# chat.py #!/usr/bin/env python3 # chat.py # Copyright (c) 2025 Anemll # Licensed under the MIT License import argparse import os import re import glob from pathlib import Path import coremltools as ct from transformers import LlamaTokenizer, AutoTokenizer import torch import torch.nn.functional as F import numpy as np import queue import threading import time import yaml import sys # ANSI color codes LIGHT_BLUE = "\033[94m" DARK_BLUE = "\033[34m" LIGHT_GREEN = "\033[92m" RESET_COLOR = "\033[0m" # Add at top with other constants WARMUP_TOKEN_LIMIT = 10 # Maximum tokens to generate during warmup class TokenPrinter: """Handles background printing of generated tokens.""" def __init__(self, tokenizer): self.tokenizer = tokenizer self.token_queue = queue.Queue() self.stop_event = threading.Event() self.thread = None self.buffer = "" self.lock = threading.Lock() self.thinking = True # Track if we're still in thinking mode self.decoding_buffer = [] # Buffer for token IDs # Add token counting and timing self.start_time = time.time() self.token_count = 0 self.start() def start(self): """Start the printer thread.""" if self.thread is None: self.thread = threading.Thread(target=self._print_worker) self.thread.daemon = True self.thread.start() def add_token(self, token_id): """Add a token to the print queue.""" if not self.stop_event.is_set(): self.token_queue.put(token_id) self.token_count += 1 def drain_buffer(self, eval_mode=False): """Decode token IDs from decoding_buffer in the main thread.""" if not self.decoding_buffer: return # Decode all tokens at once in the main thread token_str = self.tokenizer.decode(self.decoding_buffer) self.decoding_buffer.clear() # Store the text in buffer for later saving to file with self.lock: self.buffer += token_str # Skip printing in eval mode if eval_mode: return # Color-handling logic if self.thinking and "" in token_str: self.thinking = False parts = token_str.split("") if len(parts) > 0: print(parts[0] + "", end='', flush=True) if len(parts) > 1: print(LIGHT_BLUE + parts[1], end='', flush=True) else: if not self.thinking: print(LIGHT_BLUE + token_str, end='', flush=True) else: print(token_str, end='', flush=True) def _print_worker(self): """Worker thread that takes token_ids from the queue.""" while not self.stop_event.is_set(): try: token_id = self.token_queue.get(timeout=0.01) with self.lock: self.decoding_buffer.append(token_id) self.token_queue.task_done() except queue.Empty: continue except Exception as e: print(f"\nError: Token printer error: {str(e)}") break def stop(self, eval_mode=False): """Stop the printer thread.""" if self.thread and self.thread.is_alive(): # Ensure any remaining tokens are processed self.drain_buffer() self.stop_event.set() try: self.thread.join(timeout=1.0) except Exception: pass # Calculate and print tokens/s with shorter format in blue (unless in eval mode) if not eval_mode: elapsed = time.time() - self.start_time if elapsed > 0 and self.token_count > 0: tokens_per_sec = self.token_count / elapsed print(f"\n{DARK_BLUE}{tokens_per_sec:.1f} t/s{RESET_COLOR}") else: print(RESET_COLOR) # Reset color at the end return self.buffer def parse_model_path(path): """Parse model path and return full path with .mlmodelc or .mlpackage extension.""" path = Path(path) # If path exists exactly as specified, return it if path.exists(): return str(path) # Try with both extensions candidates = [ path, # Original path path.with_suffix('.mlmodelc'), # With .mlmodelc path.with_suffix('.mlpackage'), # With .mlpackage Path(str(path) + '.mlmodelc'), # Handle case where extension is included Path(str(path) + '.mlpackage') ] # Try all possible paths for candidate in candidates: if candidate.exists(): return str(candidate) # If embeddings with LUT suffix not found, try without LUT suffix if "_lut" in str(path) and "embeddings" in str(path): print(f"Failed to find {path}, trying without LUT suffix...") # Remove LUT suffix path_no_lut = str(path).split("_lut")[0] path_no_lut = Path(path_no_lut) # Try candidates without LUT suffix candidates_no_lut = [ path_no_lut, path_no_lut.with_suffix('.mlmodelc'), path_no_lut.with_suffix('.mlpackage'), Path(str(path_no_lut) + '.mlmodelc'), Path(str(path_no_lut) + '.mlpackage') ] for candidate in candidates_no_lut: if candidate.exists(): return str(candidate) # Add no-LUT candidates to the list for error reporting candidates.extend(candidates_no_lut) # If we get here, no valid path was found print("\nError: Model not found. Tried following paths:") for candidate in candidates: print(f" {candidate}") raise FileNotFoundError(f"Model not found: {path}") def parse_ffn_filename(path): """Parse FFN model filename to extract chunk information.""" path = Path(path) pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)' match = re.search(pattern, path.name) if match: current_chunk = int(match.group(1)) total_chunks = int(match.group(2)) return current_chunk, total_chunks return None, None def find_all_chunks(base_path): """Find all chunk files matching the base FFN path pattern.""" path = Path(base_path) pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path)) return sorted(glob.glob(pattern)) def load_model(path, function_name=None): """Load a CoreML model, handling both .mlmodelc and .mlpackage formats.""" path = Path(path) compute_unit = ct.ComputeUnit.CPU_AND_NE try: if path.suffix == '.mlmodelc': # For compiled models (.mlmodelc), use CompiledMLModel if function_name: return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name) else: return ct.models.CompiledMLModel(str(path), compute_unit) else: # For packages (.mlpackage) if function_name: return ct.models.MLModel(str(path), function_name=function_name) else: return ct.models.MLModel(str(path)) except RuntimeError as e: if "valid manifest does not exist" in str(e): print(f"\nError: Could not load compiled model at {path}") print("This might be because:") print("1. The model is not properly compiled") print("2. The model was compiled for a different OS version") print("3. The model needs to be recompiled") print("\nTry using the .mlpackage version instead, or recompile the model.") raise def load_metadata(model,args): # Extract metadata and config parameters metadata = {} if hasattr(model, 'user_defined_metadata'): meta = model.user_defined_metadata # Extract key parameters with defaults metadata['context_length'] = int(meta.get('com.anemll.context_length', 512)) metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length'])) # Added state_length metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64)) metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0)) metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1)) if not args.eval: print("\nExtracted Parameters:") print(f" Context Length: {metadata['context_length']}") print(f" State Length: {metadata['state_length']}") print(f" Prefill Batch Size: {metadata['batch_size']}") print(f" LUT Bits: {metadata['lut_bits']}") print(f" Number of Chunks: {metadata['num_chunks']}") # Print model info print("\nModel Info:") if 'com.anemll.info' in meta: print(f" {meta['com.anemll.info']}") if 'com.github.apple.coremltools.version' in meta: print(f" CoreML Tools: {meta['com.github.apple.coremltools.version']}") # Print model input/output shapes print("\nModel Shapes:") if hasattr(model, 'input_description'): print(" Inputs:") try: if hasattr(model.input_description, 'items'): for name, desc in model.input_description.items(): print(f" {name}: {desc}") else: print(f" {model.input_description}") except: print(f" Input description: {type(model.input_description)}") if hasattr(model, 'output_description'): print(" Outputs:") try: if hasattr(model.output_description, 'items'): for name, desc in model.output_description.items(): print(f" {name}: {desc}") else: print(f" {model.output_description}") except: print(f" Output description: {type(model.output_description)}") else: if not args.eval: print("\nWarning: No metadata found in model") # Check if model directory name contains context length pattern (ctxXXX) ctx_len = 512 if args.context_length is None: import re ctx_match = re.search(r'ctx(\d+)', str(args.d)) if ctx_match: ctx_len0 = int(ctx_match.group(1)) if 512 <= ctx_len0 <= 8096: ctx_len = ctx_len0 print(f"\nDetected context