File size: 9,666 Bytes
019d3ac 5596661 019d3ac 5596661 c7779cd 5596661 019d3ac 88b09d0 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 7a0a4d8 019d3ac 1e29f2c 5596661 1e29f2c 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 3a8f28c 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 3a8f28c 5596661 019d3ac 5596661 019d3ac 5596661 17dfc99 3e9f42a 17dfc99 019d3ac 5596661 17dfc99 5596661 17dfc99 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 019d3ac 5596661 7a0a4d8 3a8f28c 5596661 019d3ac 5596661 3a8f28c 5596661 3a8f28c 5596661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
base_model:
- openthaigpt/openthaigpt1.5-14b-instruct
datasets:
- Thaweewat/thai-med-pack
language:
- th
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- text-generation-inference
- sft
- trl
- 4-bit precision
- bitsandbytes
- LoRA
- Fine-Tuning with LoRA
- LLM
- GenAI
- NT GenAI
- ntgenai
- lahnmah
- NT Thai GPT
- ntthaigpt
- medical
- medtech
- HealthGPT
- หลานม่า
- NT Academy
new_version: amornpan/openthaigpt-MedChatModelv11
---
# ✨ Fine-tuning the MedChat model for GPU efficiency. ✨
# 🇹🇭 **Model Card for openthaigpt1.5-14b-medical-tuned**
<!-- Provide a quick summary of what the model is/does. -->
## <font color="blue">ℹ️ This version is optimized for GPU.</font> Please wait for the CPU version, which will be available soon.!!
This model is fine-tuned from openthaigpt1.5-14b-instruct using Supervised Fine-Tuning (SFT) on the Thaweewat/thai-med-pack dataset. The model is designed for medical question-answering tasks in Thai, specializing in providing accurate and contextual answers based on medical information.
## Model Description
This model was fine-tuned using Supervised Fine-Tuning (SFT) to optimize it for medical question answering in Thai. The base model is `openthaigpt1.5-14b-instruct`, and it has been enhanced with domain-specific knowledge using the Thaweewat/thai-med-pack dataset.
- **Model type:** Causal Language Model (AutoModelForCausalLM)
- **Language(s):** Thai
- **License:** Apache License 2.0
- **Fine-tuned from model:** openthaigpt1.5-14b-instruct
- **Dataset used for fine-tuning:** Thaweewat/thai-med-pack
### Model Sources
- **Repository:** https://huggingface.co/amornpan
- **Citing Repository:** https://huggingface.co/Aekanun
- **Base Model:** https://huggingface.co/openthaigpt/openthaigpt1.5-14b-instruct
- **Dataset:** https://huggingface.co/datasets/Thaweewat/thai-med-pack
## Uses
### Direct Use
The model can be directly used for generating medical responses in Thai. It has been optimized for:
- Medical question-answering
- Providing clinical information
- Health-related dialogue generation
### Downstream Use
This model can be used as a foundational model for medical assistance systems, chatbots, and applications related to healthcare, specifically in the Thai language.
### Out-of-Scope Use
- This model should not be used for real-time diagnosis or emergency medical scenarios.
- Avoid using it for critical clinical decisions without human oversight, as the model is not intended to replace professional medical advice.
## Bias, Risks, and Limitations
### Bias
- The model might reflect biases present in the dataset, particularly when addressing underrepresented medical conditions or topics.
### Risks
- Responses may contain inaccuracies due to the inherent limitations of the model and the dataset used for fine-tuning.
- This model should not be used as the sole source of medical advice.
### Limitations
- Limited to the medical domain.
- The model is sensitive to prompts and may generate off-topic responses for non-medical queries.
## Model Training Results
```
985/985 8:34:43, Epoch 134/141]
Step Training Loss Validation Loss
50 1.883700 1.708532
100 1.792500 1.528184
150 1.555000 1.296583
200 1.403900 1.251281
250 1.374300 1.225630
300 1.321000 1.195238
350 1.313900 1.187670
400 1.299000 1.181292
450 1.296400 1.177670
500 1.285000 1.173616
550 1.272800 1.170705
600 1.251200 1.169226
650 1.262600 1.166078
700 1.255300 1.165633
750 1.251600 1.165041
800 1.252300 1.162943
850 1.232700 1.164691
900 1.247300 1.163449
950 1.246300 1.163610
```









## How to Get Started with the Model
Here’s how to load and use the model for generating medical responses in Thai:
## Using Google Colab Pro or Pro+ for fine-tuning and inference.

## 1. Install the Required Packages
First, ensure you have installed the required libraries by running:
```python
! pip install --upgrade torch transformers accelerate bitsandbytes --upgrade
```
## 2. Load the Model and Tokenizer
You can load the model and tokenizer directly from Hugging Face using the following code:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
```
# Define the model path
```python
model_path = 'amornpan/openthaigpt1.5-14b-MedChatModelV1'
```
# Load the tokenizer and model
```python
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
```
## 3. Prepare Your Input (Custom Prompt)
Create a custom medical prompt that you want the model to respond to:
```python
custom_prompt = "โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น"
PROMPT = f'[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible. คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>{custom_prompt}[/INST]'
# Tokenize the input prompt
inputs = tokenizer(PROMPT, return_tensors="pt", padding=True, truncation=True)
```
## 4. Configure the Model for Efficient Loading (4-bit Quantization)
The model uses 4-bit precision for efficient inference. Here’s how to set up the configuration:
```python
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
```
## 5. Load the Model with Quantization Support
Now, load the model with the 4-bit quantization settings:
```python
model = AutoModelForCausalLM.from_pretrained(
model_path,
quantization_config=bnb_config,
trust_remote_code=True
)
```
## 6. Move the Model and Inputs to the GPU (prefer GPU)
For faster inference, move the model and input tensors to a GPU, if available:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
```
## 7. Generate a Response from the Model
Now, generate the medical response by running the model:
```python
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True)
```
## 8. Decode the Generated Text
Finally, decode and print the response from the model:
```python
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
```
## 9. Output
```python
[INST] <You are a question answering assistant. Answer the question as truthfully and helpfully as possible.
คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด<>
โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น[/INST]
สำหรับมะเร็งช่องปากในระยะแรกอาจรวมถึงอาการหรือลักษณะดังต่อไปนี้:
1. แผลบนช่องปากหรือกระพูดนิ่มที่อยู่กับที่และไม่หายไปแม้จะผ่านการรักษาด้วยตนเอง
2. บวมที่อยู่กับที่ที่ข้างใดข้างหนึ่งของริมฝีปาก
3. แผลเปื่อยหรือพังผืดที่เกิดขึ้นที่กระพูดหรือฟันที่ไม่หาย
4. ความเปลี่ยนแปลงของผิว pigment ในช่องปาก เช่น สีของกระพืดหรือริมฝีปากที่เปลี่ยนเป็นสีขาวหรือขาว
5. ปัญหาในการพูดหรือกินอาหาร
6. ขดลวดที่ด้านข้างหรือใต้คอที่เจริญเติบโต
7. อาการเจ็บจี๊ด
```
### 👤 **Authors**
* Amornpan Phornchaicharoen ([email protected])
* Aekanun Thongtae ([email protected])
* Montita Somsoo ([email protected]
* Phongsatorn Somjai ([email protected])
* Jiranuwat Songpad ([email protected])
* Benchawan Wangphoomyai ([email protected]) |