anemll's picture
Upload folder using huggingface_hub
50e4992 verified
# chat.py
#!/usr/bin/env python3
# chat.py
# Copyright (c) 2025 Anemll
# Licensed under the MIT License
import argparse
import os
import re
import glob
from pathlib import Path
import coremltools as ct
from transformers import LlamaTokenizer, AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import queue
import threading
import time
import yaml
import sys
# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"
# Add at top with other constants
WARMUP_TOKEN_LIMIT = 10 # Maximum tokens to generate during warmup
class TokenPrinter:
"""Handles background printing of generated tokens."""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.token_queue = queue.Queue()
self.stop_event = threading.Event()
self.thread = None
self.buffer = ""
self.lock = threading.Lock()
self.thinking = True # Track if we're still in thinking mode
self.decoding_buffer = [] # Buffer for token IDs
# Add token counting and timing
self.start_time = time.time()
self.token_count = 0
self.start()
def start(self):
"""Start the printer thread."""
if self.thread is None:
self.thread = threading.Thread(target=self._print_worker)
self.thread.daemon = True
self.thread.start()
def add_token(self, token_id):
"""Add a token to the print queue."""
if not self.stop_event.is_set():
self.token_queue.put(token_id)
self.token_count += 1
def drain_buffer(self, eval_mode=False):
"""Decode token IDs from decoding_buffer in the main thread."""
if not self.decoding_buffer:
return
# Decode all tokens at once in the main thread
token_str = self.tokenizer.decode(self.decoding_buffer)
self.decoding_buffer.clear()
# Store the text in buffer for later saving to file
with self.lock:
self.buffer += token_str
# Skip printing in eval mode
if eval_mode:
return
# Color-handling logic
if self.thinking and "</think>" in token_str:
self.thinking = False
parts = token_str.split("</think>")
if len(parts) > 0:
print(parts[0] + "</think>", end='', flush=True)
if len(parts) > 1:
print(LIGHT_BLUE + parts[1], end='', flush=True)
else:
if not self.thinking:
print(LIGHT_BLUE + token_str, end='', flush=True)
else:
print(token_str, end='', flush=True)
def _print_worker(self):
"""Worker thread that takes token_ids from the queue."""
while not self.stop_event.is_set():
try:
token_id = self.token_queue.get(timeout=0.01)
with self.lock:
self.decoding_buffer.append(token_id)
self.token_queue.task_done()
except queue.Empty:
continue
except Exception as e:
print(f"\nError: Token printer error: {str(e)}")
break
def stop(self, eval_mode=False):
"""Stop the printer thread."""
if self.thread and self.thread.is_alive():
# Ensure any remaining tokens are processed
self.drain_buffer()
self.stop_event.set()
try:
self.thread.join(timeout=1.0)
except Exception:
pass
# Calculate and print tokens/s with shorter format in blue (unless in eval mode)
if not eval_mode:
elapsed = time.time() - self.start_time
if elapsed > 0 and self.token_count > 0:
tokens_per_sec = self.token_count / elapsed
print(f"\n{DARK_BLUE}{tokens_per_sec:.1f} t/s{RESET_COLOR}")
else:
print(RESET_COLOR) # Reset color at the end
return self.buffer
def parse_model_path(path):
"""Parse model path and return full path with .mlmodelc or .mlpackage extension."""
path = Path(path)
# If path exists exactly as specified, return it
if path.exists():
return str(path)
# Try with both extensions
candidates = [
path, # Original path
path.with_suffix('.mlmodelc'), # With .mlmodelc
path.with_suffix('.mlpackage'), # With .mlpackage
Path(str(path) + '.mlmodelc'), # Handle case where extension is included
Path(str(path) + '.mlpackage')
]
# Try all possible paths
for candidate in candidates:
if candidate.exists():
return str(candidate)
# If embeddings with LUT suffix not found, try without LUT suffix
if "_lut" in str(path) and "embeddings" in str(path):
print(f"Failed to find {path}, trying without LUT suffix...")