length {ctx_len} from directory name") else: print(f"\nWarning: No context length found in directory {ctx_len} from directory name {args.d}") else: ctx_len = args.context_length # Use defaults or values from args metadata['context_length'] = ctx_len metadata['state_length'] = ctx_len # Get batch size from args or use default metadata['batch_size'] = getattr(args, 'batch_size', 64) metadata['lut_bits'] = 4 metadata['num_chunks'] = getattr(args, 'num_chunks', 4) if not args.eval: print("\nUsing parameters:") print(f" Context Length: {metadata['context_length']}") print(f" State Length: {metadata['state_length']}") print(f" Prefill Batch Size: {metadata['batch_size']}") print(f" LUT Bits: {metadata['lut_bits']}") print(f" Number of Chunks: {metadata['num_chunks']}") # Override with values from args if they exist if hasattr(args, 'batch_size') and args.batch_size is not None: metadata['batch_size'] = args.batch_size if not args.eval: print(f"\nOverriding batch size from args: {args.batch_size}") if hasattr(args, 'num_chunks') and args.num_chunks is not None: metadata['num_chunks'] = args.num_chunks if not args.eval: print(f"\nOverriding num chunks from args: {args.num_chunks}") return metadata def load_models(args,metadata): """Load all required models and extract metadata.""" if not args.eval: print("\nLoading models...") try: # Load embeddings model if not args.eval: print("\nLoading embeddings model...") embed_path = parse_model_path(args.embed) if not args.eval: print(f"Loading from: {embed_path}") embed_model = load_model(embed_path) if not args.eval: print("Embeddings model loaded successfully") metadata = load_metadata(embed_model,args) # Load LM head model if not args.eval: print("\nLoading LM head model...") lmhead_path = parse_model_path(args.lmhead) if not args.eval: print(f"Loading from: {lmhead_path}") lmhead_model = load_model(lmhead_path) if not args.eval: print("LM head model loaded successfully") # Parse FFN path and find chunks if needed if not args.eval: print("\nLoading FFN+PREFILL model(s)...") ffn_path = parse_model_path(args.ffn) chunk_no, total_chunks = parse_ffn_filename(ffn_path) ffn_models = [] if chunk_no and total_chunks: if not args.eval: print(f"\nDetected chunked FFN+PREFILL model ({total_chunks} chunks)") # Find and load all chunks chunk_paths = find_all_chunks(ffn_path) if len(chunk_paths) != total_chunks: raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks") for chunk_path in chunk_paths: if not args.eval: print(f"\nLoading FFN+PREFILL chunk: {Path(chunk_path).name}") try: # For chunked models, we need both infer and prefill functions ffn_models.append({ 'infer': load_model(chunk_path, function_name='infer'), 'prefill': load_model(chunk_path, function_name='prefill') }) if not args.eval: print("Chunk loaded successfully") except Exception as e: if not args.eval: print(f"Error loading chunk {chunk_path}: {str(e)}") raise metadata = load_metadata(ffn_models[0],args) else: if not args.eval: print("\nLoading single FFN model...") ffn_models.append(load_model(ffn_path)) if not args.eval: print("FFN model loaded successfully") return embed_model, ffn_models, lmhead_model, metadata except Exception as e: print(f"\nError loading models: {str(e)}") print("\nPlease ensure all model files exist and are accessible.") print("Expected files:") print(f" Embeddings: {args.embed}") print(f" LM Head: {args.lmhead}") print(f" FFN: {args.ffn}") raise # At the top of the file, make this a default path def initialize_tokenizer(model_path=None, eval_mode=False): """Initialize and configure the tokenizer.""" try: tokenizer = AutoTokenizer.from_pretrained( str(model_path), use_fast=False, trust_remote_code=True ) if not eval_mode: print("\nTokenizer Configuration:") print(f"Tokenizer type: {type(tokenizer)}") print(f"Tokenizer name: {tokenizer.__class__.