 2.5476,
435
+ "step": 55
436
+ },
437
+ {
438
+ "epoch": 0.14933333333333335,
439
+ "grad_norm": 32.165985107421875,
440
+ "learning_rate": 8.64864864864865e-06,
441
+ "loss": 2.3649,
442
+ "step": 56
443
+ },
444
+ {
445
+ "epoch": 0.152,
446
+ "grad_norm": 37.88535690307617,
447
+ "learning_rate": 8.621621621621622e-06,
448
+ "loss": 2.4366,
449
+ "step": 57
450
+ },
451
+ {
452
+ "epoch": 0.15466666666666667,
453
+ "grad_norm": 44.71893310546875,
454
+ "learning_rate": 8.594594594594595e-06,
455
+ "loss": 2.3843,
456
+ "step": 58
457
+ },
458
+ {
459
+ "epoch": 0.15733333333333333,
460
+ "grad_norm": 50.348106384277344,
461
+ "learning_rate": 8.567567567567568e-06,
462
+ "loss": 2.3169,
463
+ "step": 59
464
+ },
465
+ {
466
+ "epoch": 0.16,
467
+ "grad_norm": 39.178260803222656,
468
+ "learning_rate": 8.540540540540542e-06,
469
+ "loss": 2.15,
470
+ "step": 60
471
+ },
472
+ {
473
+ "epoch": 0.16,
474
+ "eval_loss": 2.204402208328247,
475
+ "eval_runtime": 1.4436,
476
+ "eval_samples_per_second": 20.781,
477
+ "eval_steps_per_second": 10.39,
478
+ "step": 60
479
+ },
480
+ {
481
+ "epoch": 0.16266666666666665,
482
+ "grad_norm": 31.640228271484375,
483
+ "learning_rate": 8.513513513513514e-06,
484
+ "loss": 2.292,
485
+ "step": 61
486
+ },
487
+ {
488
+ "epoch": 0.16533333333333333,
489
+ "grad_norm": 25.845205307006836,
490
+ "learning_rate": 8.486486486486488e-06,
491
+ "loss": 2.1367,
492
+ "step": 62
493
+ },
494
+ {
495
+ "epoch": 0.168,
496
+ "grad_norm": 24.244155883789062,
497
+ "learning_rate": 8.45945945945946e-06,
498
+ "loss": 2.2619,
499
+ "step": 63
500
+ },
501
+ {
502
+ "epoch": 0.17066666666666666,
503
+ "grad_norm": 27.788658142089844,
504
+ "learning_rate": 8.432432432432434e-06,
505
+ "loss": 2.0973,
506
+ "step": 64
507
+ },
508
+ {
509
+ "epoch": 0.17333333333333334,
510
+ "grad_norm": 22.125831604003906,
511
+ "learning_rate": 8.405405405405406e-06,
512
+ "loss": 2.0382,
513
+ "step": 65
514
+ },
515
+ {
516
+ "epoch": 0.176,
517
+ "grad_norm": 21.390626907348633,
518
+ "learning_rate": 8.378378378378378e-06,
519
+ "loss": 2.1409,
520
+ "step": 66
521
+ },
522
+ {
523
+ "epoch": 0.17866666666666667,
524
+ "grad_norm": 21.641523361206055,
525
+ "learning_rate": 8.351351351351352e-06,
526
+ "loss": 2.0422,
527
+ "step": 67
528
+ },
529
+ {
530
+ "epoch": 0.18133333333333335,
531
+ "grad_norm": 20.90644073486328,
532
+ "learning_rate": 8.324324324324326e-06,
533
+ "loss": 2.1016,
534
+ "step": 68
535
+ },
536
+ {
537
+ "epoch": 0.184,
538
+ "grad_norm": 23.33363151550293,
539
+ "learning_rate": 8.297297297297298e-06,
540
+ "loss": 2.1136,
541
+ "step": 69
542
+ },
543
+ {
544
+ "epoch": 0.18666666666666668,
545
+ "grad_norm": 18.258081436157227,
546
+ "learning_rate": 8.27027027027027e-06,
547
+ "loss": 1.973,
548
+ "step": 70
549
+ },
550
+ {
551
+ "epoch": 0.18666666666666668,
552
+ "eval_loss": 1.9927349090576172,
553
+ "eval_runtime": 1.4579,
554
+ "eval_samples_per_second": 20.577,
555
+ "eval_steps_per_second": 10.289,
556
+ "step": 70
557
+ },
558
+ {
559
+ "epoch": 0.18933333333333333,
560
+ "grad_norm": 18.579404830932617,
561
+ "learning_rate": 8.243243243243245e-06,
562
+ "loss": 2.0731,
563
+ "step": 71
564
+ },
565
+ {
566
+ "epoch": 0.192,
567
+ "grad_norm": 17.585365295410156,
568
+ "learning_rate": 8.216216216216217e-06,
569
+ "loss": 1.9039,
570
+ "step": 72
571
+ },
572
+ {
573
+ "epoch": 0.19466666666666665,
574
+ "grad_norm": 16.354633331298828,
575
+ "learning_rate": 8.189189189189189e-06,
576
+ "loss": 2.0146,
577
+ "step": 73
578
+ },
579
+ {
580
+ "epoch": 0.19733333333333333,
581
+ "grad_norm": 17.63299560546875,
582
+ "learning_rate": 8.162162162162163e-06,
583
+ "loss": 1.8823,
584
+ "step": 74
585
+ },
586
+ {
587
+ "epoch": 0.2,
588
+ "grad_norm": 16.70092010498047,
589
+ "learning_rate": 8.135135135135137e-06,
590
+ "loss": 1.8186,
591
+ "step": 75
592
+ },
593
+ {
594
+ "epoch": 0.20266666666666666,
595
+ "grad_norm": 16.694368362426758,
596
+ "learning_rate": 8.108108108108109e-06,
597
+ "loss": 1.8642,
598
+ "step": 76
599
+ },
600
+ {
601
+ "epoch": 0.20533333333333334,
602
+ "grad_norm": 16.945659637451172,
603
+ "learning_rate": 8.081081081081081e-06,
604
+ "loss": 1.832,
605
+ "step": 77
606
+ },
607
+ {
608
+ "epoch": 0.208,
609
+ "grad_norm": 14.920422554016113,
610
+ "learning_rate": 8.054054054054055e-06,
611
+ "loss": 1.8666,
612
+ "step": 78
613
+ },
614
+ {
615
+ "epoch": 0.21066666666666667,
616
+ "grad_norm": 15.18919563293457,
617
+ "learning_rate": 8.027027027027027e-06,
618
+ "loss": 1.8289,
619
+ "step": 79
620
+ },
621
+ {
622
+ "epoch": 0.21333333333333335,
623
+ "grad_norm": 16.04713249206543,
624
+ "learning_rate": 8.000000000000001e-06,
625
+ "loss": 1.8633,
626
+ "step": 80
627
+ },
628
+ {
629
+ "epoch": 0.21333333333333335,
630
+ "eval_loss": 1.8755805492401123,
631
+ "eval_runtime": 1.4512,
632
+ "eval_samples_per_second": 20.673,
633
+ "eval_steps_per_second": 10.336,
634
+ "step": 80
635
+ },
636
+ {
637
+ "epoch": 0.216,
638
+ "grad_norm": 17.620529174804688,
639
+ "learning_rate": 7.972972972972974e-06,
640
+ "loss": 1.9985,
641
+ "step": 81
642
+ },
643
+ {
644
+ "epoch": 0.21866666666666668,
645
+ "grad_norm": 13.032703399658203,
646
+ "learning_rate": 7.945945945945946e-06,
647
+ "loss": 1.8214,
648
+ "step": 82
649
+ },
650
+ {
651
+ "epoch": 0.22133333333333333,
652
+ "grad_norm": 14.5070219039917,
653
+ "learning_rate": 7.91891891891892e-06,
654
+ "loss": 1.7842,
655
+ "step": 83
656
+ },
657
+ {
658
+ "epoch": 0.224,
659
+ "grad_norm": 15.286811828613281,
660
+ "learning_rate": 7.891891891891894e-06,
661
+ "loss": 1.9336,
662
+ "step": 84
663
+ },
664
+ {
665
+ "epoch": 0.22666666666666666,
666
+ "grad_norm": 14.387998580932617,
667
+ "learning_rate": 7.864864864864866e-06,
668
+ "loss": 1.9154,
669
+ "step": 85
670
+ },
671
+ {
672
+ "epoch": 0.22933333333333333,
673
+ "grad_norm": 14.496636390686035,
674
+ "learning_rate": 7.837837837837838e-06,
675
+ "loss": 1.7855,
676
+ "step": 86
677
+ },
678
+ {
679
+ "epoch": 0.232,
680
+ "grad_norm": 13.50484848022461,
681
+ "learning_rate": 7.810810810810812e-06,
682
+ "loss": 1.782,
683
+ "step": 87
684
+ },
685
+ {
686
+ "epoch": 0.23466666666666666,
687
+ "grad_norm": 16.108259201049805,
688
+ "learning_rate": 7.783783783783784e-06,
689
+ "loss": 1.986,
690
+ "step": 88
691
+ },
692
+ {
693
+ "epoch": 0.23733333333333334,
694
+ "grad_norm": 14.42662525177002,
695
+ "learning_rate": 7.756756756756756e-06,
696
+ "loss": 1.7175,
697
+ "step": 89
698
+ },
699
+ {
700
+ "epoch": 0.24,
701
+ "grad_norm": 12.877999305725098,
702
+ "learning_rate": 7.72972972972973e-06,
703
+ "loss": 1.8143,
704
+ "step": 90
705
+ },
706
+ {
707
+ "epoch": 0.24,
708
+ "eval_loss": 1.7911643981933594,
709
+ "eval_runtime": 1.4513,
710
+ "eval_samples_per_second": 20.671,
711
+ "eval_steps_per_second": 10.335,
712
+ "step": 90
713
+ },
714
+ {
715
+ "epoch": 0.24266666666666667,
716
+ "grad_norm": 14.032076835632324,
717
+ "learning_rate": 7.702702702702704e-06,
718
+ "loss": 1.8842,
719
+ "step": 91
720
+ },
721
+ {
722
+ "epoch": 0.24533333333333332,
723
+ "grad_norm": 14.625088691711426,
724
+ "learning_rate": 7.675675675675676e-06,
725
+ "loss": 1.8891,
726
+ "step": 92
727
+ },
728
+ {
729
+ "epoch": 0.248,
730
+ "grad_norm": 12.943449020385742,
731
+ "learning_rate": 7.648648648648649e-06,
732
+ "loss": 1.69,
733
+ "step": 93
734
+ },
735
+ {
736
+ "epoch": 0.25066666666666665,
737
+ "grad_norm": 14.895347595214844,
738
+ "learning_rate": 7.621621621621622e-06,
739
+ "loss": 1.8021,
740
+ "step": 94
741
+ },
742
+ {
743
+ "epoch": 0.25333333333333335,
744
+ "grad_norm": 14.53865909576416,
745
+ "learning_rate": 7.594594594594596e-06,
746
+ "loss": 1.7205,