# Remove LUT suffix
path_no_lut = str(path).split("_lut")[0]
path_no_lut = Path(path_no_lut)
# Try candidates without LUT suffix
candidates_no_lut = [
path_no_lut,
path_no_lut.with_suffix('.mlmodelc'),
path_no_lut.with_suffix('.mlpackage'),
Path(str(path_no_lut) + '.mlmodelc'),
Path(str(path_no_lut) + '.mlpackage')
]
for candidate in candidates_no_lut:
if candidate.exists():
return str(candidate)
# Add no-LUT candidates to the list for error reporting
candidates.extend(candidates_no_lut)
# If we get here, no valid path was found
print("\nError: Model not found. Tried following paths:")
for candidate in candidates:
print(f" {candidate}")
raise FileNotFoundError(f"Model not found: {path}")
def parse_ffn_filename(path):
"""Parse FFN model filename to extract chunk information."""
path = Path(path)
pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)'
match = re.search(pattern, path.name)
if match:
current_chunk = int(match.group(1))
total_chunks = int(match.group(2))
return current_chunk, total_chunks
return None, None
def find_all_chunks(base_path):
"""Find all chunk files matching the base FFN path pattern."""
path = Path(base_path)
pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path))
return sorted(glob.glob(pattern))
def load_model(path, function_name=None):
"""Load a CoreML model, handling both .mlmodelc and .mlpackage formats."""
path = Path(path)
compute_unit = ct.ComputeUnit.CPU_AND_NE
try:
if path.suffix == '.mlmodelc':
# For compiled models (.mlmodelc), use CompiledMLModel
if function_name:
return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name)
else:
return ct.models.CompiledMLModel(str(path), compute_unit)
else:
# For packages (.mlpackage)
if function_name:
return ct.models.MLModel(str(path), function_name=function_name)
else:
return ct.models.MLModel(str(path))
except RuntimeError as e:
if "valid manifest does not exist" in str(e):
print(f"\nError: Could not load compiled model at {path}")
print("This might be because:")
print("1. The model is not properly compiled")
print("2. The model was compiled for a different OS version")
print("3. The model needs to be recompiled")
print("\nTry using the .mlpackage version instead, or recompile the model.")
raise
def load_metadata(model,args):
# Extract metadata and config parameters
metadata = {}
if hasattr(model, 'user_defined_metadata'):
meta = model.user_defined_metadata
# Extract key parameters with defaults
metadata['context_length'] = int(meta.get('com.anemll.context_length', 512))
metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length'])) # Added state_length
metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64))
metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0))
metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1))
if not args.eval:
print("\nExtracted Parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
# Print model info
print("\nModel Info:")
if 'com.anemll.info' in meta:
print(f" {meta['com.anemll.info']}")
if 'com.github.apple.coremltools.version' in meta:
print(f" CoreML Tools: {meta['com.github.apple.coremltools.version']}")
# Print model input/output shapes
print("\nModel Shapes:")
if hasattr(model, 'input_description'):
print(" Inputs:")
try:
if hasattr(model.input_description, 'items'):
for name, desc in model.input_description.items():
print(f" {name}: {desc}")
else:
print(f" {model.input_description}")
except:
print(f" Input description: {type(model.input_description)}")
if hasattr(model, 'output_description'):
print(" Outputs:")
try:
if hasattr(model.output_description, 'items'):
for name, desc in model.output_description.items():
print(f" {name}: {desc}")
else:
print(f" {model.output_description}")
except:
print(f" Output description: {type(model.output_description)}")
else:
if not args.eval:
print("\nWarning: No metadata found in model")
# Check if model directory name contains context length pattern (ctxXXX)
ctx_len = 512
if args.context_length is None:
import re
ctx_match = re.search(r'ctx(\d+)', str(args.d))
if ctx_match:
ctx_len0 = int(ctx_match.group(1))
if 512 <= ctx_len0 <= 8096:
ctx_len = ctx_len0
print(f"\nDetected context length {ctx_len} from directory name")
else:
print(f"\nWarning: No context length found in directory {ctx_len} from directory name {args.d}")
else:
ctx_len = args.context_length
# Use defaults or values from args
metadata['context_length'] = ctx_len
metadata['state_length'] = ctx_len
# Get batch size from args or use default
metadata['batch_size'] = getattr(args, 'batch_size', 64)
metadata['lut_bits'] = 4
metadata['num_chunks'] = getattr(args, 'num_chunks', 4)
if not args.eval:
print("\nUsing parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
# Override with values from args if they exist
if hasattr(args, 'batch_size') and args.batch_size is not None:
metadata['batch_size'] = args.batch_size
if not args.eval:
print(f"\nOverriding batch size from args: {args.batch_size}")
if hasattr(args, 'num_chunks') and args.num_chunks is not None:
metadata['num_chunks'] = args.num_chunks
if not args.eval:
print(f"\nOverriding num chunks from args: {args.num_chunks}")
return metadata
def load_models(args,metadata):
"""Load all required models and extract metadata."""