__name__}") print(f"Vocabulary size: {len(tokenizer)}") print(f"Model max length: {tokenizer.model_max_length}") if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id if not eval_mode: print("Set PAD token to EOS token") tokenizer.padding_side = "left" if not eval_mode: print(f"\nSpecial Tokens:") print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})") print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})") print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})") print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})") return tokenizer except Exception as e: print(f"\nError: Failed to load tokenizer from {model_path}") print(f"Error details: {str(e)}") print(f"Error type: {type(e)}") print("\nThis appears to be a tokenizer loading issue.") # Check if it's the specific Qwen tokenizer file issue if "expected str, bytes or os.PathLike object, not NoneType" in str(e): print("\nThis error suggests the tokenizer files are missing or incomplete.") print("For Qwen models, you need the original model directory with tokenizer files.") print("Try using: --tokenizer ~/.cache/huggingface/hub/models--Qwen--Qwen3-0.6B/snapshots/YOUR_SNAPSHOT_ID") else: print("Please provide the path to a compatible model directory with tokenizer files.") import traceback traceback.print_exc() raise def make_causal_mask(length, start): """Create causal attention mask.""" mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16) row_indices = np.arange(length).reshape(length, 1) col_indices = np.arange(length).reshape(1, length) mask[:, :, col_indices <= (row_indices + start)] = 0 return mask def initialize_causal_mask(context_length, eval_mode=False): """Initialize causal mask for transformer attention.""" causal_mask = make_causal_mask(context_length, 0) causal_mask = torch.tensor(causal_mask, dtype=torch.float16) if not eval_mode: print(f"\nInitialized causal mask for context length {context_length}") return causal_mask def run_prefill(embed_model, ffn_models, input_ids, context_pos, context_length, batch_size=64, state=None, causal_mask=None): """Run prefill on the input sequence.""" # Use provided causal mask or create one if not provided if causal_mask is None: causal_mask = make_causal_mask(context_length, 0) causal_mask = torch.tensor(causal_mask, dtype=torch.float16) # Process in batches batch_pos = 0 while batch_pos < context_pos: batch_end = min(batch_pos + batch_size, context_pos) current_batch_size = batch_end - batch_pos # Get current batch batch_input = input_ids[:, batch_pos:batch_end] # Always pad to full batch size for prefill batch_input = F.pad( batch_input, (0, batch_size - current_batch_size), value=0 ) # Generate position IDs for full batch size position_ids = torch.arange(batch_pos, batch_pos+batch_size, dtype=torch.int32) # Changed: Always use full batch size batch_causal_mask = causal_mask[:, :, batch_pos:batch_pos+batch_size, :] # Changed: Use full batch size # Run embeddings hidden_states = torch.from_numpy( embed_model.predict({ 'input_ids': batch_input.numpy().astype(np.int32) })['hidden_states'] ) # Run through FFN chunks with state for ffn_model in ffn_models: if isinstance(ffn_model, dict): inputs = { 'hidden_states': hidden_states.numpy().astype(np.float16), # [1, 64, hidden_size] 'position_ids': position_ids.numpy().astype(np.int32), # [64] 'causal_mask': batch_causal_mask.numpy().astype(np.float16), # [1, 1, 64, context_length] 'current_pos': np.array([batch_pos], dtype=np.int32) # [1] } output = ffn_model['prefill'].predict(inputs, state) hidden_states = torch.from_numpy(output['output_hidden_states']) batch_pos = batch_end return torch.tensor([context_pos], dtype=torch.int32) def generate_next_token(embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, metadata, state=None, causal_mask=None, temperature=0.0): """Generate the next token.""" # Get current token current_token = input_ids[:, pos-1:pos] # [1, 1] # Ensure proper data type for CoreML current_token_array = current_token.numpy().astype(np.int32) # Run embeddings hidden_states = torch.from_numpy( embed_model.predict({'input_ids': current_token_array})['hidden_states'] ) # [1, 1, hidden_size] # Create masks update_mask = torch.zeros((1, 1, context_length, 1), dtype=torch.float16) update_mask[0, 0, pos-1, 0] = 1.0 position_ids = torch.tensor([pos-1], dtype=torch.int32) # [1] # Use provided causal mask or create one if not provided if causal_mask is None: causal_mask_data = make_causal_mask(context_length, 0) single_causal_mask = torch.tensor(causal_mask_data[:, :, pos-1:pos, :], dtype=torch.float16) # [1, 1, 1, context_length] else: single_causal_mask = causal_mask[:, :, pos-1:pos, :] # Run through FFN chunks with state for ffn_model in ffn_models: if isinstance(ffn_model, dict): inputs = { 'hidden_states': hidden_states.numpy().astype(np.float16), 'update_mask': update_mask.numpy().astype(np.float16), 'position_ids': position_ids.numpy().astype(np.int32), 'causal_mask': single_causal_mask.numpy().astype(np.float16), 'current_pos': position_ids.numpy().astype(np.int32) } output = ffn_model['infer'].predict(inputs, state) hidden_states = torch.from_numpy(output['output_hidden_states']) # Run LM head lm_output = lmhead_model.predict({'hidden_states': hidden_states.numpy().astype(np.float16)}) # Debug print #print("\nLM Head output keys:", list(lm_output.keys())) # Get number of logits from metadata, using split_lm_head if available # First check for split_lm_head (new), then num_logits (legacy), default to 8 num_logits = metadata.get('split_lm_head', metadata.get('num_logits', 8)) # Combine logits1-N if they exist if 'logits1' in lm_output: # Concatenate all logits parts logits_parts = [] for i in range(1, num_logits + 1): key = f'logits{i}' if key in lm_output: logits_parts.append(torch.from_numpy(lm_output[key])) logits = torch.cat(logits_parts, dim=-1) # Concatenate along vocab dimension else: # Try output_logits as fallback logits = torch.from_numpy(lm_output['output_logits']) # Apply temperature and sample if temperature > 0: logits = logits / temperature probs = F.softmax(logits[0, -1, :], dim=-1) next_token = torch.multinomial(probs, num_samples=1).item() else: next_token = torch.argmax(logits[0, -1, :]).item() return next_token def create_unified_state(ffn_models, context_length, eval_mode=False): """Create unified KV cache state for transformer.""" if isinstance(ffn_models[0], dict): # Use first FFN model's prefill function to create state state = ffn_models[0]['prefill'].make_state() if not eval_mode: print(f"\nCreated unified transformer state for {len(ffn_models)} chunks") return state else: state = ffn_models[0].make_state() if not eval_mode: print("\nCreated unified transformer state") return state def chat_loop(embed_model, ffn_models, lmhead_model, tokenizer, metadata, state, causal_mask=None, auto_prompt=None, warmup=False, save_file=None, max_tokens=None, no_template=False, eval_mode=False): """Interactive chat loop.""" context_length = metadata.get('context_length') batch_size = metadata.get('batch_size', 64) if not warmup and not eval_mode: print(f"\nUsing context length: {context_length}") print("\nStarting chat session. Press Ctrl+D to exit.") print("Type your message and press Enter to chat.") # Check if tokenizer has chat template and if it works has_chat_template = False try: # Test if chat template works test_messages = [{"role": "user", "content": "test"}] tokenizer.apply_chat_template(test_messages, return_tensors="pt") has_chat_template = True if not warmup and not eval_mode: print("\nUsing chat template for prompts") except: if not warmup and not eval_mode: print("\nUsing manual formatting for prompts") conversation = [] try: while True: try: if not warmup and not eval_mode: print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True) if auto_prompt is not None: user_input = auto_prompt if not warmup and not eval_mode: print(user_input) else: user_input = input().strip() except EOFError: if not warmup and not eval_mode: print("\nExiting chat...") break if not user_input: continue # Format prompt based on no_template flag and tokenizer capabilities if no_template: # Use raw input without any chat template formatting input_ids = tokenizer( user_input, return_tensors="pt", add_special_tokens=True ).input_ids.to(torch.int32) if not warmup and not eval_mode: print("Using raw input without chat template") elif has_chat_template: messages = [{"role": "user", "content": user_input}] input_ids = tokenizer.apply_chat_template( messages, return_tensors="pt", add_generation_prompt=True ).to(torch.int32) else: # Manual formatting for Llama models without chat template formatted_prompt = f"[INST] {user_input} [/INST]" input_ids = tokenizer( formatted_prompt, return_tensors="pt", add_special_tokens=True ).input_ids.to(torch.int32) context_pos = input_ids.size(1) if not warmup and not eval_mode: print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True) # Initialize token printer token_printer = TokenPrinter(tokenizer) tokens_generated = 0 # Track number of tokens try: # Start prefill timing prefill_start = time.time() # Run prefill with state and causal mask # Ensure batch_size is not None if batch_size is None: batch_size = 64 if not eval_mode: print(f"Warning: batch_size was None, using default: {batch_size}") _ = run_prefill( embed_model, ffn_models, input_ids, context_pos, context_length, batch_size, state, causal_mask ) # Calculate prefill timing prefill_time = time.time() - prefill_start prefill_tokens = context_pos # Number of tokens in input prefill_tokens_per_sec = prefill_tokens / prefill_time if prefill_time > 0 else 0 # Generation loop with state input_ids = input_ids pos = context_pos inference_start = time.time() inference_tokens = 0 while pos < context_length - 1: # Generate next token with causal mask next_token = generate_next_token( embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, metadata, state, causal_mask ) # Add token to sequence if pos < input_ids.size(1): input_ids[0, pos] = next_token else: input_ids = torch.cat([ input_ids, torch.tensor([[next_token]], dtype=torch.int32) ], dim=1) # Add to printer only if not in warmup if not warmup: token_printer.add_token(next_token) token_printer.drain_buffer(eval_mode) pos += 1 tokens_generated += 1 inference_tokens += 1 # Check limits if warmup and tokens_generated >= WARMUP_TOKEN_LIMIT: break # Check max_tokens limit if max_tokens is not None and tokens_generated >= max_tokens: break # Check for all possible EOS tokens eos_token_ids = tokenizer.eos_token_id if isinstance(eos_token_ids, list): if next_token in eos_token_ids: break else: if next_token == eos_token_ids: break # Calculate inference timing inference_time = time.time() - inference_start inference_tokens_per_sec = inference_tokens / inference_time if inference_time > 0 else 0 # Get final response and add to conversation if not warmup: response = token_printer.stop(eval_mode) if eval_mode: # In eval mode, only print the model response print(response, end='') else: # Print timing stats prefill_ms = prefill_time * 1000 # Convert to milliseconds print(f"\nPrefill: {prefill_ms:.1f}ms ({prefill_tokens_per_sec:.1f} t/s)") print(f"Inference: {inference_tokens_per_sec:.1f} t/s") print(f"Total: Generated {tokens_generated} tokens in {prefill_time + inference_time:.2f}s") conversation.append({"role": "assistant", "content": response}) # Save response to file if requested if save_file and not eval_mode: try: # Add small delay to ensure all tokens are processed time.sleep(0.5) # Make sure response ends with EOS token if it's supposed to if response and not response.endswith("<|eot_id|>") and not response.endswith(""): if tokenizer.eos_token: eos_text = tokenizer.decode([tokenizer.eos_token_id]) if not response.endswith(eos_text): print(f"\n{DARK_BLUE}Adding missing EOS token for consistency{RESET_COLOR}") response += eos_text with open(save_file, 'w') as f: f.write(response) print(f"\n{DARK_BLUE}Response saved to file: {save_file}{RESET_COLOR}") except Exception as e: print(f"\n{DARK_BLUE}Error saving to file: {str(e)}{RESET_COLOR}") else: token_printer.stop(eval_mode) # Clean up without printing stats # Exit after one response in auto_prompt mode if auto_prompt is not None: break except KeyboardInterrupt: if not eval_mode: print("\nGeneration interrupted") token_printer.stop(eval_mode) continue except Exception as e: print(f"\nError in chat loop: {str(e)}") import traceback traceback.print_exc() def parse_args(): parser = argparse.ArgumentParser(description='Chat with CoreML LLaMA, gil resolved (c) 2025 Anemll') # Add meta.yaml option parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters') # Model paths