747
+ "step": 95
748
+ },
749
+ {
750
+ "epoch": 0.256,
751
+ "grad_norm": 12.052194595336914,
752
+ "learning_rate": 7.567567567567569e-06,
753
+ "loss": 1.7664,
754
+ "step": 96
755
+ },
756
+ {
757
+ "epoch": 0.25866666666666666,
758
+ "grad_norm": 12.567586898803711,
759
+ "learning_rate": 7.540540540540541e-06,
760
+ "loss": 1.7944,
761
+ "step": 97
762
+ },
763
+ {
764
+ "epoch": 0.2613333333333333,
765
+ "grad_norm": 14.633405685424805,
766
+ "learning_rate": 7.513513513513514e-06,
767
+ "loss": 1.6582,
768
+ "step": 98
769
+ },
770
+ {
771
+ "epoch": 0.264,
772
+ "grad_norm": 13.399588584899902,
773
+ "learning_rate": 7.486486486486487e-06,
774
+ "loss": 1.8577,
775
+ "step": 99
776
+ },
777
+ {
778
+ "epoch": 0.26666666666666666,
779
+ "grad_norm": 12.297356605529785,
780
+ "learning_rate": 7.45945945945946e-06,
781
+ "loss": 1.817,
782
+ "step": 100
783
+ },
784
+ {
785
+ "epoch": 0.26666666666666666,
786
+ "eval_loss": 1.7191141843795776,
787
+ "eval_runtime": 1.4464,
788
+ "eval_samples_per_second": 20.741,
789
+ "eval_steps_per_second": 10.37,
790
+ "step": 100
791
+ },
792
+ {
793
+ "epoch": 0.2693333333333333,
794
+ "grad_norm": 13.96349048614502,
795
+ "learning_rate": 7.4324324324324324e-06,
796
+ "loss": 1.7299,
797
+ "step": 101
798
+ },
799
+ {
800
+ "epoch": 0.272,
801
+ "grad_norm": 12.001126289367676,
802
+ "learning_rate": 7.4054054054054055e-06,
803
+ "loss": 1.6544,
804
+ "step": 102
805
+ },
806
+ {
807
+ "epoch": 0.27466666666666667,
808
+ "grad_norm": 13.116267204284668,
809
+ "learning_rate": 7.3783783783783794e-06,
810
+ "loss": 1.7013,
811
+ "step": 103
812
+ },
813
+ {
814
+ "epoch": 0.2773333333333333,
815
+ "grad_norm": 13.404566764831543,
816
+ "learning_rate": 7.3513513513513525e-06,
817
+ "loss": 1.7313,
818
+ "step": 104
819
+ },
820
+ {
821
+ "epoch": 0.28,
822
+ "grad_norm": 13.112600326538086,
823
+ "learning_rate": 7.324324324324325e-06,
824
+ "loss": 1.6768,
825
+ "step": 105
826
+ },
827
+ {
828
+ "epoch": 0.2826666666666667,
829
+ "grad_norm": 11.644760131835938,
830
+ "learning_rate": 7.297297297297298e-06,
831
+ "loss": 1.7202,
832
+ "step": 106
833
+ },
834
+ {
835
+ "epoch": 0.2853333333333333,
836
+ "grad_norm": 12.4971923828125,
837
+ "learning_rate": 7.270270270270271e-06,
838
+ "loss": 1.6554,
839
+ "step": 107
840
+ },
841
+ {
842
+ "epoch": 0.288,
843
+ "grad_norm": 13.368678092956543,
844
+ "learning_rate": 7.243243243243244e-06,
845
+ "loss": 1.7155,
846
+ "step": 108
847
+ },
848
+ {
849
+ "epoch": 0.2906666666666667,
850
+ "grad_norm": 11.646718978881836,
851
+ "learning_rate": 7.216216216216216e-06,
852
+ "loss": 1.6875,
853
+ "step": 109
854
+ },
855
+ {
856
+ "epoch": 0.29333333333333333,
857
+ "grad_norm": 11.237492561340332,
858
+ "learning_rate": 7.189189189189189e-06,
859
+ "loss": 1.7969,
860
+ "step": 110
861
+ },
862
+ {
863
+ "epoch": 0.29333333333333333,
864
+ "eval_loss": 1.6631710529327393,
865
+ "eval_runtime": 1.4481,
866
+ "eval_samples_per_second": 20.717,
867
+ "eval_steps_per_second": 10.358,
868
+ "step": 110
869
+ },
870
+ {
871
+ "epoch": 0.296,
872
+ "grad_norm": 12.128864288330078,
873
+ "learning_rate": 7.162162162162163e-06,
874
+ "loss": 1.71,
875
+ "step": 111
876
+ },
877
+ {
878
+ "epoch": 0.2986666666666667,
879
+ "grad_norm": 13.497359275817871,
880
+ "learning_rate": 7.135135135135136e-06,
881
+ "loss": 1.6549,
882
+ "step": 112
883
+ },
884
+ {
885
+ "epoch": 0.30133333333333334,
886
+ "grad_norm": 12.220688819885254,
887
+ "learning_rate": 7.1081081081081085e-06,
888
+ "loss": 1.6311,
889
+ "step": 113
890
+ },
891
+ {
892
+ "epoch": 0.304,
893
+ "grad_norm": 12.031643867492676,
894
+ "learning_rate": 7.0810810810810815e-06,
895
+ "loss": 1.5752,
896
+ "step": 114
897
+ },
898
+ {
899
+ "epoch": 0.30666666666666664,
900
+ "grad_norm": 11.963508605957031,
901
+ "learning_rate": 7.054054054054055e-06,
902
+ "loss": 1.6123,
903
+ "step": 115
904
+ },
905
+ {
906
+ "epoch": 0.30933333333333335,
907
+ "grad_norm": 12.681684494018555,
908
+ "learning_rate": 7.027027027027028e-06,
909
+ "loss": 1.6943,
910
+ "step": 116
911
+ },
912
+ {
913
+ "epoch": 0.312,
914
+ "grad_norm": 11.903910636901855,
915
+ "learning_rate": 7e-06,
916
+ "loss": 1.7237,
917
+ "step": 117
918
+ },
919
+ {
920
+ "epoch": 0.31466666666666665,
921
+ "grad_norm": 12.239933967590332,
922
+ "learning_rate": 6.972972972972973e-06,
923
+ "loss": 1.532,
924
+ "step": 118
925
+ },
926
+ {
927
+ "epoch": 0.31733333333333336,
928
+ "grad_norm": 12.396098136901855,
929
+ "learning_rate": 6.945945945945947e-06,
930
+ "loss": 1.6313,
931
+ "step": 119
932
+ },
933
+ {
934
+ "epoch": 0.32,
935
+ "grad_norm": 11.794013977050781,
936
+ "learning_rate": 6.91891891891892e-06,
937
+ "loss": 1.5266,
938
+ "step": 120
939
+ },
940
+ {
941
+ "epoch": 0.32,
942
+ "eval_loss": 1.6251609325408936,
943
+ "eval_runtime": 1.46,
944
+ "eval_samples_per_second": 20.548,
945
+ "eval_steps_per_second": 10.274,
946
+ "step": 120
947
+ },
948
+ {
949
+ "epoch": 0.32266666666666666,
950
+ "grad_norm": 10.741290092468262,
951
+ "learning_rate": 6.891891891891892e-06,
952
+ "loss": 1.6946,
953
+ "step": 121
954
+ },
955
+ {
956
+ "epoch": 0.3253333333333333,
957
+ "grad_norm": 13.47004508972168,
958
+ "learning_rate": 6.864864864864865e-06,
959
+ "loss": 1.4668,
960
+ "step": 122
961
+ },
962
+ {
963
+ "epoch": 0.328,
964
+ "grad_norm": 12.196053504943848,
965
+ "learning_rate": 6.837837837837838e-06,
966
+ "loss": 1.7412,
967
+ "step": 123
968
+ },
969
+ {
970
+ "epoch": 0.33066666666666666,
971
+ "grad_norm": 13.029918670654297,
972
+ "learning_rate": 6.810810810810811e-06,
973
+ "loss": 1.5352,
974
+ "step": 124
975
+ },
976
+ {
977
+ "epoch": 0.3333333333333333,
978
+ "grad_norm": 11.20665454864502,
979
+ "learning_rate": 6.783783783783784e-06,
980
+ "loss": 1.5555,
981
+ "step": 125
982
+ },
983
+ {
984
+ "epoch": 0.336,
985
+ "grad_norm": 12.214777946472168,
986
+ "learning_rate": 6.7567567567567575e-06,
987
+ "loss": 1.5862,
988
+ "step": 126
989
+ },
990
+ {
991
+ "epoch": 0.33866666666666667,
992
+ "grad_norm": 13.904444694519043,
993
+ "learning_rate": 6.729729729729731e-06,
994
+ "loss": 1.7348,
995
+ "step": 127
996
+ },
997
+ {
998
+ "epoch": 0.3413333333333333,
999
+ "grad_norm": 12.65821361541748,
1000
+ "learning_rate": 6.702702702702704e-06,
1001
+ "loss": 1.5627,
1002
+ "step": 128
1003
+ },
1004
+ {
1005
+ "epoch": 0.344,
1006
+ "grad_norm": 12.02226734161377,
1007
+ "learning_rate": 6.675675675675676e-06,
1008
+ "loss": 1.5978,
1009
+ "step": 129
1010
+ },
1011
+ {
1012
+ "epoch": 0.3466666666666667,
1013
+ "grad_norm": 11.53661823272705,
1014
+ "learning_rate": 6.648648648648649e-06,
1015
+ "loss": 1.6756,
1016
+ "step": 130
1017
+ },
1018
+ {
1019
+ "epoch": 0.3466666666666667,
1020
+ "eval_loss": 1.6016688346862793,
1021
+ "eval_runtime": 1.4506,
1022
+ "eval_samples_per_second": 20.681,
1023
+ "eval_steps_per_second": 10.34,
1024
+ "step": 130
1025
+ },
1026
+ {
1027
+ "epoch": 0.34933333333333333,
1028
+ "grad_norm": 13.927865028381348,
1029
+ "learning_rate": 6.621621621621622e-06,
1030
+ "loss": 1.6014,
1031
+ "step": 131
1032
+ },
1033
+ {
1034
+ "epoch": 0.352,
1035
+ "grad_norm": 11.404069900512695,
1036
+ "learning_rate": 6.594594594594595e-06,
1037
+ "loss": 1.6191,
1038
+ "step": 132
1039
+ },
1040
+ {
1041
+ "epoch": 0.3546666666666667,
1042
+ "grad_norm": 12.802854537963867,
1043
+ "learning_rate": 6.567567567567567e-06,
1044
+ "loss": 1.7147,
1045
+ "step": 133
1046
+ },
1047
+ {
1048
+ "epoch": 0.35733333333333334,
1049
+ "grad_norm": 13.293572425842285,
1050
+ "learning_rate": 6.540540540540541e-06,
1051
+ "loss": 1.7999,
1052
+ "step": 134
1053
+ },
1054
+ {
1055
+ "epoch": 0.36,
1056
+ "grad_norm": 14.33857536315918,