if not args.eval:
print("\nLoading models...")
try:
# Load embeddings model
if not args.eval:
print("\nLoading embeddings model...")
embed_path = parse_model_path(args.embed)
if not args.eval:
print(f"Loading from: {embed_path}")
embed_model = load_model(embed_path)
if not args.eval:
print("Embeddings model loaded successfully")
metadata = load_metadata(embed_model,args)
# Load LM head model
if not args.eval:
print("\nLoading LM head model...")
lmhead_path = parse_model_path(args.lmhead)
if not args.eval:
print(f"Loading from: {lmhead_path}")
lmhead_model = load_model(lmhead_path)
if not args.eval:
print("LM head model loaded successfully")
# Parse FFN path and find chunks if needed
if not args.eval:
print("\nLoading FFN+PREFILL model(s)...")
ffn_path = parse_model_path(args.ffn)
chunk_no, total_chunks = parse_ffn_filename(ffn_path)
ffn_models = []
if chunk_no and total_chunks:
if not args.eval:
print(f"\nDetected chunked FFN+PREFILL model ({total_chunks} chunks)")
# Find and load all chunks
chunk_paths = find_all_chunks(ffn_path)
if len(chunk_paths) != total_chunks:
raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks")
for chunk_path in chunk_paths:
if not args.eval:
print(f"\nLoading FFN+PREFILL chunk: {Path(chunk_path).name}")
try:
# For chunked models, we need both infer and prefill functions
ffn_models.append({
'infer': load_model(chunk_path, function_name='infer'),
'prefill': load_model(chunk_path, function_name='prefill')
})
if not args.eval:
print("Chunk loaded successfully")
except Exception as e:
if not args.eval:
print(f"Error loading chunk {chunk_path}: {str(e)}")
raise
metadata = load_metadata(ffn_models[0],args)
else:
if not args.eval:
print("\nLoading single FFN model...")
ffn_models.append(load_model(ffn_path))
if not args.eval:
print("FFN model loaded successfully")
return embed_model, ffn_models, lmhead_model, metadata
except Exception as e:
print(f"\nError loading models: {str(e)}")
print("\nPlease ensure all model files exist and are accessible.")
print("Expected files:")
print(f" Embeddings: {args.embed}")
print(f" LM Head: {args.lmhead}")
print(f" FFN: {args.ffn}")
raise
# At the top of the file, make this a default path
def initialize_tokenizer(model_path=None, eval_mode=False):
"""Initialize and configure the tokenizer."""
try:
tokenizer = AutoTokenizer.from_pretrained(
str(model_path),
use_fast=False,
trust_remote_code=True
)
if not eval_mode:
print("\nTokenizer Configuration:")
print(f"Tokenizer type: {type(tokenizer)}")
print(f"Tokenizer name: {tokenizer.__class__.__name__}")
print(f"Vocabulary size: {len(tokenizer)}")
print(f"Model max length: {tokenizer.model_max_length}")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
if not eval_mode:
print("Set PAD token to EOS token")
tokenizer.padding_side = "left"
if not eval_mode:
print(f"\nSpecial Tokens:")
print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})")
print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})")
print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})")
print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})")
return tokenizer
except Exception as e:
print(f"\nError: Failed to load tokenizer from {model_path}")
print(f"Error details: {str(e)}")
print(f"Error type: {type(e)}")
print("\nThis appears to be a tokenizer loading issue.")
