--- library_name: transformers license: mit base_model: facebook/mbart-large-50 tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: mbart-neutralizacion-es results: [] datasets: - somosnlp-hackathon-2022/neutral-es --- # mbart-neutralizacion-es This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on dataset somosnlp-hackathon-2022/neutral-es. It achieves the following results on the evaluation set: - Loss: 0.0104 - Bleu: 99.0106 - Gen Len: 18.6146 ## Model description Model to neutralize gendered text. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 352 | 0.0304 | 97.1712 | 18.5729 | | 1.6026 | 2.0 | 704 | 0.0121 | 98.6521 | 18.5729 | | 0.0232 | 3.0 | 1056 | 0.0104 | 99.0106 | 18.6146 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0