1057
+ "learning_rate": 6.513513513513514e-06,
1058
+ "loss": 1.7601,
1059
+ "step": 135
1060
+ },
1061
+ {
1062
+ "epoch": 0.3626666666666667,
1063
+ "grad_norm": 11.54388427734375,
1064
+ "learning_rate": 6.486486486486487e-06,
1065
+ "loss": 1.5501,
1066
+ "step": 136
1067
+ },
1068
+ {
1069
+ "epoch": 0.36533333333333334,
1070
+ "grad_norm": 11.567480087280273,
1071
+ "learning_rate": 6.45945945945946e-06,
1072
+ "loss": 1.6299,
1073
+ "step": 137
1074
+ },
1075
+ {
1076
+ "epoch": 0.368,
1077
+ "grad_norm": 11.44282341003418,
1078
+ "learning_rate": 6.432432432432433e-06,
1079
+ "loss": 1.5726,
1080
+ "step": 138
1081
+ },
1082
+ {
1083
+ "epoch": 0.37066666666666664,
1084
+ "grad_norm": 14.322295188903809,
1085
+ "learning_rate": 6.405405405405406e-06,
1086
+ "loss": 1.6423,
1087
+ "step": 139
1088
+ },
1089
+ {
1090
+ "epoch": 0.37333333333333335,
1091
+ "grad_norm": 11.916459083557129,
1092
+ "learning_rate": 6.378378378378379e-06,
1093
+ "loss": 1.6311,
1094
+ "step": 140
1095
+ },
1096
+ {
1097
+ "epoch": 0.37333333333333335,
1098
+ "eval_loss": 1.5860799551010132,
1099
+ "eval_runtime": 1.4507,
1100
+ "eval_samples_per_second": 20.679,
1101
+ "eval_steps_per_second": 10.34,
1102
+ "step": 140
1103
+ },
1104
+ {
1105
+ "epoch": 0.376,
1106
+ "grad_norm": 11.447466850280762,
1107
+ "learning_rate": 6.351351351351351e-06,
1108
+ "loss": 1.5076,
1109
+ "step": 141
1110
+ },
1111
+ {
1112
+ "epoch": 0.37866666666666665,
1113
+ "grad_norm": 10.863157272338867,
1114
+ "learning_rate": 6.324324324324325e-06,
1115
+ "loss": 1.5188,
1116
+ "step": 142
1117
+ },
1118
+ {
1119
+ "epoch": 0.38133333333333336,
1120
+ "grad_norm": 11.271020889282227,
1121
+ "learning_rate": 6.297297297297298e-06,
1122
+ "loss": 1.6336,
1123
+ "step": 143
1124
+ },
1125
+ {
1126
+ "epoch": 0.384,
1127
+ "grad_norm": 11.583234786987305,
1128
+ "learning_rate": 6.270270270270271e-06,
1129
+ "loss": 1.4692,
1130
+ "step": 144
1131
+ },
1132
+ {
1133
+ "epoch": 0.38666666666666666,
1134
+ "grad_norm": 12.622394561767578,
1135
+ "learning_rate": 6.243243243243243e-06,
1136
+ "loss": 1.3161,
1137
+ "step": 145
1138
+ },
1139
+ {
1140
+ "epoch": 0.3893333333333333,
1141
+ "grad_norm": 10.768049240112305,
1142
+ "learning_rate": 6.2162162162162164e-06,
1143
+ "loss": 1.6118,
1144
+ "step": 146
1145
+ },
1146
+ {
1147
+ "epoch": 0.392,
1148
+ "grad_norm": 10.967697143554688,
1149
+ "learning_rate": 6.1891891891891895e-06,
1150
+ "loss": 1.5251,
1151
+ "step": 147
1152
+ },
1153
+ {
1154
+ "epoch": 0.39466666666666667,
1155
+ "grad_norm": 11.763079643249512,
1156
+ "learning_rate": 6.162162162162163e-06,
1157
+ "loss": 1.6997,
1158
+ "step": 148
1159
+ },
1160
+ {
1161
+ "epoch": 0.3973333333333333,
1162
+ "grad_norm": 10.566551208496094,
1163
+ "learning_rate": 6.135135135135135e-06,
1164
+ "loss": 1.4984,
1165
+ "step": 149
1166
+ },
1167
+ {
1168
+ "epoch": 0.4,
1169
+ "grad_norm": 13.371134757995605,
1170
+ "learning_rate": 6.108108108108109e-06,
1171
+ "loss": 1.7244,
1172
+ "step": 150
1173
+ },
1174
+ {
1175
+ "epoch": 0.4,
1176
+ "eval_loss": 1.5736008882522583,
1177
+ "eval_runtime": 1.4456,
1178
+ "eval_samples_per_second": 20.752,
1179
+ "eval_steps_per_second": 10.376,
1180
+ "step": 150
1181
+ },
1182
+ {
1183
+ "epoch": 0.4026666666666667,
1184
+ "grad_norm": 12.493298530578613,
1185
+ "learning_rate": 6.081081081081082e-06,
1186
+ "loss": 1.5759,
1187
+ "step": 151
1188
+ },
1189
+ {
1190
+ "epoch": 0.4053333333333333,
1191
+ "grad_norm": 12.431512832641602,
1192
+ "learning_rate": 6.054054054054055e-06,
1193
+ "loss": 1.5811,
1194
+ "step": 152
1195
+ },
1196
+ {
1197
+ "epoch": 0.408,
1198
+ "grad_norm": 11.778576850891113,
1199
+ "learning_rate": 6.027027027027027e-06,
1200
+ "loss": 1.5997,
1201
+ "step": 153
1202
+ },
1203
+ {
1204
+ "epoch": 0.4106666666666667,
1205
+ "grad_norm": 12.10274887084961,
1206
+ "learning_rate": 6e-06,
1207
+ "loss": 1.5589,
1208
+ "step": 154
1209
+ },
1210
+ {
1211
+ "epoch": 0.41333333333333333,
1212
+ "grad_norm": 12.245983123779297,
1213
+ "learning_rate": 5.972972972972973e-06,
1214
+ "loss": 1.5864,
1215
+ "step": 155
1216
+ },
1217
+ {
1218
+ "epoch": 0.416,
1219
+ "grad_norm": 12.401384353637695,
1220
+ "learning_rate": 5.945945945945947e-06,
1221
+ "loss": 1.5593,
1222
+ "step": 156
1223
+ },
1224
+ {
1225
+ "epoch": 0.4186666666666667,
1226
+ "grad_norm": 13.845521926879883,
1227
+ "learning_rate": 5.9189189189189185e-06,
1228
+ "loss": 1.4717,
1229
+ "step": 157
1230
+ },
1231
+ {
1232
+ "epoch": 0.42133333333333334,
1233
+ "grad_norm": 11.529600143432617,
1234
+ "learning_rate": 5.8918918918918924e-06,
1235
+ "loss": 1.5599,
1236
+ "step": 158
1237
+ },
1238
+ {
1239
+ "epoch": 0.424,
1240
+ "grad_norm": 11.169657707214355,
1241
+ "learning_rate": 5.8648648648648655e-06,
1242
+ "loss": 1.7053,
1243
+ "step": 159
1244
+ },
1245
+ {
1246
+ "epoch": 0.4266666666666667,
1247
+ "grad_norm": 13.295831680297852,
1248
+ "learning_rate": 5.837837837837839e-06,
1249
+ "loss": 1.4569,
1250
+ "step": 160
1251
+ },
1252
+ {
1253
+ "epoch": 0.4266666666666667,
1254
+ "eval_loss": 1.5643337965011597,
1255
+ "eval_runtime": 1.4526,
1256
+ "eval_samples_per_second": 20.652,
1257
+ "eval_steps_per_second": 10.326,
1258
+ "step": 160
1259
+ },
1260
+ {
1261
+ "epoch": 0.42933333333333334,
1262
+ "grad_norm": 12.037769317626953,
1263
+ "learning_rate": 5.810810810810811e-06,
1264
+ "loss": 1.533,
1265
+ "step": 161
1266
+ },
1267
+ {
1268
+ "epoch": 0.432,
1269
+ "grad_norm": 12.236255645751953,
1270
+ "learning_rate": 5.783783783783784e-06,
1271
+ "loss": 1.5459,
1272
+ "step": 162
1273
+ },
1274
+ {
1275
+ "epoch": 0.43466666666666665,
1276
+ "grad_norm": 12.55140209197998,
1277
+ "learning_rate": 5.756756756756757e-06,
1278
+ "loss": 1.5024,
1279
+ "step": 163
1280
+ },
1281
+ {
1282
+ "epoch": 0.43733333333333335,
1283
+ "grad_norm": 10.870196342468262,
1284
+ "learning_rate": 5.729729729729731e-06,
1285
+ "loss": 1.5159,
1286
+ "step": 164
1287
+ },
1288
+ {
1289
+ "epoch": 0.44,
1290
+ "grad_norm": 11.8145751953125,
1291
+ "learning_rate": 5.702702702702702e-06,
1292
+ "loss": 1.5292,
1293
+ "step": 165
1294
+ },
1295
+ {
1296
+ "epoch": 0.44266666666666665,
1297
+ "grad_norm": 11.710899353027344,
1298
+ "learning_rate": 5.675675675675676e-06,
1299
+ "loss": 1.5724,
1300
+ "step": 166
1301
+ },
1302
+ {
1303
+ "epoch": 0.44533333333333336,
1304
+ "grad_norm": 10.809335708618164,
1305
+ "learning_rate": 5.648648648648649e-06,
1306
+ "loss": 1.5325,
1307
+ "step": 167
1308
+ },
1309
+ {
1310
+ "epoch": 0.448,
1311
+ "grad_norm": 11.874850273132324,
1312
+ "learning_rate": 5.621621621621622e-06,
1313
+ "loss": 1.4954,
1314
+ "step": 168
1315
+ },
1316
+ {
1317
+ "epoch": 0.45066666666666666,
1318
+ "grad_norm": 11.912819862365723,
1319
+ "learning_rate": 5.5945945945945945e-06,
1320
+ "loss": 1.5614,
1321
+ "step": 169
1322
+ },
1323
+ {
1324
+ "epoch": 0.4533333333333333,
1325
+ "grad_norm": 13.068821907043457,
1326
+ "learning_rate": 5.567567567567568e-06,
1327
+ "loss": 1.5157,
1328
+ "step": 170
1329
+ },
1330
+ {
1331
+ "epoch": 0.4533333333333333,
1332
+ "eval_loss": 1.5530024766921997,
1333
+ "eval_runtime": 1.4596,
1334
+ "eval_samples_per_second": 20.554,
1335
+ "eval_steps_per_second": 10.277,
1336
+ "step": 170
1337
+ },
1338
+ {
1339
+ "epoch": 0.456,
1340
+ "grad_norm": 12.24840259552002,
1341
+ "learning_rate": 5.540540540540541e-06,
1342
+ "loss": 1.5693,
1343
+ "step": 171
1344
+ },
1345
+ {
1346
+ "epoch": 0.45866666666666667,
1347
+ "grad_norm": 11.337618827819824,
1348
+ "learning_rate": 5.513513513513515e-06,
1349
+ "loss": 1.5568,
1350
+ "step": 172
1351
+ },
1352
+ {
1353
+ "epoch": 0.4613333333333333,
1354