# Check if it's the specific Qwen tokenizer file issue
if "expected str, bytes or os.PathLike object, not NoneType" in str(e):
print("\nThis error suggests the tokenizer files are missing or incomplete.")
print("For Qwen models, you need the original model directory with tokenizer files.")
print("Try using: --tokenizer ~/.cache/huggingface/hub/models--Qwen--Qwen3-0.6B/snapshots/YOUR_SNAPSHOT_ID")
else:
print("Please provide the path to a compatible model directory with tokenizer files.")
import traceback
traceback.print_exc()
raise
def make_causal_mask(length, start):
"""Create causal attention mask."""
mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
row_indices = np.arange(length).reshape(length, 1)
col_indices = np.arange(length).reshape(1, length)
mask[:, :, col_indices <= (row_indices + start)] = 0
return mask
def initialize_causal_mask(context_length, eval_mode=False):
"""Initialize causal mask for transformer attention."""
causal_mask = make_causal_mask(context_length, 0)
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
if not eval_mode:
print(f"\nInitialized causal mask for context length {context_length}")
return causal_mask
def run_prefill(embed_model, ffn_models, input_ids, context_pos, context_length, batch_size=64, state=None, causal_mask=None):
"""Run prefill on the input sequence."""
# Use provided causal mask or create one if not provided
if causal_mask is None:
causal_mask = make_causal_mask(context_length, 0)
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
# Process in batches
batch_pos = 0
while batch_pos < context_pos:
batch_end = min(batch_pos + batch_size, context_pos)
current_batch_size = batch_end - batch_pos
# Get current batch
batch_input = input_ids[:, batch_pos:batch_end]
# Always pad to full batch size for prefill
batch_input = F.pad(
batch_input,
(0, batch_size - current_batch_size),
value=0
)
# Generate position IDs for full batch size
position_ids = torch.arange(batch_pos, batch_pos+batch_size, dtype=torch.int32) # Changed: Always use full batch size
batch_causal_mask = causal_mask[:, :, batch_pos:batch_pos+batch_size, :] # Changed: Use full batch size
# Run embeddings
hidden_states = torch.from_numpy(
embed_model.predict({
'input_ids': batch_input.numpy().astype(np.int32)
})['hidden_states']
)
# Run through FFN chunks with state
for ffn_model in ffn_models:
if isinstance(ffn_model, dict):
inputs = {
'hidden_states': hidden_states.numpy().astype(np.float16), # [1, 64, hidden_size]
'position_ids': position_ids.numpy().astype(np.int32), # [64]
'causal_mask': batch_causal_mask.numpy().astype(np.float16), # [1, 1, 64, context_length]
'current_pos': np.array([batch_pos], dtype=np.int32) # [1]
}
output = ffn_model['prefill'].predict(inputs, state)
hidden_states = torch.from_numpy(output['output_hidden_states'])
batch_pos = batch_end
return torch.tensor([context_pos], dtype=torch.int32)
def generate_next_token(embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, metadata, state=None, causal_mask=None, temperature=0.0):
"""Generate the next token."""
