File size: 9,666 Bytes
019d3ac
5596661
 
 
 
 
 
 
019d3ac
5596661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7779cd
 
5596661
019d3ac
88b09d0
019d3ac
5596661
019d3ac
 
5596661
019d3ac
5596661
019d3ac
 
5596661
 
019d3ac
5596661
 
 
 
 
019d3ac
5596661
019d3ac
5596661
 
 
 
019d3ac
 
 
 
5596661
 
 
 
019d3ac
5596661
 
019d3ac
 
5596661
 
019d3ac
 
 
5596661
 
019d3ac
5596661
 
 
019d3ac
5596661
 
 
019d3ac
 
7a0a4d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
019d3ac
1e29f2c
 
5596661
 
 
 
 
 
1e29f2c
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
3a8f28c
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
3a8f28c
5596661
 
019d3ac
5596661
019d3ac
5596661
 
 
 
 
17dfc99
3e9f42a
17dfc99
019d3ac
5596661
17dfc99
5596661
 
17dfc99
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
019d3ac
5596661
 
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
 
 
 
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
 
 
 
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
 
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
019d3ac
5596661
019d3ac
5596661
019d3ac
5596661
 
 
 
019d3ac
5596661
 
7a0a4d8
3a8f28c
 
 
 
 
 
 
 
 
 
 
5596661
019d3ac
5596661
 
 
3a8f28c
5596661
3a8f28c
5596661
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
base_model:
- openthaigpt/openthaigpt1.5-14b-instruct
datasets:
- Thaweewat/thai-med-pack
language:
- th
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- text-generation-inference
- sft
- trl
- 4-bit precision
- bitsandbytes
- LoRA
- Fine-Tuning with LoRA
- LLM
- GenAI
- NT GenAI
- ntgenai
- lahnmah
- NT Thai GPT
- ntthaigpt
- medical
- medtech
- HealthGPT
- หลานม่า
- NT Academy
new_version: amornpan/openthaigpt-MedChatModelv11
---
# ✨ Fine-tuning the MedChat model for GPU efficiency. ✨

# 🇹🇭 **Model Card for openthaigpt1.5-14b-medical-tuned**
<!-- Provide a quick summary of what the model is/does. -->

## <font color="blue">ℹ️ This version is optimized for GPU.</font> Please wait for the CPU version, which will be available soon.!!

This model is fine-tuned from openthaigpt1.5-14b-instruct using Supervised Fine-Tuning (SFT) on the Thaweewat/thai-med-pack dataset. The model is designed for medical question-answering tasks in Thai, specializing in providing accurate and contextual answers based on medical information. 


## Model Description
This model was fine-tuned using Supervised Fine-Tuning (SFT) to optimize it for medical question answering in Thai. The base model is `openthaigpt1.5-14b-instruct`, and it has been enhanced with domain-specific knowledge using the Thaweewat/thai-med-pack dataset.

- **Model type:** Causal Language Model (AutoModelForCausalLM)
- **Language(s):** Thai
- **License:** Apache License 2.0
- **Fine-tuned from model:** openthaigpt1.5-14b-instruct
- **Dataset used for fine-tuning:** Thaweewat/thai-med-pack

### Model Sources

- **Repository:** https://huggingface.co/amornpan
- **Citing Repository:** https://huggingface.co/Aekanun
- **Base Model:** https://huggingface.co/openthaigpt/openthaigpt1.5-14b-instruct
- **Dataset:** https://huggingface.co/datasets/Thaweewat/thai-med-pack

## Uses

### Direct Use
The model can be directly used for generating medical responses in Thai. It has been optimized for:
- Medical question-answering
- Providing clinical information
- Health-related dialogue generation

### Downstream Use
This model can be used as a foundational model for medical assistance systems, chatbots, and applications related to healthcare, specifically in the Thai language.

### Out-of-Scope Use
- This model should not be used for real-time diagnosis or emergency medical scenarios.
- Avoid using it for critical clinical decisions without human oversight, as the model is not intended to replace professional medical advice.

## Bias, Risks, and Limitations

### Bias
- The model might reflect biases present in the dataset, particularly when addressing underrepresented medical conditions or topics.

### Risks
- Responses may contain inaccuracies due to the inherent limitations of the model and the dataset used for fine-tuning.
- This model should not be used as the sole source of medical advice.

### Limitations
- Limited to the medical domain.
- The model is sensitive to prompts and may generate off-topic responses for non-medical queries.