+ "grad_norm": 10.453991889953613,
1355
+ "learning_rate": 5.486486486486487e-06,
1356
+ "loss": 1.5001,
1357
+ "step": 173
1358
+ },
1359
+ {
1360
+ "epoch": 0.464,
1361
+ "grad_norm": 10.317952156066895,
1362
+ "learning_rate": 5.45945945945946e-06,
1363
+ "loss": 1.4289,
1364
+ "step": 174
1365
+ },
1366
+ {
1367
+ "epoch": 0.4666666666666667,
1368
+ "grad_norm": 11.70666217803955,
1369
+ "learning_rate": 5.432432432432433e-06,
1370
+ "loss": 1.3301,
1371
+ "step": 175
1372
+ },
1373
+ {
1374
+ "epoch": 0.4693333333333333,
1375
+ "grad_norm": 14.784002304077148,
1376
+ "learning_rate": 5.405405405405406e-06,
1377
+ "loss": 1.5322,
1378
+ "step": 176
1379
+ },
1380
+ {
1381
+ "epoch": 0.472,
1382
+ "grad_norm": 10.439934730529785,
1383
+ "learning_rate": 5.378378378378378e-06,
1384
+ "loss": 1.4356,
1385
+ "step": 177
1386
+ },
1387
+ {
1388
+ "epoch": 0.4746666666666667,
1389
+ "grad_norm": 10.800159454345703,
1390
+ "learning_rate": 5.351351351351351e-06,
1391
+ "loss": 1.6718,
1392
+ "step": 178
1393
+ },
1394
+ {
1395
+ "epoch": 0.47733333333333333,
1396
+ "grad_norm": 11.382489204406738,
1397
+ "learning_rate": 5.324324324324324e-06,
1398
+ "loss": 1.6329,
1399
+ "step": 179
1400
+ },
1401
+ {
1402
+ "epoch": 0.48,
1403
+ "grad_norm": 11.744807243347168,
1404
+ "learning_rate": 5.297297297297298e-06,
1405
+ "loss": 1.5418,
1406
+ "step": 180
1407
+ },
1408
+ {
1409
+ "epoch": 0.48,
1410
+ "eval_loss": 1.5468370914459229,
1411
+ "eval_runtime": 1.4494,
1412
+ "eval_samples_per_second": 20.698,
1413
+ "eval_steps_per_second": 10.349,
1414
+ "step": 180
1415
+ },
1416
+ {
1417
+ "epoch": 0.4826666666666667,
1418
+ "grad_norm": 10.518260955810547,
1419
+ "learning_rate": 5.2702702702702705e-06,
1420
+ "loss": 1.579,
1421
+ "step": 181
1422
+ },
1423
+ {
1424
+ "epoch": 0.48533333333333334,
1425
+ "grad_norm": 14.920302391052246,
1426
+ "learning_rate": 5.243243243243244e-06,
1427
+ "loss": 1.5459,
1428
+ "step": 182
1429
+ },
1430
+ {
1431
+ "epoch": 0.488,
1432
+ "grad_norm": 14.005922317504883,
1433
+ "learning_rate": 5.216216216216217e-06,
1434
+ "loss": 1.4835,
1435
+ "step": 183
1436
+ },
1437
+ {
1438
+ "epoch": 0.49066666666666664,
1439
+ "grad_norm": 13.020917892456055,
1440
+ "learning_rate": 5.18918918918919e-06,
1441
+ "loss": 1.5315,
1442
+ "step": 184
1443
+ },
1444
+ {
1445
+ "epoch": 0.49333333333333335,
1446
+ "grad_norm": 11.8460054397583,
1447
+ "learning_rate": 5.162162162162162e-06,
1448
+ "loss": 1.4567,
1449
+ "step": 185
1450
+ },
1451
+ {
1452
+ "epoch": 0.496,
1453
+ "grad_norm": 12.585269927978516,
1454
+ "learning_rate": 5.135135135135135e-06,
1455
+ "loss": 1.5409,
1456
+ "step": 186
1457
+ },
1458
+ {
1459
+ "epoch": 0.49866666666666665,
1460
+ "grad_norm": 10.893098831176758,
1461
+ "learning_rate": 5.108108108108108e-06,
1462
+ "loss": 1.5523,
1463
+ "step": 187
1464
+ },
1465
+ {
1466
+ "epoch": 0.5013333333333333,
1467
+ "grad_norm": 13.312434196472168,
1468
+ "learning_rate": 5.081081081081082e-06,
1469
+ "loss": 1.408,
1470
+ "step": 188
1471
+ },
1472
+ {
1473
+ "epoch": 0.504,
1474
+ "grad_norm": 11.251080513000488,
1475
+ "learning_rate": 5.054054054054054e-06,
1476
+ "loss": 1.559,
1477
+ "step": 189
1478
+ },
1479
+ {
1480
+ "epoch": 0.5066666666666667,
1481
+ "grad_norm": 11.128360748291016,
1482
+ "learning_rate": 5.027027027027027e-06,
1483
+ "loss": 1.6048,
1484
+ "step": 190
1485
+ },
1486
+ {
1487
+ "epoch": 0.5066666666666667,
1488
+ "eval_loss": 1.5399889945983887,
1489
+ "eval_runtime": 1.4761,
1490
+ "eval_samples_per_second": 20.324,
1491
+ "eval_steps_per_second": 10.162,
1492
+ "step": 190
1493
+ },
1494
+ {
1495
+ "epoch": 0.5093333333333333,
1496
+ "grad_norm": 11.423062324523926,
1497
+ "learning_rate": 5e-06,
1498
+ "loss": 1.6389,
1499
+ "step": 191
1500
+ },
1501
+ {
1502
+ "epoch": 0.512,
1503
+ "grad_norm": 11.651025772094727,
1504
+ "learning_rate": 4.9729729729729735e-06,
1505
+ "loss": 1.5658,
1506
+ "step": 192
1507
+ },
1508
+ {
1509
+ "epoch": 0.5146666666666667,
1510
+ "grad_norm": 11.046283721923828,
1511
+ "learning_rate": 4.9459459459459466e-06,
1512
+ "loss": 1.4467,
1513
+ "step": 193
1514
+ },
1515
+ {
1516
+ "epoch": 0.5173333333333333,
1517
+ "grad_norm": 12.875414848327637,
1518
+ "learning_rate": 4.91891891891892e-06,
1519
+ "loss": 1.5826,
1520
+ "step": 194
1521
+ },
1522
+ {
1523
+ "epoch": 0.52,
1524
+ "grad_norm": 12.292638778686523,
1525
+ "learning_rate": 4.891891891891893e-06,
1526
+ "loss": 1.483,
1527
+ "step": 195
1528
+ },
1529
+ {
1530
+ "epoch": 0.5226666666666666,
1531
+ "grad_norm": 11.317679405212402,
1532
+ "learning_rate": 4.864864864864866e-06,
1533
+ "loss": 1.6073,
1534
+ "step": 196
1535
+ },
1536
+ {
1537
+ "epoch": 0.5253333333333333,
1538
+ "grad_norm": 12.65168571472168,
1539
+ "learning_rate": 4.837837837837838e-06,
1540
+ "loss": 1.5852,
1541
+ "step": 197
1542
+ },
1543
+ {
1544
+ "epoch": 0.528,
1545
+ "grad_norm": 14.210925102233887,
1546
+ "learning_rate": 4.810810810810811e-06,
1547
+ "loss": 1.6664,
1548
+ "step": 198
1549
+ },
1550
+ {
1551
+ "epoch": 0.5306666666666666,
1552
+ "grad_norm": 12.766249656677246,
1553
+ "learning_rate": 4.783783783783784e-06,
1554
+ "loss": 1.6201,
1555
+ "step": 199
1556
+ },
1557
+ {
1558
+ "epoch": 0.5333333333333333,
1559
+ "grad_norm": 12.087968826293945,
1560
+ "learning_rate": 4.756756756756757e-06,
1561
+ "loss": 1.5182,
1562
+ "step": 200
1563
+ },
1564
+ {
1565
+ "epoch": 0.5333333333333333,
1566
+ "eval_loss": 1.5342140197753906,
1567
+ "eval_runtime": 1.4482,
1568
+ "eval_samples_per_second": 20.716,
1569
+ "eval_steps_per_second": 10.358,
1570
+ "step": 200
1571
+ },
1572
+ {
1573
+ "epoch": 0.536,
1574
+ "grad_norm": 14.878036499023438,
1575
+ "learning_rate": 4.72972972972973e-06,
1576
+ "loss": 1.6464,
1577
+ "step": 201
1578
+ },
1579
+ {
1580
+ "epoch": 0.5386666666666666,
1581
+ "grad_norm": 11.994093894958496,
1582
+ "learning_rate": 4.702702702702703e-06,
1583
+ "loss": 1.4874,
1584
+ "step": 202
1585
+ },
1586
+ {
1587
+ "epoch": 0.5413333333333333,
1588
+ "grad_norm": 16.825557708740234,
1589
+ "learning_rate": 4.675675675675676e-06,
1590
+ "loss": 1.6089,
1591
+ "step": 203
1592
+ },
1593
+ {
1594
+ "epoch": 0.544,
1595
+ "grad_norm": 10.64698314666748,
1596
+ "learning_rate": 4.6486486486486495e-06,
1597
+ "loss": 1.5708,
1598
+ "step": 204
1599
+ },
1600
+ {
1601
+ "epoch": 0.5466666666666666,
1602
+ "grad_norm": 12.136466979980469,
1603
+ "learning_rate": 4.621621621621622e-06,
1604
+ "loss": 1.686,
1605
+ "step": 205
1606
+ },
1607
+ {
1608
+ "epoch": 0.5493333333333333,
1609
+ "grad_norm": 11.439790725708008,
1610
+ "learning_rate": 4.594594594594596e-06,
1611
+ "loss": 1.6251,
1612
+ "step": 206
1613
+ },
1614
+ {
1615
+ "epoch": 0.552,
1616
+ "grad_norm": 11.850600242614746,
1617
+ "learning_rate": 4.567567567567568e-06,
1618
+ "loss": 1.5279,
1619
+ "step": 207
1620
+ },
1621
+ {
1622
+ "epoch": 0.5546666666666666,
1623
+ "grad_norm": 11.281230926513672,
1624
+ "learning_rate": 4.540540540540541e-06,
1625
+ "loss": 1.4779,
1626
+ "step": 208
1627
+ },
1628
+ {
1629
+ "epoch": 0.5573333333333333,
1630
+ "grad_norm": 11.568439483642578,
1631
+ "learning_rate": 4.513513513513514e-06,
1632
+ "loss": 1.717,
1633
+ "step": 209
1634
+ },
1635
+ {
1636
+ "epoch": 0.56,
1637
+ "grad_norm": 10.368412017822266,
1638
+ "learning_rate": 4.486486486486487e-06,
1639
+ "loss": 1.5628,
1640
+ "step": 210
1641
+ },
1642
+ {
1643
+ "epoch": 0.56,
1644
+ "eval_loss": 1.529217004776001,
1645
+ "eval_runtime": 1.4476,
1646
+ "eval_samples_per_second": 20.724,
1647
+ "eval_steps_per_second": 10.362,
1648
+ "step": 210
1649
+ },
1650
+ {
1651
+ "epoch": 0.5626666666666666,
1652
+ "grad_norm": 12.218080520629883,
1653