# Get current token
current_token = input_ids[:, pos-1:pos] # [1, 1]
# Ensure proper data type for CoreML
current_token_array = current_token.numpy().astype(np.int32)
# Run embeddings
hidden_states = torch.from_numpy(
embed_model.predict({'input_ids': current_token_array})['hidden_states']
) # [1, 1, hidden_size]
# Create masks
update_mask = torch.zeros((1, 1, context_length, 1), dtype=torch.float16)
update_mask[0, 0, pos-1, 0] = 1.0
position_ids = torch.tensor([pos-1], dtype=torch.int32) # [1]
# Use provided causal mask or create one if not provided
if causal_mask is None:
causal_mask_data = make_causal_mask(context_length, 0)
single_causal_mask = torch.tensor(causal_mask_data[:, :, pos-1:pos, :], dtype=torch.float16) # [1, 1, 1, context_length]
else:
single_causal_mask = causal_mask[:, :, pos-1:pos, :]
# Run through FFN chunks with state
for ffn_model in ffn_models:
if isinstance(ffn_model, dict):
inputs = {
'hidden_states': hidden_states.numpy().astype(np.float16),
'update_mask': update_mask.numpy().astype(np.float16),
'position_ids': position_ids.numpy().astype(np.int32),
'causal_mask': single_causal_mask.numpy().astype(np.float16),
'current_pos': position_ids.numpy().astype(np.int32)
}
output = ffn_model['infer'].predict(inputs, state)
hidden_states = torch.from_numpy(output['output_hidden_states'])
# Run LM head
lm_output = lmhead_model.predict({'hidden_states': hidden_states.numpy().astype(np.float16)})
# Debug print
#print("\nLM Head output keys:", list(lm_output.keys()))
# Get number of logits from metadata, using split_lm_head if available
# First check for split_lm_head (new), then num_logits (legacy), default to 8
num_logits = metadata.get('split_lm_head', metadata.get('num_logits', 8))
# Combine logits1-N if they exist
if 'logits1' in lm_output:
# Concatenate all logits parts
logits_parts = []
for i in range(1, num_logits + 1):
key = f'logits{i}'
if key in lm_output:
logits_parts.append(torch.from_numpy(lm_output[key]))
logits = torch.cat(logits_parts, dim=-1) # Concatenate along vocab dimension
else:
# Try output_logits as fallback
logits = torch.from_numpy(lm_output['output_logits'])
# Apply temperature and sample
if temperature > 0:
logits = logits / temperature
probs = F.softmax(logits[0, -1, :], dim=-1)
next_token = torch.multinomial(probs, num_samples=1).item()
else:
next_token = torch.argmax(logits[0, -1, :]).item()
return next_token
def create_unified_state(ffn_models, context_length, eval_mode=False):
"""Create unified KV cache state for transformer."""
if isinstance(ffn_models[0], dict):
# Use first FFN model's prefill function to create state
state = ffn_models[0]['prefill'].make_state()
if not eval_mode:
print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
return state
else:
state = ffn_models[0].make_state()
if not eval_mode:
print("\nCreated unified transformer state")
return state
def chat_loop(embed_model, ffn_models, lmhead_model, tokenizer, metadata, state, causal_mask=None, auto_prompt=None, warmup=False, save_file=None, max_tokens=None, no_template=False, eval_mode=False):
"""Interactive chat loop."""
context_length = metadata.get('context_length')
batch_size = metadata.get('batch_size', 64)
if not warmup and not eval_mode:
print(f"\nUsing context length: {context_length}")
print("\nStarting chat session. Press Ctrl+D to exit.")
print("Type your message and press Enter to chat.")
# Check if tokenizer has chat template and if it works
has_chat_template = False
try:
# Test if chat template works
test_messages = [{"role": "user", "content": "test"}]
tokenizer.apply_chat_template(test_messages, return_tensors="pt")
has_chat_template = True
if not warmup and not eval_mode:
print("\nUsing chat template for prompts")
except:
if not warmup and not eval_mode:
print("\nUsing manual formatting for prompts")
conversation = []
try:
while True:
try:
if not warmup and not eval_mode:
print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True)
if auto_prompt is not None:
user_input = auto_prompt
if not warmup and not eval_mode:
print(user_input)
else:
user_input = input().strip()
except EOFError:
if not warmup and not eval_mode:
print("\nExiting chat...")
