File size: 36,088 Bytes
a3632fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1
widget:
- source_sentence: What amount of senior notes was repaid during fiscal 2022?
  sentences:
  - 'The following table sets forth the breakdown of revenue by geography, determined
    based on the location of the Host’s listing (in millions): | Year Ended December
    31, | 2021 | 2022 | 2023 United States | $ | 2,996 | | $ | 3,890 | $ | 4,290 International(1)
    | 2,996 | | 4,509 | | 5,627 Total revenue | $ | 5,992 | | $ | 8,399 | $ | 9,917'
  - During fiscal 2022, $2.25 billion of senior notes was repaid.
  - Several factors are considered in developing the estimate for the long-term expected
    rate of return on plan assets. For the defined benefit retirement plans, these
    factors include historical rates of return of broad equity and bond indices and
    projected long-term rates of return obtained from pension investment consultants.
    The expected long-term rates of return for plan assets are 8 - 9% for equities
    and 3 - 5% for bonds. For other retiree benefit plans, the expected long-term
    rate of return reflects that the assets are comprised primarily of Company stock.
    The expected rate of return on Company stock is based on the long-term projected
    return of 8.5% and reflects the historical pattern of returns.
- source_sentence: What does GameStop Corp. offer to its customers?
  sentences:
  - State fraud and abuse laws could lead to criminal, civil, or administrative consequences,
    including licensure loss, exclusion from healthcare programs, and significant
    negative effects on the violating entity's business operations and financial health
    if the laws are violated.
  - GameStop Corp. offers games and entertainment products through its stores and
    ecommerce platforms.
  - Stribild is an oral formulation dosed once a day for the treatment of HIV-1 infection
    in certain patients.
- source_sentence: How might a 10% change in the obsolescence reserve percentage impact
    net earnings?
  sentences:
  - A 10% change in our obsolescence reserve percentage at January 28, 2023 would
    have affected net earnings by approximately $2.5 million in fiscal 2022.
  - The information required by Item 3 on Legal Proceedings is provided by referencing
    Note 19 of the Notes to Consolidated Financial Statements in Item 8.
  - ured notes for an aggregate principal amount of $18.50 billion. These notes were
    issued in multiple series, which mature from 2027 through 2063.
- source_sentence: What are the SEC's regulations for security-based swap dealers
    like Goldman Sachs' subsidiaries?
  sentences:
  - The increase in other income, net was primarily due to an increase in interest
    income as a result of higher cash balances and higher interest rates.
  - Through our Stubs loyalty programs, we have developed a consumer database of approximately
    32 million households, representing approximately 64 million individuals.
  - SEC rules govern the registration and regulation of security-based swap dealers.
    Security-based swaps are defined as swaps on single securities, single loans or
    narrow-based baskets or indices of securities. The SEC has adopted a number of
    rules for security-based swap dealers, including (i) capital, margin and segregation
    requirements; (ii) record-keeping, financial reporting and notification requirements;
    (iii) business conduct standards; (iv) regulatory and public trade reporting;
    and (v) the application of risk mitigation techniques to uncleared portfolios
    of security-based swaps.
- source_sentence: How is the information about legal proceedings organized in the
    financial documents according to the provided context?
  sentences:
  - The information about legal proceedings is organized under Part II, Item 8 in
    the section titled 'Financial Statements and Supplementary Data – Note 14'.
  - We have a match-funding policy that addresses the interest rate risk by aligning
    the interest rate profile (fixed or floating rate and duration) of our debt portfolio
    with the interest rate profile of our finance receivable portfolio within a predetermined
    range on an ongoing basis. In connection with that policy, we use interest rate
    derivative instruments to modify the debt structure to match assets within the
    finance receivable portfolio.