## Model Training Results

```
985/985 8:34:43, Epoch 134/141]
Step	Training Loss	Validation Loss
50	1.883700	1.708532
100	1.792500	1.528184
150	1.555000	1.296583
200	1.403900	1.251281
250	1.374300	1.225630
300	1.321000	1.195238
350	1.313900	1.187670
400	1.299000	1.181292
450	1.296400	1.177670
500	1.285000	1.173616
550	1.272800	1.170705
600	1.251200	1.169226
650	1.262600	1.166078
700	1.255300	1.165633
750	1.251600	1.165041
800	1.252300	1.162943
850	1.232700	1.164691
900	1.247300	1.163449
950	1.246300	1.163610
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/YGFmHdnura4iCxWwvHrlq.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/bqzHSvriZV3uxwsx949JM.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/7IqYD4YVfI-NAGBCmztQ6.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/nCmd5f7p5q7UXFEkAmAD1.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/gBixy-3XobOvFd21JaYaM.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/OnXan8Pli6ju3z-Ecllca.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/nlMGPZb05Z9BeOD3NUbo5.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/6fZPHTNzM6Wjia0kYBKQ2.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/LZucvA_GwdZWpd9ljWSCF.png)

## How to Get Started with the Model

Here’s how to load and use the model for generating medical responses in Thai:

## Using Google Colab Pro or Pro+ for fine-tuning and inference.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/663ce15f197afc063058dc3a/XbUTda-Gdvl1DeUs82xoX.png)

## 1. Install the Required Packages

First, ensure you have installed the required libraries by running:

```python
! pip install --upgrade torch transformers accelerate bitsandbytes --upgrade
```
## 2. Load the Model and Tokenizer

You can load the model and tokenizer directly from Hugging Face using the following code:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
```
# Define the model path
```python 
model_path = 'amornpan/openthaigpt1.5-14b-MedChatModelV1'
```

# Load the tokenizer and model
```python
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
```

## 3. Prepare Your Input (Custom Prompt)

Create a custom medical prompt that you want the model to respond to:

```python
custom_prompt = "โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น"
PROMPT = f'[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible. คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>{custom_prompt}[/INST]'

# Tokenize the input prompt
inputs = tokenizer(PROMPT, return_tensors="pt", padding=True, truncation=True)
```

## 4. Configure the Model for Efficient Loading (4-bit Quantization)

The model uses 4-bit precision for efficient inference. Here’s how to set up the configuration:

```python
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16
)
```

## 5. Load the Model with Quantization Support

Now, load the model with the 4-bit quantization settings:

```python
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    quantization_config=bnb_config,
    trust_remote_code=True
)
```

## 6. Move the Model and Inputs to the GPU (prefer GPU)

For faster inference, move the model and input tensors to a GPU, if available:

```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
```

## 7. Generate a Response from the Model

Now, generate the medical response by running the model:

```python
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True)
```

## 8. Decode the Generated Text

Finally, decode and print the response from the model:

```python
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
```

## 9. Output
```python
[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible.
คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>
โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น[/INST]

สำหรับมะเร็งช่องปากในระยะแรกอาจรวมถึงอาการหรือลักษณะดังต่อไปนี้:
1. แผลบนช่องปากหรือกระพูดนิ่มที่อยู่กับที่และไม่หายไปแม้จะผ่านการรักษาด้วยตนเอง
2. บวมที่อยู่กับที่ที่ข้างใดข้างหนึ่งของริมฝีปาก
3. แผลเปื่อยหรือพังผืดที่เกิดขึ้นที่กระพูดหรือฟันที่ไม่หาย
4. ความเปลี่ยนแปลงของผิว pigment ในช่องปาก เช่น สีของกระพืดหรือริมฝีปากที่เปลี่ยนเป็นสีขาวหรือขาว
5. ปัญหาในการพูดหรือกินอาหาร
6. ขดลวดที่ด้านข้างหรือใต้คอที่เจริญเติบโต
7. อาการเจ็บจี๊ด
```

### 👤 **Authors**
* Amornpan Phornchaicharoen ([email protected])
* Aekanun Thongtae ([email protected])
* Montita Somsoo ([email protected]
* Phongsatorn Somjai ([email protected])
* Jiranuwat Songpad ([email protected])
* Benchawan Wangphoomyai ([email protected])