break
if not user_input:
continue
# Format prompt based on no_template flag and tokenizer capabilities
if no_template:
# Use raw input without any chat template formatting
input_ids = tokenizer(
user_input,
return_tensors="pt",
add_special_tokens=True
).input_ids.to(torch.int32)
if not warmup and not eval_mode:
print("Using raw input without chat template")
elif has_chat_template:
messages = [{"role": "user", "content": user_input}]
input_ids = tokenizer.apply_chat_template(
messages,
return_tensors="pt",
add_generation_prompt=True
).to(torch.int32)
else:
# Manual formatting for Llama models without chat template
formatted_prompt = f"[INST] {user_input} [/INST]"
input_ids = tokenizer(
formatted_prompt,
return_tensors="pt",
add_special_tokens=True
).input_ids.to(torch.int32)
context_pos = input_ids.size(1)
if not warmup and not eval_mode:
print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True)
# Initialize token printer
token_printer = TokenPrinter(tokenizer)
tokens_generated = 0 # Track number of tokens
try:
# Start prefill timing
prefill_start = time.time()
# Run prefill with state and causal mask
# Ensure batch_size is not None
if batch_size is None:
batch_size = 64
if not eval_mode:
print(f"Warning: batch_size was None, using default: {batch_size}")
_ = run_prefill(
embed_model,
ffn_models,
input_ids,
context_pos,
context_length,
batch_size,
state,
causal_mask
)
# Calculate prefill timing
prefill_time = time.time() - prefill_start
prefill_tokens = context_pos # Number of tokens in input
prefill_tokens_per_sec = prefill_tokens / prefill_time if prefill_time > 0 else 0
# Generation loop with state
input_ids = input_ids
pos = context_pos
inference_start = time.time()
inference_tokens = 0
while pos < context_length - 1:
# Generate next token with causal mask
next_token = generate_next_token(
embed_model,
ffn_models,
lmhead_model,
input_ids,
pos,
context_length,
metadata,
state,
causal_mask
)
# Add token to sequence
if pos < input_ids.size(1):
input_ids[0, pos] = next_token
else:
input_ids = torch.cat([
input_ids,
torch.tensor([[next_token]], dtype=torch.int32)
], dim=1)
# Add to printer only if not in warmup
if not warmup:
token_printer.add_token(next_token)
token_printer.drain_buffer(eval_mode)
pos += 1
tokens_generated += 1
inference_tokens += 1
# Check limits
if warmup and tokens_generated >= WARMUP_TOKEN_LIMIT:
break
# Check max_tokens limit
if max_tokens is not None and tokens_generated >= max_tokens:
break
# Check for all possible EOS tokens
eos_token_ids = tokenizer.eos_token_id
if isinstance(eos_token_ids, list):
if next_token in eos_token_ids:
break
else:
if next_token == eos_token_ids:
break
# Calculate inference timing
inference_time = time.time() - inference_start
inference_tokens_per_sec = inference_tokens / inference_time if inference_time > 0 else 0
# Get final response and add to conversation
if not warmup:
response = token_printer.stop(eval_mode)
if eval_mode:
# In eval mode, only print the model response
print(response, end='')
else:
# Print timing stats
prefill_ms = prefill_time * 1000 # Convert to milliseconds
print(f"\nPrefill: {prefill_ms:.1f}ms ({prefill_tokens_per_sec:.1f} t/s)")
print(f"Inference: {inference_tokens_per_sec:.1f} t/s")
print(f"Total: Generated {tokens_generated} tokens in {prefill_time + inference_time:.2f}s")
conversation.append({"role": "assistant", "content": response})
# Save response to file if requested
if save_file and not eval_mode:
try:
# Add small delay to ensure all tokens are processed
time.sleep(0.5)
# Make sure response ends with EOS token if it's supposed to
if response and not response.endswith("<|eot_id|>") and not response.endswith("</s>"):
if tokenizer.eos_token:
eos_text = tokenizer.decode([tokenizer.eos_token_id])
if not response.endswith(eos_text):
print(f"\n{DARK_BLUE}Adding missing EOS token for consistency{RESET_COLOR}")
response += eos_text
with open(save_file, 'w') as f:
f.write(response)
print(f"\n{DARK_BLUE}Response saved to file: {save_file}{RESET_COLOR}")
except Exception as e:
print(f"\n{DARK_BLUE}Error saving to file: {str(e)}{RESET_COLOR}")
else:
token_printer.stop(eval_mode) # Clean up without printing stats
# Exit after one response in auto_prompt mode
if auto_prompt is not None:
break
except KeyboardInterrupt:
if not eval_mode:
print("\nGeneration interrupted")