+ "learning_rate": 4.45945945945946e-06,
1654
+ "loss": 1.5924,
1655
+ "step": 211
1656
+ },
1657
+ {
1658
+ "epoch": 0.5653333333333334,
1659
+ "grad_norm": 10.668429374694824,
1660
+ "learning_rate": 4.432432432432433e-06,
1661
+ "loss": 1.5156,
1662
+ "step": 212
1663
+ },
1664
+ {
1665
+ "epoch": 0.568,
1666
+ "grad_norm": 10.990684509277344,
1667
+ "learning_rate": 4.4054054054054054e-06,
1668
+ "loss": 1.6046,
1669
+ "step": 213
1670
+ },
1671
+ {
1672
+ "epoch": 0.5706666666666667,
1673
+ "grad_norm": 12.811287879943848,
1674
+ "learning_rate": 4.378378378378379e-06,
1675
+ "loss": 1.5945,
1676
+ "step": 214
1677
+ },
1678
+ {
1679
+ "epoch": 0.5733333333333334,
1680
+ "grad_norm": 11.771529197692871,
1681
+ "learning_rate": 4.351351351351352e-06,
1682
+ "loss": 1.5792,
1683
+ "step": 215
1684
+ },
1685
+ {
1686
+ "epoch": 0.576,
1687
+ "grad_norm": 11.0822114944458,
1688
+ "learning_rate": 4.324324324324325e-06,
1689
+ "loss": 1.6252,
1690
+ "step": 216
1691
+ },
1692
+ {
1693
+ "epoch": 0.5786666666666667,
1694
+ "grad_norm": 11.860054016113281,
1695
+ "learning_rate": 4.297297297297298e-06,
1696
+ "loss": 1.4526,
1697
+ "step": 217
1698
+ },
1699
+ {
1700
+ "epoch": 0.5813333333333334,
1701
+ "grad_norm": 11.882978439331055,
1702
+ "learning_rate": 4.270270270270271e-06,
1703
+ "loss": 1.3806,
1704
+ "step": 218
1705
+ },
1706
+ {
1707
+ "epoch": 0.584,
1708
+ "grad_norm": 11.159905433654785,
1709
+ "learning_rate": 4.243243243243244e-06,
1710
+ "loss": 1.5448,
1711
+ "step": 219
1712
+ },
1713
+ {
1714
+ "epoch": 0.5866666666666667,
1715
+ "grad_norm": 12.598294258117676,
1716
+ "learning_rate": 4.216216216216217e-06,
1717
+ "loss": 1.531,
1718
+ "step": 220
1719
+ },
1720
+ {
1721
+ "epoch": 0.5866666666666667,
1722
+ "eval_loss": 1.5237351655960083,
1723
+ "eval_runtime": 1.505,
1724
+ "eval_samples_per_second": 19.934,
1725
+ "eval_steps_per_second": 9.967,
1726
+ "step": 220
1727
+ },
1728
+ {
1729
+ "epoch": 0.5893333333333334,
1730
+ "grad_norm": 12.2394437789917,
1731
+ "learning_rate": 4.189189189189189e-06,
1732
+ "loss": 1.4149,
1733
+ "step": 221
1734
+ },
1735
+ {
1736
+ "epoch": 0.592,
1737
+ "grad_norm": 11.620826721191406,
1738
+ "learning_rate": 4.162162162162163e-06,
1739
+ "loss": 1.6498,
1740
+ "step": 222
1741
+ },
1742
+ {
1743
+ "epoch": 0.5946666666666667,
1744
+ "grad_norm": 13.30986213684082,
1745
+ "learning_rate": 4.135135135135135e-06,
1746
+ "loss": 1.6125,
1747
+ "step": 223
1748
+ },
1749
+ {
1750
+ "epoch": 0.5973333333333334,
1751
+ "grad_norm": 10.7543363571167,
1752
+ "learning_rate": 4.108108108108108e-06,
1753
+ "loss": 1.5335,
1754
+ "step": 224
1755
+ },
1756
+ {
1757
+ "epoch": 0.6,
1758
+ "grad_norm": 12.820805549621582,
1759
+ "learning_rate": 4.0810810810810815e-06,
1760
+ "loss": 1.4477,
1761
+ "step": 225
1762
+ },
1763
+ {
1764
+ "epoch": 0.6026666666666667,
1765
+ "grad_norm": 10.250899314880371,
1766
+ "learning_rate": 4.0540540540540545e-06,
1767
+ "loss": 1.5308,
1768
+ "step": 226
1769
+ },
1770
+ {
1771
+ "epoch": 0.6053333333333333,
1772
+ "grad_norm": 11.902603149414062,
1773
+ "learning_rate": 4.027027027027028e-06,
1774
+ "loss": 1.5168,
1775
+ "step": 227
1776
+ },
1777
+ {
1778
+ "epoch": 0.608,
1779
+ "grad_norm": 11.358914375305176,
1780
+ "learning_rate": 4.000000000000001e-06,
1781
+ "loss": 1.5414,
1782
+ "step": 228
1783
+ },
1784
+ {
1785
+ "epoch": 0.6106666666666667,
1786
+ "grad_norm": 10.709514617919922,
1787
+ "learning_rate": 3.972972972972973e-06,
1788
+ "loss": 1.4812,
1789
+ "step": 229
1790
+ },
1791
+ {
1792
+ "epoch": 0.6133333333333333,
1793
+ "grad_norm": 10.724623680114746,
1794
+ "learning_rate": 3.945945945945947e-06,
1795
+ "loss": 1.5425,
1796
+ "step": 230
1797
+ },
1798
+ {
1799
+ "epoch": 0.6133333333333333,
1800
+ "eval_loss": 1.5228849649429321,
1801
+ "eval_runtime": 1.4436,
1802
+ "eval_samples_per_second": 20.781,
1803
+ "eval_steps_per_second": 10.39,
1804
+ "step": 230
1805
+ },
1806
+ {
1807
+ "epoch": 0.616,
1808
+ "grad_norm": 11.70534896850586,
1809
+ "learning_rate": 3.918918918918919e-06,
1810
+ "loss": 1.5146,
1811
+ "step": 231
1812
+ },
1813
+ {
1814
+ "epoch": 0.6186666666666667,
1815
+ "grad_norm": 9.500643730163574,
1816
+ "learning_rate": 3.891891891891892e-06,
1817
+ "loss": 1.4185,
1818
+ "step": 232
1819
+ },
1820
+ {
1821
+ "epoch": 0.6213333333333333,
1822
+ "grad_norm": 11.755574226379395,
1823
+ "learning_rate": 3.864864864864865e-06,
1824
+ "loss": 1.5805,
1825
+ "step": 233
1826
+ },
1827
+ {
1828
+ "epoch": 0.624,
1829
+ "grad_norm": 11.309388160705566,
1830
+ "learning_rate": 3.837837837837838e-06,
1831
+ "loss": 1.5481,
1832
+ "step": 234
1833
+ },
1834
+ {
1835
+ "epoch": 0.6266666666666667,
1836
+ "grad_norm": 10.823451042175293,
1837
+ "learning_rate": 3.810810810810811e-06,
1838
+ "loss": 1.4996,
1839
+ "step": 235
1840
+ },
1841
+ {
1842
+ "epoch": 0.6293333333333333,
1843
+ "grad_norm": 10.33895492553711,
1844
+ "learning_rate": 3.7837837837837844e-06,
1845
+ "loss": 1.5545,
1846
+ "step": 236
1847
+ },
1848
+ {
1849
+ "epoch": 0.632,
1850
+ "grad_norm": 12.343066215515137,
1851
+ "learning_rate": 3.756756756756757e-06,
1852
+ "loss": 1.4629,
1853
+ "step": 237
1854
+ },
1855
+ {
1856
+ "epoch": 0.6346666666666667,
1857
+ "grad_norm": 10.669163703918457,
1858
+ "learning_rate": 3.72972972972973e-06,
1859
+ "loss": 1.4943,
1860
+ "step": 238
1861
+ },
1862
+ {
1863
+ "epoch": 0.6373333333333333,
1864
+ "grad_norm": 19.491622924804688,
1865
+ "learning_rate": 3.7027027027027028e-06,
1866
+ "loss": 1.4613,
1867
+ "step": 239
1868
+ },
1869
+ {
1870
+ "epoch": 0.64,
1871
+ "grad_norm": 11.280375480651855,
1872
+ "learning_rate": 3.6756756756756763e-06,
1873
+ "loss": 1.5251,
1874
+ "step": 240
1875
+ },
1876
+ {
1877
+ "epoch": 0.64,
1878
+ "eval_loss": 1.5189076662063599,
1879
+ "eval_runtime": 1.4647,
1880
+ "eval_samples_per_second": 20.482,
1881
+ "eval_steps_per_second": 10.241,
1882
+ "step": 240
1883
+ },
1884
+ {
1885
+ "epoch": 0.6426666666666667,
1886
+ "grad_norm": 11.986125946044922,
1887
+ "learning_rate": 3.648648648648649e-06,
1888
+ "loss": 1.5283,
1889
+ "step": 241
1890
+ },
1891
+ {
1892
+ "epoch": 0.6453333333333333,
1893
+ "grad_norm": 11.676025390625,
1894
+ "learning_rate": 3.621621621621622e-06,
1895
+ "loss": 1.5087,
1896
+ "step": 242
1897
+ },
1898
+ {
1899
+ "epoch": 0.648,
1900
+ "grad_norm": 11.277451515197754,
1901
+ "learning_rate": 3.5945945945945946e-06,
1902
+ "loss": 1.5804,
1903
+ "step": 243
1904
+ },
1905
+ {
1906
+ "epoch": 0.6506666666666666,
1907
+ "grad_norm": 9.987862586975098,
1908
+ "learning_rate": 3.567567567567568e-06,
1909
+ "loss": 1.5514,
1910
+ "step": 244
1911
+ },
1912
+ {
1913
+ "epoch": 0.6533333333333333,
1914
+ "grad_norm": 11.72730827331543,
1915
+ "learning_rate": 3.5405405405405408e-06,
1916
+ "loss": 1.51,
1917
+ "step": 245
1918
+ },
1919
+ {
1920
+ "epoch": 0.656,
1921
+ "grad_norm": 11.331317901611328,
1922
+ "learning_rate": 3.513513513513514e-06,
1923
+ "loss": 1.4503,
1924
+ "step": 246
1925
+ },
1926
+ {
1927
+ "epoch": 0.6586666666666666,
1928
+ "grad_norm": 10.42099666595459,
1929
+ "learning_rate": 3.4864864864864865e-06,
1930
+ "loss": 1.4682,
1931
+ "step": 247
1932
+ },
1933
+ {
1934
+ "epoch": 0.6613333333333333,
1935
+ "grad_norm": 12.430152893066406,
1936
+ "learning_rate": 3.45945945945946e-06,
1937
+ "loss": 1.5126,
1938
+ "step": 248
1939
+ },
1940
+ {
1941
+ "epoch": 0.664,
1942
+ "grad_norm": 12.36617660522461,
1943
+ "learning_rate": 3.4324324324324326e-06,
1944
+ "loss": 1.5373,
1945
+ "step": 249
1946
+ },
1947
+ {
1948
+ "epoch": 0.6666666666666666,
1949
+ "grad_norm": 11.66644287109375,
1950
+ "learning_rate": 3.4054054054054057e-06,
1951
+ "loss": 1.5439,
1952
+ "step": 250