parser.add_argument('--d', '--dir', type=str, default='.', help='Directory containing model files (default: current directory)') parser.add_argument('--embed', type=str, required=False, help='Path to embeddings model (relative to --dir)') parser.add_argument('--ffn', type=str, required=False, help='Path to FFN model (can be chunked, relative to --dir)') parser.add_argument('--lmhead', type=str, required=False, help='Path to LM head model (relative to --dir)') parser.add_argument('--tokenizer', type=str, required=False, help='Path to tokenizer') # Add new argument for auto-generation parser.add_argument('--prompt', type=str, help='If specified, run once with this prompt and exit') # Add save option parser.add_argument('--save', type=str, help='Save assistant\'s response to specified file') # Add max-tokens option parser.add_argument('--max-tokens', type=int, help='Maximum number of tokens to generate') # Add no-warmup flag parser.add_argument('--nw', action='store_true', help='Skip warmup phase') # Add no-template flag parser.add_argument('--no-template', action='store_true', help='Prefill the question itself and start inference directly without chat template') # Add eval mode flag parser.add_argument('--eval', action='store_true', help='Evaluation mode: suppress all output except model response') # Model configuration parser.add_argument('--context-length', type=int, help='Context length for the model (default: 512), if not provided, it will be detected from the model directory name ctxNUMBER') parser.add_argument('--batch-size', type=int, help='Batch size for prefill (default: 64)') parser.add_argument('--num-logits', type=int, default=8, help='Number of logits outputs from LM head (default: 8, legacy)') parser.add_argument('--split-lm-head', type=int, help='Number of logits splits from LM head (default: 8 for llama, 16 for qwen)') args = parser.parse_args() # If meta.yaml is provided, load parameters from it if args.meta: try: with open(args.meta, 'r') as f: meta = yaml.safe_load(f) params = meta['model_info']['parameters'] # Set model directory to meta.yaml directory if not specified if not args.d or args.d == '.': args.d = str(Path(args.meta).parent) # Build model paths based on parameters prefix = params.get('model_prefix', 'llama') # Default to 'llama' if not specified lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else '' lut_lmhead = f"_lut{params['lut_lmhead']}" if params['lut_lmhead'] != 'none' else '' lut_embeddings = f"_lut{params['lut_embeddings']}" if params['lut_embeddings'] != 'none' else '' num_chunks = int(params['num_chunks']) # Set model paths if not specified if not args.lmhead: args.lmhead = f'{prefix}_lm_head{lut_lmhead}' if not args.embed: args.embed = f'{prefix}_embeddings{lut_embeddings}' # Changed from lm_head to embeddings if not args.ffn: args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}' if not args.tokenizer: # Check if there's a tokenizer_path parameter in meta.yaml if 'tokenizer_path' in params: args.tokenizer = params['tokenizer_path'] else: # Default to the model directory, but this might need manual override args.tokenizer = args.d # Set other parameters if not overridden by command line if args.context_length is None: args.context_length = int(params['context_length']) if args.batch_size is None: args.batch_size = int(params['batch_size']) args.num_chunks = num_chunks # Add num_logits parameter with default of 8, override command line if present in meta if 'num_logits' in params: args.num_logits = int(params['num_logits']) # Add split_lm_head parameter with default of 8 if 'split_lm_head' in params: args.split_lm_head = int(params['split_lm_head']) else: args.split_lm_head = 8 # Default value for backward compatibility if not args.eval: print(f"\nLoaded parameters from {args.meta}:") print(f" Context Length: {args.context_length}") print(f" Batch Size: {args.batch_size}") print(f" Num Chunks: {args.num_chunks}") print(f" Num Logits: {args.num_logits}") print(f" Split LM Head: {args.split_lm_head}") print(f" Models Directory: {args.d}") print(f" Embeddings: {args.embed}") print(f" LM Head: {args.lmhead}") print(f" FFN: {args.ffn}") except Exception as e: print(f"\nError loading meta.yaml: {str(e)}") sys.exit(1) else: # If no meta.yaml, set default split_lm_head if not provided if not hasattr(args, 'split_lm_head') or args.split_lm_head is None: args.split_lm_head = args.num_logits # Use num_logits as fallback return args def main(): args = parse_args() # Convert directory to absolute path model_dir = Path(args.d).resolve() if not model_dir.exists(): if not args.eval: print(f"\nError: Model directory not found: {model_dir}") return 1 if not args.eval: print(f"\nUsing model directory: {model_dir}") print(f"Context length: {args.context_length}") try: # Update paths to be relative to model directory args.embed = str(model_dir / args.embed) args.ffn = str(model_dir / args.ffn) args.lmhead = str(model_dir / args.lmhead) # Handle tokenizer path separately since it's not relative to model_dir if args.tokenizer is None: args.tokenizer = str(model_dir) # Check if tokenizer directory exists and has required files tokenizer_path = Path(args.tokenizer) if not tokenizer_path.exists(): if not args.eval: print(f"\nError: Tokenizer directory not found: {args.tokenizer}") return 1 # Check if tokenizer has the required files required_files = ['tokenizer.json', 'tokenizer_config.json'] missing_files = [f for f in required_files if not (tokenizer_path / f).exists()] if missing_files and not args.eval: print(f"\nWarning: Tokenizer directory missing required files: {missing_files}") print(f"Current tokenizer path: {args.tokenizer}") print("\nFor Qwen models, you may need to specify the original model directory:") print(" python chat.py --meta /tmp/qwen/meta.yaml --tokenizer ~/.cache/huggingface/hub/models--Qwen--Qwen3-0.6B/snapshots/YOUR_SNAPSHOT_ID") print("\nOr add 'tokenizer_path' to your meta.yaml file.") args.tokenizer = str(Path(args.tokenizer).resolve()) # Convert to absolute path if not args.eval: print(f"Using tokenizer path: {args.tokenizer}") metadata = {} # Load models and extract metadata embed_model, ffn_models, lmhead_model, metadata = load_models(args,metadata) if not args.eval: print(f"\nMetadata befor args.context_length: {metadata}") # Override context length from command line if provided if args.context_length is not None: metadata['context_length'] = args.context_length metadata['state_length'] = args.context_length # Also update state_length if not args.eval: print(f"\nOverriding context length from command line: {args.context_length}") # Add num_logits to metadata (legacy support) metadata['num_logits'] = getattr(args, 'num_logits', 8) # Add split_lm_head to metadata (preferred) metadata['split_lm_head'] = getattr(args, 'split_lm_head', getattr(args, 'num_logits', 8)) if not args.eval: print(f"\nMetadata after load_models: {metadata}") print(f"Using split_lm_head value: {metadata.get('split_lm_head', 8)}") # Load tokenizer with resolved path tokenizer = initialize_tokenizer(args.tokenizer, args.eval) if tokenizer is None: raise RuntimeError("Failed to initialize tokenizer") # Create unified state once state = create_unified_state(ffn_models, metadata['context_length'], args.eval) # Initialize causal mask once causal_mask = initialize_causal_mask(metadata['context_length'], args.eval) # Warmup runs to prevent Python GIL issues with CoreML ! if not args.nw and not args.eval: for _ in range(2): chat_loop( embed_model=embed_model, ffn_models=ffn_models, lmhead_model=lmhead_model, tokenizer=tokenizer, metadata=metadata, state=state, causal_mask=causal_mask, # Pass the causal mask warmup=True, auto_prompt="who are you?", no_template=args.no_template, eval_mode=args.eval ) # Main run chat_loop( embed_model=embed_model, ffn_models=ffn_models, lmhead_model=lmhead_model, tokenizer=tokenizer, metadata=metadata, state=state, causal_mask=causal_mask, # Pass the causal mask warmup=False, auto_prompt=args.prompt, save_file=args.save, max_tokens=args.max_tokens, no_template=args.no_template, eval_mode=args.eval ) except Exception as e: if not args.eval: print(f"\nError: {str(e)}") import traceback traceback.print_exc() return 1 return 0 if __name__ == "__main__": exit(main())