token_printer.stop(eval_mode)
continue
except Exception as e:
print(f"\nError in chat loop: {str(e)}")
import traceback
traceback.print_exc()
def parse_args():
parser = argparse.ArgumentParser(description='Chat with CoreML LLaMA, gil resolved (c) 2025 Anemll')
# Add meta.yaml option
parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters')
# Model paths
parser.add_argument('--d', '--dir', type=str, default='.',
help='Directory containing model files (default: current directory)')
parser.add_argument('--embed', type=str, required=False,
help='Path to embeddings model (relative to --dir)')
parser.add_argument('--ffn', type=str, required=False,
help='Path to FFN model (can be chunked, relative to --dir)')
parser.add_argument('--lmhead', type=str, required=False,
help='Path to LM head model (relative to --dir)')
parser.add_argument('--tokenizer', type=str, required=False,
help='Path to tokenizer')
# Add new argument for auto-generation
parser.add_argument('--prompt', type=str,
help='If specified, run once with this prompt and exit')
# Add save option
parser.add_argument('--save', type=str,
help='Save assistant\'s response to specified file')
# Add max-tokens option
parser.add_argument('--max-tokens', type=int,
help='Maximum number of tokens to generate')
# Add no-warmup flag
parser.add_argument('--nw', action='store_true',
help='Skip warmup phase')
# Add no-template flag
parser.add_argument('--no-template', action='store_true',
help='Prefill the question itself and start inference directly without chat template')
# Add eval mode flag
parser.add_argument('--eval', action='store_true',
help='Evaluation mode: suppress all output except model response')
# Model configuration
parser.add_argument('--context-length', type=int,
help='Context length for the model (default: 512), if not provided, it will be detected from the model directory name ctxNUMBER')
parser.add_argument('--batch-size', type=int,
help='Batch size for prefill (default: 64)')
parser.add_argument('--num-logits', type=int, default=8,
help='Number of logits outputs from LM head (default: 8, legacy)')
parser.add_argument('--split-lm-head', type=int,
help='Number of logits splits from LM head (default: 8 for llama, 16 for qwen)')
args = parser.parse_args()
# If meta.yaml is provided, load parameters from it
if args.meta:
try:
with open(args.meta, 'r') as f:
meta = yaml.safe_load(f)
params = meta['model_info']['parameters']
# Set model directory to meta.yaml directory if not specified
if not args.d or args.d == '.':
args.d = str(Path(args.meta).parent)
# Build model paths based on parameters
prefix = params.get('model_prefix', 'llama') # Default to 'llama' if not specified
lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else ''
lut_lmhead = f"_lut{params['lut_lmhead']}" if params['lut_lmhead'] != 'none' else ''
lut_embeddings = f"_lut{params['lut_embeddings']}" if params['lut_embeddings'] != 'none' else ''
num_chunks = int(params['num_chunks'])
# Set model paths if not specified
if not args.lmhead:
args.lmhead = f'{prefix}_lm_head{lut_lmhead}'
if not args.embed:
args.embed = f'{prefix}_embeddings{lut_embeddings}' # Changed from lm_head to embeddings
if not args.ffn:
args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}'
if not args.tokenizer:
# Check if there's a tokenizer_path parameter in meta.yaml
if 'tokenizer_path' in params:
args.tokenizer = params['tokenizer_path']
else:
# Default to the model directory, but this might need manual override
args.tokenizer = args.d
# Set other parameters if not overridden by command line
if args.context_length is None:
args.context_length = int(params['context_length'])
if args.batch_size is None:
args.batch_size = int(params['batch_size'])
args.num_chunks = num_chunks
# Add num_logits parameter with default of 8, override command line if present in meta
if 'num_logits' in params:
args.num_logits = int(params['num_logits'])
# Add split_lm_head parameter with default of 8
if 'split_lm_head' in params:
args.split_lm_head = int(params['split_lm_head'])
else:
args.split_lm_head = 8 # Default value for backward compatibility
if not args.eval:
print(f"\nLoaded parameters from {args.meta}:")
print(f" Context Length: {args.context_length}")
print(f" Batch Size: {args.batch_size}")
print(f" Num Chunks: {args.num_chunks}")