1953
+ },
1954
+ {
1955
+ "epoch": 0.6666666666666666,
1956
+ "eval_loss": 1.5144615173339844,
1957
+ "eval_runtime": 1.4468,
1958
+ "eval_samples_per_second": 20.735,
1959
+ "eval_steps_per_second": 10.368,
1960
+ "step": 250
1961
+ },
1962
+ {
1963
+ "epoch": 0.6693333333333333,
1964
+ "grad_norm": 11.48746395111084,
1965
+ "learning_rate": 3.3783783783783788e-06,
1966
+ "loss": 1.4353,
1967
+ "step": 251
1968
+ },
1969
+ {
1970
+ "epoch": 0.672,
1971
+ "grad_norm": 11.128070831298828,
1972
+ "learning_rate": 3.351351351351352e-06,
1973
+ "loss": 1.5068,
1974
+ "step": 252
1975
+ },
1976
+ {
1977
+ "epoch": 0.6746666666666666,
1978
+ "grad_norm": 12.601024627685547,
1979
+ "learning_rate": 3.3243243243243245e-06,
1980
+ "loss": 1.5039,
1981
+ "step": 253
1982
+ },
1983
+ {
1984
+ "epoch": 0.6773333333333333,
1985
+ "grad_norm": 11.611284255981445,
1986
+ "learning_rate": 3.2972972972972976e-06,
1987
+ "loss": 1.5565,
1988
+ "step": 254
1989
+ },
1990
+ {
1991
+ "epoch": 0.68,
1992
+ "grad_norm": 12.905797958374023,
1993
+ "learning_rate": 3.2702702702702706e-06,
1994
+ "loss": 1.5206,
1995
+ "step": 255
1996
+ },
1997
+ {
1998
+ "epoch": 0.6826666666666666,
1999
+ "grad_norm": 12.170700073242188,
2000
+ "learning_rate": 3.2432432432432437e-06,
2001
+ "loss": 1.2695,
2002
+ "step": 256
2003
+ },
2004
+ {
2005
+ "epoch": 0.6853333333333333,
2006
+ "grad_norm": 12.405909538269043,
2007
+ "learning_rate": 3.2162162162162164e-06,
2008
+ "loss": 1.5179,
2009
+ "step": 257
2010
+ },
2011
+ {
2012
+ "epoch": 0.688,
2013
+ "grad_norm": 13.01850414276123,
2014
+ "learning_rate": 3.1891891891891894e-06,
2015
+ "loss": 1.4435,
2016
+ "step": 258
2017
+ },
2018
+ {
2019
+ "epoch": 0.6906666666666667,
2020
+ "grad_norm": 11.52682113647461,
2021
+ "learning_rate": 3.1621621621621625e-06,
2022
+ "loss": 1.3751,
2023
+ "step": 259
2024
+ },
2025
+ {
2026
+ "epoch": 0.6933333333333334,
2027
+ "grad_norm": 10.300020217895508,
2028
+ "learning_rate": 3.1351351351351356e-06,
2029
+ "loss": 1.4654,
2030
+ "step": 260
2031
+ },
2032
+ {
2033
+ "epoch": 0.6933333333333334,
2034
+ "eval_loss": 1.5129177570343018,
2035
+ "eval_runtime": 1.4415,
2036
+ "eval_samples_per_second": 20.811,
2037
+ "eval_steps_per_second": 10.406,
2038
+ "step": 260
2039
+ },
2040
+ {
2041
+ "epoch": 0.696,
2042
+ "grad_norm": 11.269693374633789,
2043
+ "learning_rate": 3.1081081081081082e-06,
2044
+ "loss": 1.6435,
2045
+ "step": 261
2046
+ },
2047
+ {
2048
+ "epoch": 0.6986666666666667,
2049
+ "grad_norm": 11.508820533752441,
2050
+ "learning_rate": 3.0810810810810817e-06,
2051
+ "loss": 1.4721,
2052
+ "step": 262
2053
+ },
2054
+ {
2055
+ "epoch": 0.7013333333333334,
2056
+ "grad_norm": 10.975653648376465,
2057
+ "learning_rate": 3.0540540540540544e-06,
2058
+ "loss": 1.672,
2059
+ "step": 263
2060
+ },
2061
+ {
2062
+ "epoch": 0.704,
2063
+ "grad_norm": 13.16110897064209,
2064
+ "learning_rate": 3.0270270270270274e-06,
2065
+ "loss": 1.4838,
2066
+ "step": 264
2067
+ },
2068
+ {
2069
+ "epoch": 0.7066666666666667,
2070
+ "grad_norm": 13.65386962890625,
2071
+ "learning_rate": 3e-06,
2072
+ "loss": 1.618,
2073
+ "step": 265
2074
+ },
2075
+ {
2076
+ "epoch": 0.7093333333333334,
2077
+ "grad_norm": 12.109015464782715,
2078
+ "learning_rate": 2.9729729729729736e-06,
2079
+ "loss": 1.4518,
2080
+ "step": 266
2081
+ },
2082
+ {
2083
+ "epoch": 0.712,
2084
+ "grad_norm": 11.558544158935547,
2085
+ "learning_rate": 2.9459459459459462e-06,
2086
+ "loss": 1.4772,
2087
+ "step": 267
2088
+ },
2089
+ {
2090
+ "epoch": 0.7146666666666667,
2091
+ "grad_norm": 12.302791595458984,
2092
+ "learning_rate": 2.9189189189189193e-06,
2093
+ "loss": 1.6029,
2094
+ "step": 268
2095
+ },
2096
+ {
2097
+ "epoch": 0.7173333333333334,
2098
+ "grad_norm": 12.268084526062012,
2099
+ "learning_rate": 2.891891891891892e-06,
2100
+ "loss": 1.4477,
2101
+ "step": 269
2102
+ },
2103
+ {
2104
+ "epoch": 0.72,
2105
+ "grad_norm": 11.1484375,
2106
+ "learning_rate": 2.8648648648648654e-06,
2107
+ "loss": 1.6031,
2108
+ "step": 270
2109
+ },
2110
+ {
2111
+ "epoch": 0.72,
2112
+ "eval_loss": 1.5090078115463257,
2113
+ "eval_runtime": 1.4443,
2114
+ "eval_samples_per_second": 20.772,
2115
+ "eval_steps_per_second": 10.386,
2116
+ "step": 270
2117
+ },
2118
+ {
2119
+ "epoch": 0.7226666666666667,
2120
+ "grad_norm": 10.918089866638184,
2121
+ "learning_rate": 2.837837837837838e-06,
2122
+ "loss": 1.3471,
2123
+ "step": 271
2124
+ },
2125
+ {
2126
+ "epoch": 0.7253333333333334,
2127
+ "grad_norm": 12.327642440795898,
2128
+ "learning_rate": 2.810810810810811e-06,
2129
+ "loss": 1.562,
2130
+ "step": 272
2131
+ },
2132
+ {
2133
+ "epoch": 0.728,
2134
+ "grad_norm": 11.135960578918457,
2135
+ "learning_rate": 2.783783783783784e-06,
2136
+ "loss": 1.5001,
2137
+ "step": 273
2138
+ },
2139
+ {
2140
+ "epoch": 0.7306666666666667,
2141
+ "grad_norm": 11.357678413391113,
2142
+ "learning_rate": 2.7567567567567573e-06,
2143
+ "loss": 1.4937,
2144
+ "step": 274
2145
+ },
2146
+ {
2147
+ "epoch": 0.7333333333333333,
2148
+ "grad_norm": 11.794831275939941,
2149
+ "learning_rate": 2.72972972972973e-06,
2150
+ "loss": 1.4711,
2151
+ "step": 275
2152
+ },
2153
+ {
2154
+ "epoch": 0.736,
2155
+ "grad_norm": 12.003959655761719,
2156
+ "learning_rate": 2.702702702702703e-06,
2157
+ "loss": 1.4683,
2158
+ "step": 276
2159
+ },
2160
+ {
2161
+ "epoch": 0.7386666666666667,
2162
+ "grad_norm": 11.9353666305542,
2163
+ "learning_rate": 2.6756756756756757e-06,
2164
+ "loss": 1.4963,
2165
+ "step": 277
2166
+ },
2167
+ {
2168
+ "epoch": 0.7413333333333333,
2169
+ "grad_norm": 10.868412971496582,
2170
+ "learning_rate": 2.648648648648649e-06,
2171
+ "loss": 1.4788,
2172
+ "step": 278
2173
+ },
2174
+ {
2175
+ "epoch": 0.744,
2176
+ "grad_norm": 10.403037071228027,
2177
+ "learning_rate": 2.621621621621622e-06,
2178
+ "loss": 1.4361,
2179
+ "step": 279
2180
+ },
2181
+ {
2182
+ "epoch": 0.7466666666666667,
2183
+ "grad_norm": 14.62988567352295,
2184
+ "learning_rate": 2.594594594594595e-06,
2185
+ "loss": 1.406,
2186
+ "step": 280
2187
+ },
2188
+ {
2189
+ "epoch": 0.7466666666666667,
2190
+ "eval_loss": 1.5082733631134033,
2191
+ "eval_runtime": 1.4412,
2192
+ "eval_samples_per_second": 20.816,
2193
+ "eval_steps_per_second": 10.408,
2194
+ "step": 280
2195
+ },
2196
+ {
2197
+ "epoch": 0.7493333333333333,
2198
+ "grad_norm": 11.512578964233398,
2199
+ "learning_rate": 2.5675675675675675e-06,
2200
+ "loss": 1.5055,
2201
+ "step": 281
2202
+ },
2203
+ {
2204
+ "epoch": 0.752,
2205
+ "grad_norm": 12.163981437683105,
2206
+ "learning_rate": 2.540540540540541e-06,
2207
+ "loss": 1.5691,
2208
+ "step": 282
2209
+ },
2210
+ {
2211
+ "epoch": 0.7546666666666667,
2212
+ "grad_norm": 12.146513938903809,
2213
+ "learning_rate": 2.5135135135135137e-06,
2214
+ "loss": 1.3984,
2215
+ "step": 283
2216
+ },
2217
+ {
2218
+ "epoch": 0.7573333333333333,
2219
+ "grad_norm": 12.473353385925293,
2220
+ "learning_rate": 2.4864864864864867e-06,
2221
+ "loss": 1.5503,
2222
+ "step": 284
2223
+ },
2224
+ {
2225
+ "epoch": 0.76,
2226
+ "grad_norm": 11.867709159851074,
2227
+ "learning_rate": 2.45945945945946e-06,
2228
+ "loss": 1.4414,
2229
+ "step": 285
2230
+ },
2231
+ {
2232
+ "epoch": 0.7626666666666667,
2233
+ "grad_norm": 10.952685356140137,
2234
+ "learning_rate": 2.432432432432433e-06,
2235
+ "loss": 1.5349,
2236
+ "step": 286
2237
+ },
2238
+ {
2239
+ "epoch": 0.7653333333333333,
2240
+ "grad_norm": 11.330965042114258,
2241
+ "learning_rate": 2.4054054054054055e-06,
2242
+ "loss": 1.5057,
2243
+ "step": 287
2244
+ },
2245
+ {
2246
+ "epoch": 0.768,
2247
+ "grad_norm": 12.43771743774414,
2248
+ "learning_rate": 2.3783783783783786e-06,
2249
+ "loss": 1.5275,
2250
+ "step": 288
2251
+ },
2252
