Update README.md
Browse files
README.md
CHANGED
@@ -10,14 +10,13 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: mbart-neutralizacion-es
|
12 |
results: []
|
|
|
|
|
13 |
---
|
14 |
|
15 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
-
|
18 |
# mbart-neutralizacion-es
|
19 |
|
20 |
-
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on
|
21 |
It achieves the following results on the evaluation set:
|
22 |
- Loss: 0.0104
|
23 |
- Bleu: 99.0106
|
@@ -25,17 +24,7 @@ It achieves the following results on the evaluation set:
|
|
25 |
|
26 |
## Model description
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
## Intended uses & limitations
|
31 |
-
|
32 |
-
More information needed
|
33 |
-
|
34 |
-
## Training and evaluation data
|
35 |
-
|
36 |
-
More information needed
|
37 |
-
|
38 |
-
## Training procedure
|
39 |
|
40 |
### Training hyperparameters
|
41 |
|
@@ -62,4 +51,4 @@ The following hyperparameters were used during training:
|
|
62 |
- Transformers 4.49.0
|
63 |
- Pytorch 2.5.1+cu124
|
64 |
- Datasets 3.3.2
|
65 |
-
- Tokenizers 0.21.0
|
|
|
10 |
model-index:
|
11 |
- name: mbart-neutralizacion-es
|
12 |
results: []
|
13 |
+
datasets:
|
14 |
+
- somosnlp-hackathon-2022/neutral-es
|
15 |
---
|
16 |
|
|
|
|
|
|
|
17 |
# mbart-neutralizacion-es
|
18 |
|
19 |
+
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on dataset somosnlp-hackathon-2022/neutral-es.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Loss: 0.0104
|
22 |
- Bleu: 99.0106
|
|
|
24 |
|
25 |
## Model description
|
26 |
|
27 |
+
Model to neutralize gendered text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
### Training hyperparameters
|
30 |
|
|
|
51 |
- Transformers 4.49.0
|
52 |
- Pytorch 2.5.1+cu124
|
53 |
- Datasets 3.3.2
|
54 |
+
- Tokenizers 0.21.0
|