print(f" Num Logits: {args.num_logits}")
print(f" Split LM Head: {args.split_lm_head}")
print(f" Models Directory: {args.d}")
print(f" Embeddings: {args.embed}")
print(f" LM Head: {args.lmhead}")
print(f" FFN: {args.ffn}")
except Exception as e:
print(f"\nError loading meta.yaml: {str(e)}")
sys.exit(1)
else:
# If no meta.yaml, set default split_lm_head if not provided
if not hasattr(args, 'split_lm_head') or args.split_lm_head is None:
args.split_lm_head = args.num_logits # Use num_logits as fallback
return args
def main():
args = parse_args()
# Convert directory to absolute path
model_dir = Path(args.d).resolve()
if not model_dir.exists():
if not args.eval:
print(f"\nError: Model directory not found: {model_dir}")
return 1
if not args.eval:
print(f"\nUsing model directory: {model_dir}")
print(f"Context length: {args.context_length}")
try:
# Update paths to be relative to model directory
args.embed = str(model_dir / args.embed)
args.ffn = str(model_dir / args.ffn)
args.lmhead = str(model_dir / args.lmhead)
# Handle tokenizer path separately since it's not relative to model_dir
if args.tokenizer is None:
args.tokenizer = str(model_dir)
# Check if tokenizer directory exists and has required files
tokenizer_path = Path(args.tokenizer)
if not tokenizer_path.exists():
if not args.eval:
print(f"\nError: Tokenizer directory not found: {args.tokenizer}")
return 1
# Check if tokenizer has the required files
required_files = ['tokenizer.json', 'tokenizer_config.json']
missing_files = [f for f in required_files if not (tokenizer_path / f).exists()]
if missing_files and not args.eval:
print(f"\nWarning: Tokenizer directory missing required files: {missing_files}")
print(f"Current tokenizer path: {args.tokenizer}")
print("\nFor Qwen models, you may need to specify the original model directory:")
print(" python chat.py --meta /tmp/qwen/meta.yaml --tokenizer ~/.cache/huggingface/hub/models--Qwen--Qwen3-0.6B/snapshots/YOUR_SNAPSHOT_ID")
print("\nOr add 'tokenizer_path' to your meta.yaml file.")
args.tokenizer = str(Path(args.tokenizer).resolve()) # Convert to absolute path
if not args.eval:
print(f"Using tokenizer path: {args.tokenizer}")
metadata = {}
# Load models and extract metadata
embed_model, ffn_models, lmhead_model, metadata = load_models(args,metadata)
if not args.eval:
print(f"\nMetadata befor args.context_length: {metadata}")
# Override context length from command line if provided
if args.context_length is not None:
metadata['context_length'] = args.context_length
metadata['state_length'] = args.context_length # Also update state_length
if not args.eval:
print(f"\nOverriding context length from command line: {args.context_length}")
# Add num_logits to metadata (legacy support)
metadata['num_logits'] = getattr(args, 'num_logits', 8)
# Add split_lm_head to metadata (preferred)
metadata['split_lm_head'] = getattr(args, 'split_lm_head', getattr(args, 'num_logits', 8))
if not args.eval:
print(f"\nMetadata after load_models: {metadata}")
print(f"Using split_lm_head value: {metadata.get('split_lm_head', 8)}")
# Load tokenizer with resolved path
tokenizer = initialize_tokenizer(args.tokenizer, args.eval)
if tokenizer is None:
raise RuntimeError("Failed to initialize tokenizer")
# Create unified state once
state = create_unified_state(ffn_models, metadata['context_length'], args.eval)
# Initialize causal mask once
causal_mask = initialize_causal_mask(metadata['context_length'], args.eval)
# Warmup runs to prevent Python GIL issues with CoreML !
if not args.nw and not args.eval:
for _ in range(2):
chat_loop(
embed_model=embed_model,
ffn_models=ffn_models,
lmhead_model=lmhead_model,
tokenizer=tokenizer,
metadata=metadata,
state=state,
causal_mask=causal_mask, # Pass the causal mask
warmup=True,
auto_prompt="who are you?",
no_template=args.no_template,
eval_mode=args.eval
)
# Main run
chat_loop(
embed_model=embed_model,
ffn_models=ffn_models,
lmhead_model=lmhead_model,
tokenizer=tokenizer,
metadata=metadata,
state=state,
causal_mask=causal_mask, # Pass the causal mask
warmup=False,
auto_prompt=args.prompt,
save_file=args.save,
max_tokens=args.max_tokens,
no_template=args.no_template,
eval_mode=args.eval
)
except Exception as e:
if not args.eval:
print(f"\nError: {str(e)}")
import traceback
traceback.print_exc()
return 1
return 0
if __name__ == "__main__":
exit(main())