+ {
2253
+ "epoch": 0.7706666666666667,
2254
+ "grad_norm": 10.562946319580078,
2255
+ "learning_rate": 2.3513513513513517e-06,
2256
+ "loss": 1.3893,
2257
+ "step": 289
2258
+ },
2259
+ {
2260
+ "epoch": 0.7733333333333333,
2261
+ "grad_norm": 12.457465171813965,
2262
+ "learning_rate": 2.3243243243243247e-06,
2263
+ "loss": 1.4675,
2264
+ "step": 290
2265
+ },
2266
+ {
2267
+ "epoch": 0.7733333333333333,
2268
+ "eval_loss": 1.505977988243103,
2269
+ "eval_runtime": 1.4423,
2270
+ "eval_samples_per_second": 20.801,
2271
+ "eval_steps_per_second": 10.4,
2272
+ "step": 290
2273
+ },
2274
+ {
2275
+ "epoch": 0.776,
2276
+ "grad_norm": 11.270442008972168,
2277
+ "learning_rate": 2.297297297297298e-06,
2278
+ "loss": 1.5013,
2279
+ "step": 291
2280
+ },
2281
+ {
2282
+ "epoch": 0.7786666666666666,
2283
+ "grad_norm": 13.198526382446289,
2284
+ "learning_rate": 2.2702702702702705e-06,
2285
+ "loss": 1.4414,
2286
+ "step": 292
2287
+ },
2288
+ {
2289
+ "epoch": 0.7813333333333333,
2290
+ "grad_norm": 11.611175537109375,
2291
+ "learning_rate": 2.2432432432432435e-06,
2292
+ "loss": 1.4635,
2293
+ "step": 293
2294
+ },
2295
+ {
2296
+ "epoch": 0.784,
2297
+ "grad_norm": 11.79445743560791,
2298
+ "learning_rate": 2.2162162162162166e-06,
2299
+ "loss": 1.5512,
2300
+ "step": 294
2301
+ },
2302
+ {
2303
+ "epoch": 0.7866666666666666,
2304
+ "grad_norm": 10.822488784790039,
2305
+ "learning_rate": 2.1891891891891897e-06,
2306
+ "loss": 1.5688,
2307
+ "step": 295
2308
+ },
2309
+ {
2310
+ "epoch": 0.7893333333333333,
2311
+ "grad_norm": 10.623988151550293,
2312
+ "learning_rate": 2.1621621621621623e-06,
2313
+ "loss": 1.3992,
2314
+ "step": 296
2315
+ },
2316
+ {
2317
+ "epoch": 0.792,
2318
+ "grad_norm": 10.979094505310059,
2319
+ "learning_rate": 2.1351351351351354e-06,
2320
+ "loss": 1.7058,
2321
+ "step": 297
2322
+ },
2323
+ {
2324
+ "epoch": 0.7946666666666666,
2325
+ "grad_norm": 11.987638473510742,
2326
+ "learning_rate": 2.1081081081081085e-06,
2327
+ "loss": 1.4855,
2328
+ "step": 298
2329
+ },
2330
+ {
2331
+ "epoch": 0.7973333333333333,
2332
+ "grad_norm": 13.160965919494629,
2333
+ "learning_rate": 2.0810810810810815e-06,
2334
+ "loss": 1.7222,
2335
+ "step": 299
2336
+ },
2337
+ {
2338
+ "epoch": 0.8,
2339
+ "grad_norm": 12.35315990447998,
2340
+ "learning_rate": 2.054054054054054e-06,
2341
+ "loss": 1.4974,
2342
+ "step": 300
2343
+ },
2344
+ {
2345
+ "epoch": 0.8,
2346
+ "eval_loss": 1.5055415630340576,
2347
+ "eval_runtime": 1.4432,
2348
+ "eval_samples_per_second": 20.787,
2349
+ "eval_steps_per_second": 10.393,
2350
+ "step": 300
2351
+ },
2352
+ {
2353
+ "epoch": 0.8026666666666666,
2354
+ "grad_norm": 12.041595458984375,
2355
+ "learning_rate": 2.0270270270270273e-06,
2356
+ "loss": 1.5184,
2357
+ "step": 301
2358
+ },
2359
+ {
2360
+ "epoch": 0.8053333333333333,
2361
+ "grad_norm": 11.05543327331543,
2362
+ "learning_rate": 2.0000000000000003e-06,
2363
+ "loss": 1.4602,
2364
+ "step": 302
2365
+ },
2366
+ {
2367
+ "epoch": 0.808,
2368
+ "grad_norm": 11.678079605102539,
2369
+ "learning_rate": 1.9729729729729734e-06,
2370
+ "loss": 1.5511,
2371
+ "step": 303
2372
+ },
2373
+ {
2374
+ "epoch": 0.8106666666666666,
2375
+ "grad_norm": 12.200875282287598,
2376
+ "learning_rate": 1.945945945945946e-06,
2377
+ "loss": 1.4688,
2378
+ "step": 304
2379
+ },
2380
+ {
2381
+ "epoch": 0.8133333333333334,
2382
+ "grad_norm": 10.824845314025879,
2383
+ "learning_rate": 1.918918918918919e-06,
2384
+ "loss": 1.5101,
2385
+ "step": 305
2386
+ },
2387
+ {
2388
+ "epoch": 0.816,
2389
+ "grad_norm": 10.230807304382324,
2390
+ "learning_rate": 1.8918918918918922e-06,
2391
+ "loss": 1.425,
2392
+ "step": 306
2393
+ },
2394
+ {
2395
+ "epoch": 0.8186666666666667,
2396
+ "grad_norm": 11.947959899902344,
2397
+ "learning_rate": 1.864864864864865e-06,
2398
+ "loss": 1.57,
2399
+ "step": 307
2400
+ },
2401
+ {
2402
+ "epoch": 0.8213333333333334,
2403
+ "grad_norm": 13.433063507080078,
2404
+ "learning_rate": 1.8378378378378381e-06,
2405
+ "loss": 1.5816,
2406
+ "step": 308
2407
+ },
2408
+ {
2409
+ "epoch": 0.824,
2410
+ "grad_norm": 10.70764446258545,
2411
+ "learning_rate": 1.810810810810811e-06,
2412
+ "loss": 1.519,
2413
+ "step": 309
2414
+ },
2415
+ {
2416
+ "epoch": 0.8266666666666667,
2417
+ "grad_norm": 11.407464981079102,
2418
+ "learning_rate": 1.783783783783784e-06,
2419
+ "loss": 1.4903,
2420
+ "step": 310
2421
+ },
2422
+ {
2423
+ "epoch": 0.8266666666666667,
2424
+ "eval_loss": 1.5049265623092651,
2425
+ "eval_runtime": 1.4452,
2426
+ "eval_samples_per_second": 20.758,
2427
+ "eval_steps_per_second": 10.379,
2428
+ "step": 310
2429
+ },
2430
+ {
2431
+ "epoch": 0.8293333333333334,
2432
+ "grad_norm": 11.038989067077637,
2433
+ "learning_rate": 1.756756756756757e-06,
2434
+ "loss": 1.5449,
2435
+ "step": 311
2436
+ },
2437
+ {
2438
+ "epoch": 0.832,
2439
+ "grad_norm": 10.891145706176758,
2440
+ "learning_rate": 1.72972972972973e-06,
2441
+ "loss": 1.4414,
2442
+ "step": 312
2443
+ },
2444
+ {
2445
+ "epoch": 0.8346666666666667,
2446
+ "grad_norm": 11.190020561218262,
2447
+ "learning_rate": 1.7027027027027028e-06,
2448
+ "loss": 1.5704,
2449
+ "step": 313
2450
+ },
2451
+ {
2452
+ "epoch": 0.8373333333333334,
2453
+ "grad_norm": 11.971606254577637,
2454
+ "learning_rate": 1.675675675675676e-06,
2455
+ "loss": 1.5643,
2456
+ "step": 314
2457
+ },
2458
+ {
2459
+ "epoch": 0.84,
2460
+ "grad_norm": 10.959304809570312,
2461
+ "learning_rate": 1.6486486486486488e-06,
2462
+ "loss": 1.3744,
2463
+ "step": 315
2464
+ },
2465
+ {
2466
+ "epoch": 0.8426666666666667,
2467
+ "grad_norm": 11.642538070678711,
2468
+ "learning_rate": 1.6216216216216219e-06,
2469
+ "loss": 1.581,
2470
+ "step": 316
2471
+ },
2472
+ {
2473
+ "epoch": 0.8453333333333334,
2474
+ "grad_norm": 11.766486167907715,
2475
+ "learning_rate": 1.5945945945945947e-06,
2476
+ "loss": 1.4898,
2477
+ "step": 317
2478
+ },
2479
+ {
2480
+ "epoch": 0.848,
2481
+ "grad_norm": 12.002728462219238,
2482
+ "learning_rate": 1.5675675675675678e-06,
2483
+ "loss": 1.5529,
2484
+ "step": 318
2485
+ },
2486
+ {
2487
+ "epoch": 0.8506666666666667,
2488
+ "grad_norm": 11.168254852294922,
2489
+ "learning_rate": 1.5405405405405409e-06,
2490
+ "loss": 1.5576,
2491
+ "step": 319
2492
+ },
2493
+ {
2494
+ "epoch": 0.8533333333333334,
2495
+ "grad_norm": 12.34257698059082,
2496
+ "learning_rate": 1.5135135135135137e-06,
2497
+ "loss": 1.379,
2498
+ "step": 320
2499
+ },
2500
+ {
2501
+ "epoch": 0.8533333333333334,
2502
+ "eval_loss": 1.5034152269363403,
2503
+ "eval_runtime": 1.4462,
2504
+ "eval_samples_per_second": 20.744,
2505
+ "eval_steps_per_second": 10.372,
2506
+ "step": 320
2507
+ },
2508
+ {
2509
+ "epoch": 0.856,
2510
+ "grad_norm": 12.051098823547363,
2511
+ "learning_rate": 1.4864864864864868e-06,
2512
+ "loss": 1.5729,
2513
+ "step": 321
2514
+ },
2515
+ {
2516
+ "epoch": 0.8586666666666667,
2517
+ "grad_norm": 10.446905136108398,
2518
+ "learning_rate": 1.4594594594594596e-06,
2519
+ "loss": 1.4935,
2520
+ "step": 322
2521
+ },
2522
+ {
2523
+ "epoch": 0.8613333333333333,
2524
+ "grad_norm": 12.018199920654297,
2525
+ "learning_rate": 1.4324324324324327e-06,
2526
+ "loss": 1.5905,
2527
+ "step": 323
2528
+ },
2529
+ {
2530
+ "epoch": 0.864,
2531
+ "grad_norm": 12.235658645629883,
2532
+ "learning_rate": 1.4054054054054056e-06,
2533
+ "loss": 1.5417,
2534
+ "step": 324
2535
+ },
2536
+ {
2537
+ "epoch": 0.8666666666666667,
2538
+ "grad_norm": 11.277713775634766,
2539
+ "learning_rate": 1.3783783783783786e-06,
2540
+ "loss": 1.5076,
2541
+ "step": 325
2542
+ },
2543
+ {
2544
+ "epoch": 0.8693333333333333,
2545
+ "grad_norm": 10.657114028930664,
2546
+ "learning_rate": 1.3513513513513515e-06,
2547
+ "loss": 1.4326,
2548