  - Achieved adjusted FIFO operating profit of $5.1 billion, which represents an 18%
    increase compared to 2021.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Nomic Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7457142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8614285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8957142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.93
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7457142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28714285714285714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1791428571428571
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7457142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8614285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8957142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.93
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8398915226132163
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8107896825396824
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8136819482601757
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7357142857142858
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8514285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8914285714285715
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.93
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7357142857142858
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2838095238095238
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17828571428571427
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7357142857142858
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8514285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8914285714285715
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.93
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8352581932886503
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8047103174603173
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8075415578285141
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7285714285714285
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8614285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8857142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9271428571428572
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7285714285714285
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28714285714285714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17714285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09271428571428571
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7285714285714285
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8614285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8857142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9271428571428572
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8319809230146766
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8011235827664398
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8040552556779361
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7128571428571429
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9142857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7128571428571429
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1734285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09142857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7128571428571429
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9142857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8145627876253931
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7825572562358278
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7859620809117356
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6642857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8042857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8457142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9028571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6642857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2680952380952381
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16914285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09028571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6642857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8042857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8457142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9028571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7821373629924483
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7436649659863942
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7468498882402747
      name: Cosine Map@100
---

# Nomic Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) <!-- at revision eb6b20cd65fcbdf7a2bc4ebac97908b3b21da981 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("aniket0898/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'How is the information about legal proceedings organized in the financial documents according to the provided context?',
    "The information about legal proceedings is organized under Part II, Item 8 in the section titled 'Financial Statements and Supplementary Data – Note 14'.",
    'We have a match-funding policy that addresses the interest rate risk by aligning the interest rate profile (fixed or floating rate and duration) of our debt portfolio with the interest rate profile of our finance receivable portfolio within a predetermined range on an ongoing basis. In connection with that policy, we use interest rate derivative instruments to modify the debt structure to match assets within the finance receivable portfolio.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7457     |
| cosine_accuracy@3   | 0.8614     |
| cosine_accuracy@5   | 0.8957     |
| cosine_accuracy@10  | 0.93       |
| cosine_precision@1  | 0.7457     |
| cosine_precision@3  | 0.2871     |
| cosine_precision@5  | 0.1791     |
| cosine_precision@10 | 0.093      |
| cosine_recall@1     | 0.7457     |
| cosine_recall@3     | 0.8614     |
| cosine_recall@5     | 0.8957     |
| cosine_recall@10    | 0.93       |
| cosine_ndcg@10      | 0.8399     |
| cosine_mrr@10       | 0.8108     |
| **cosine_map@100**  | **0.8137** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7357     |
| cosine_accuracy@3   | 0.8514     |
| cosine_accuracy@5   | 0.8914     |
| cosine_accuracy@10  | 0.93       |
| cosine_precision@1  | 0.7357     |
| cosine_precision@3  | 0.2838     |
| cosine_precision@5  | 0.1783     |
| cosine_precision@10 | 0.093      |
| cosine_recall@1     | 0.7357     |
| cosine_recall@3     | 0.8514     |