+ "step": 326
2549
+ },
2550
+ {
2551
+ "epoch": 0.872,
2552
+ "grad_norm": 12.818350791931152,
2553
+ "learning_rate": 1.3243243243243246e-06,
2554
+ "loss": 1.4677,
2555
+ "step": 327
2556
+ },
2557
+ {
2558
+ "epoch": 0.8746666666666667,
2559
+ "grad_norm": 13.504673957824707,
2560
+ "learning_rate": 1.2972972972972974e-06,
2561
+ "loss": 1.5695,
2562
+ "step": 328
2563
+ },
2564
+ {
2565
+ "epoch": 0.8773333333333333,
2566
+ "grad_norm": 11.200360298156738,
2567
+ "learning_rate": 1.2702702702702705e-06,
2568
+ "loss": 1.4903,
2569
+ "step": 329
2570
+ },
2571
+ {
2572
+ "epoch": 0.88,
2573
+ "grad_norm": 11.851312637329102,
2574
+ "learning_rate": 1.2432432432432434e-06,
2575
+ "loss": 1.4303,
2576
+ "step": 330
2577
+ },
2578
+ {
2579
+ "epoch": 0.88,
2580
+ "eval_loss": 1.5030354261398315,
2581
+ "eval_runtime": 1.6266,
2582
+ "eval_samples_per_second": 18.444,
2583
+ "eval_steps_per_second": 9.222,
2584
+ "step": 330
2585
+ },
2586
+ {
2587
+ "epoch": 0.8826666666666667,
2588
+ "grad_norm": 11.918156623840332,
2589
+ "learning_rate": 1.2162162162162164e-06,
2590
+ "loss": 1.6386,
2591
+ "step": 331
2592
+ },
2593
+ {
2594
+ "epoch": 0.8853333333333333,
2595
+ "grad_norm": 11.092312812805176,
2596
+ "learning_rate": 1.1891891891891893e-06,
2597
+ "loss": 1.5743,
2598
+ "step": 332
2599
+ },
2600
+ {
2601
+ "epoch": 0.888,
2602
+ "grad_norm": 12.29781436920166,
2603
+ "learning_rate": 1.1621621621621624e-06,
2604
+ "loss": 1.4493,
2605
+ "step": 333
2606
+ },
2607
+ {
2608
+ "epoch": 0.8906666666666667,
2609
+ "grad_norm": 12.36745834350586,
2610
+ "learning_rate": 1.1351351351351352e-06,
2611
+ "loss": 1.5803,
2612
+ "step": 334
2613
+ },
2614
+ {
2615
+ "epoch": 0.8933333333333333,
2616
+ "grad_norm": 11.729464530944824,
2617
+ "learning_rate": 1.1081081081081083e-06,
2618
+ "loss": 1.5142,
2619
+ "step": 335
2620
+ },
2621
+ {
2622
+ "epoch": 0.896,
2623
+ "grad_norm": 12.086241722106934,
2624
+ "learning_rate": 1.0810810810810812e-06,
2625
+ "loss": 1.5225,
2626
+ "step": 336
2627
+ },
2628
+ {
2629
+ "epoch": 0.8986666666666666,
2630
+ "grad_norm": 12.04587173461914,
2631
+ "learning_rate": 1.0540540540540542e-06,
2632
+ "loss": 1.5774,
2633
+ "step": 337
2634
+ },
2635
+ {
2636
+ "epoch": 0.9013333333333333,
2637
+ "grad_norm": 11.315978050231934,
2638
+ "learning_rate": 1.027027027027027e-06,
2639
+ "loss": 1.5096,
2640
+ "step": 338
2641
+ },
2642
+ {
2643
+ "epoch": 0.904,
2644
+ "grad_norm": 10.968897819519043,
2645
+ "learning_rate": 1.0000000000000002e-06,
2646
+ "loss": 1.5616,
2647
+ "step": 339
2648
+ },
2649
+ {
2650
+ "epoch": 0.9066666666666666,
2651
+ "grad_norm": 11.676291465759277,
2652
+ "learning_rate": 9.72972972972973e-07,
2653
+ "loss": 1.5634,
2654
+ "step": 340
2655
+ },
2656
+ {
2657
+ "epoch": 0.9066666666666666,
2658
+ "eval_loss": 1.5035680532455444,
2659
+ "eval_runtime": 1.4443,
2660
+ "eval_samples_per_second": 20.771,
2661
+ "eval_steps_per_second": 10.386,
2662
+ "step": 340
2663
+ },
2664
+ {
2665
+ "epoch": 0.9093333333333333,
2666
+ "grad_norm": 11.968234062194824,
2667
+ "learning_rate": 9.459459459459461e-07,
2668
+ "loss": 1.4875,
2669
+ "step": 341
2670
+ },
2671
+ {
2672
+ "epoch": 0.912,
2673
+ "grad_norm": 12.339000701904297,
2674
+ "learning_rate": 9.189189189189191e-07,
2675
+ "loss": 1.661,
2676
+ "step": 342
2677
+ },
2678
+ {
2679
+ "epoch": 0.9146666666666666,
2680
+ "grad_norm": 11.416552543640137,
2681
+ "learning_rate": 8.91891891891892e-07,
2682
+ "loss": 1.5351,
2683
+ "step": 343
2684
+ },
2685
+ {
2686
+ "epoch": 0.9173333333333333,
2687
+ "grad_norm": 10.296736717224121,
2688
+ "learning_rate": 8.64864864864865e-07,
2689
+ "loss": 1.4581,
2690
+ "step": 344
2691
+ },
2692
+ {
2693
+ "epoch": 0.92,
2694
+ "grad_norm": 10.888872146606445,
2695
+ "learning_rate": 8.37837837837838e-07,
2696
+ "loss": 1.4664,
2697
+ "step": 345
2698
+ },
2699
+ {
2700
+ "epoch": 0.9226666666666666,
2701
+ "grad_norm": 12.15527057647705,
2702
+ "learning_rate": 8.108108108108109e-07,
2703
+ "loss": 1.4899,
2704
+ "step": 346
2705
+ },
2706
+ {
2707
+ "epoch": 0.9253333333333333,
2708
+ "grad_norm": 12.206395149230957,
2709
+ "learning_rate": 7.837837837837839e-07,
2710
+ "loss": 1.487,
2711
+ "step": 347
2712
+ },
2713
+ {
2714
+ "epoch": 0.928,
2715
+ "grad_norm": 11.60653018951416,
2716
+ "learning_rate": 7.567567567567569e-07,
2717
+ "loss": 1.3755,
2718
+ "step": 348
2719
+ },
2720
+ {
2721
+ "epoch": 0.9306666666666666,
2722
+ "grad_norm": 11.051371574401855,
2723
+ "learning_rate": 7.297297297297298e-07,
2724
+ "loss": 1.4968,
2725
+ "step": 349
2726
+ },
2727
+ {
2728
+ "epoch": 0.9333333333333333,
2729
+ "grad_norm": 10.283153533935547,
2730
+ "learning_rate": 7.027027027027028e-07,
2731
+ "loss": 1.6037,
2732
+ "step": 350
2733
+ },
2734
+ {
2735
+ "epoch": 0.9333333333333333,
2736
+ "eval_loss": 1.5012240409851074,
2737
+ "eval_runtime": 1.4483,
2738
+ "eval_samples_per_second": 20.715,
2739
+ "eval_steps_per_second": 10.357,
2740
+ "step": 350
2741
+ },
2742
+ {
2743
+ "epoch": 0.936,
2744
+ "grad_norm": 10.748376846313477,
2745
+ "learning_rate": 6.756756756756758e-07,
2746
+ "loss": 1.4126,
2747
+ "step": 351
2748
+ },
2749
+ {
2750
+ "epoch": 0.9386666666666666,
2751
+ "grad_norm": 10.478782653808594,
2752
+ "learning_rate": 6.486486486486487e-07,
2753
+ "loss": 1.5083,
2754
+ "step": 352
2755
+ },
2756
+ {
2757
+ "epoch": 0.9413333333333334,
2758
+ "grad_norm": 12.424768447875977,
2759
+ "learning_rate": 6.216216216216217e-07,
2760
+ "loss": 1.4426,
2761
+ "step": 353
2762
+ },
2763
+ {
2764
+ "epoch": 0.944,
2765
+ "grad_norm": 9.786967277526855,
2766
+ "learning_rate": 5.945945945945947e-07,
2767
+ "loss": 1.5219,
2768
+ "step": 354
2769
+ },
2770
+ {
2771
+ "epoch": 0.9466666666666667,
2772
+ "grad_norm": 11.543196678161621,
2773
+ "learning_rate": 5.675675675675676e-07,
2774
+ "loss": 1.4902,
2775
+ "step": 355
2776
+ },
2777
+ {
2778
+ "epoch": 0.9493333333333334,
2779
+ "grad_norm": 9.170177459716797,
2780
+ "learning_rate": 5.405405405405406e-07,
2781
+ "loss": 1.4658,
2782
+ "step": 356
2783
+ },
2784
+ {
2785
+ "epoch": 0.952,
2786
+ "grad_norm": 11.608868598937988,
2787
+ "learning_rate": 5.135135135135135e-07,
2788
+ "loss": 1.5086,
2789
+ "step": 357
2790
+ },
2791
+ {
2792
+ "epoch": 0.9546666666666667,
2793
+ "grad_norm": 10.452662467956543,
2794
+ "learning_rate": 4.864864864864865e-07,
2795
+ "loss": 1.4742,
2796
+ "step": 358
2797
+ },
2798
+ {
2799
+ "epoch": 0.9573333333333334,
2800
+ "grad_norm": 11.031309127807617,
2801
+ "learning_rate": 4.5945945945945953e-07,
2802
+ "loss": 1.4892,
2803
+ "step": 359
2804
+ },
2805
+ {
2806
+ "epoch": 0.96,
2807
+ "grad_norm": 13.233342170715332,
2808
+ "learning_rate": 4.324324324324325e-07,
2809
+ "loss": 1.4468,
2810
+ "step": 360
2811
+ },
2812
+ {
2813
+ "epoch": 0.96,
2814
+ "eval_loss": 1.5004833936691284,
2815
+ "eval_runtime": 1.4505,
2816
+ "eval_samples_per_second": 20.682,
2817
+ "eval_steps_per_second": 10.341,
2818
+ "step": 360
2819
+ }
2820
+ ],
2821
+ "logging_steps": 1,
2822
+ "max_steps": 375,
2823
+ "num_input_tokens_seen": 0,
2824
+ "num_train_epochs": 1,
2825
+ "save_steps": 10,
2826
+ "stateful_callbacks": {
2827
+ "TrainerControl": {
2828
+ "args": {
2829
+ "should_epoch_stop": false,
2830
+ "should_evaluate": false,
2831
+ "should_log": false,
2832
+ "should_save": true,
2833
+ "should_training_stop": false
2834
+ },
2835
+ "attributes": {}
2836
+ }
2837
+ },
2838
+ "total_flos": 7.807654335091968e+16,
2839
+ "train_batch_size": 2,
2840
+ "trial_name": null,
2841
+ "trial_params": null
2842
+ }
checkpoint-360/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9be6ec0ef23215e7a2981248f495d079f207788f8c83f8ffb26b9d7f76671d5
3
+ size 6097