| cosine_recall@5     | 0.8914     |
| cosine_recall@10    | 0.93       |
| cosine_ndcg@10      | 0.8353     |
| cosine_mrr@10       | 0.8047     |
| **cosine_map@100**  | **0.8075** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7286     |
| cosine_accuracy@3   | 0.8614     |
| cosine_accuracy@5   | 0.8857     |
| cosine_accuracy@10  | 0.9271     |
| cosine_precision@1  | 0.7286     |
| cosine_precision@3  | 0.2871     |
| cosine_precision@5  | 0.1771     |
| cosine_precision@10 | 0.0927     |
| cosine_recall@1     | 0.7286     |
| cosine_recall@3     | 0.8614     |
| cosine_recall@5     | 0.8857     |
| cosine_recall@10    | 0.9271     |
| cosine_ndcg@10      | 0.832      |
| cosine_mrr@10       | 0.8011     |
| **cosine_map@100**  | **0.8041** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.7129    |
| cosine_accuracy@3   | 0.8329    |
| cosine_accuracy@5   | 0.8671    |
| cosine_accuracy@10  | 0.9143    |
| cosine_precision@1  | 0.7129    |
| cosine_precision@3  | 0.2776    |
| cosine_precision@5  | 0.1734    |
| cosine_precision@10 | 0.0914    |
| cosine_recall@1     | 0.7129    |
| cosine_recall@3     | 0.8329    |
| cosine_recall@5     | 0.8671    |
| cosine_recall@10    | 0.9143    |
| cosine_ndcg@10      | 0.8146    |
| cosine_mrr@10       | 0.7826    |
| **cosine_map@100**  | **0.786** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6643     |
| cosine_accuracy@3   | 0.8043     |
| cosine_accuracy@5   | 0.8457     |
| cosine_accuracy@10  | 0.9029     |
| cosine_precision@1  | 0.6643     |
| cosine_precision@3  | 0.2681     |
| cosine_precision@5  | 0.1691     |
| cosine_precision@10 | 0.0903     |
| cosine_recall@1     | 0.6643     |
| cosine_recall@3     | 0.8043     |
| cosine_recall@5     | 0.8457     |
| cosine_recall@10    | 0.9029     |
| cosine_ndcg@10      | 0.7821     |
| cosine_mrr@10       | 0.7437     |
| **cosine_map@100**  | **0.7468** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 20.47 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 45.09 tokens</li><li>max: 272 tokens</li></ul> |
* Samples:
  | anchor                                                                                                       | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What was the stored value of cards and loyalty program balances at the end of fiscal year 2022?</code> | <code>Stored value cards and loyalty program at October 2, 2022 showed a balance of approximately $1.503 billion.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  | <code>What transformation is planned for Le Jardin located at The Londoner Macao?</code>                     | <code>Le Jardin, located on the southern flank of The Londoner Macao, is to undergo a transformation into a distinctive garden-themed attraction spanning approximately 50,000 square meters.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>What are the key terms of the new Labor Agreement ratified by the UAW in 2023?</code>                  | <code>The key terms and provisions of the Labor Agreement are: General wage increases of 11% upon ratification in 2023, 3% in September each of 2024, 2025 and 2026, and 5% in September 2027; Consolidation of applicable wage classifications for in-progression, temporary and other employees – with employees reaching the top classification rate upon the completion of 156 weeks of active service; The re-establishment of a cost-of-living allowance; Lump sum ratification bonus payments of $5,000 paid to eligible employees in the three months ended December 31, 2023; For members currently employed and enrolled in the Employees’ Pension Plan, an increase of $5.00 to the monthly basic benefit for past and future service provided; A 3.6% increase in company contributions to eligible employees' defined contribution retirement accounts; and Annual contribution of $500 to eligible retirees or surviving spouses.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122     | 10     | 0.7331        | -                      | -                      | -                      | -                      | -                     |
| 0.9746     | 12     | -             | 0.7871                 | 0.7796                 | 0.7747                 | 0.7546                 | 0.7214                |
| 1.6244     | 20     | 0.2506        | -                      | -                      | -                      | -                      | -                     |
| 1.9492     | 24     | -             | 0.8021                 | 0.7990                 | 0.7869                 | 0.7691                 | 0.7371                |
| 2.4365     | 30     | 0.1029        | -                      | -                      | -                      | -                      | -                     |
| 2.9239     | 36     | -             | 0.8030                 | 0.8017                 | 0.7926                 | 0.7760                 | 0.7402                |
| 3.2487     | 40     | 0.054         | -                      | -                      | -                      | -                      | -                     |
| **3.8985** | **48** | **-**         | **0.8055**             | **0.799**              | **0.7924**             | **0.7754**             | **0.7383**            |
| 0.8122     | 10     | 0.0397        | -                      | -                      | -                      | -                      | -                     |
| 0.9746     | 12     | -             | 0.8109                 | 0.7983                 | 0.7974                 | 0.7795                 | 0.7373                |
| 1.6244     | 20     | 0.0301        | -                      | -                      | -                      | -                      | -                     |
| 1.9492     | 24     | -             | 0.8115                 | 0.8049                 | 0.8026                 | 0.7839                 | 0.7486                |
| 2.4365     | 30     | 0.0236        | -                      | -                      | -                      | -                      | -                     |
| 2.9239     | 36     | -             | 0.8138                 | 0.8082                 | 0.8045                 | 0.7858                 | 0.7470                |
| 3.2487     | 40     | 0.0131        | -                      | -                      | -                      | -                      | -                     |
| **3.8985** | **48** | **-**         | **0.8137**             | **0.8075**             | **0.8041**             | **0.786**              | **0.7468**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->