--- library_name: transformers license: apache-2.0 base_model: cis-lmu/glot500-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: glot500-word-dropout-0.1-fr-ca results: [] --- # glot500-word-dropout-0.1-fr-ca This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8141 - Precision: 0.2514 - Recall: 0.1056 - F1: 0.1487 - Accuracy: 0.3548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.2926 | 1.0 | 625 | 1.9717 | 0.2099 | 0.0805 | 0.1164 | 0.3179 | | 1.9299 | 2.0 | 1250 | 1.8141 | 0.2514 | 0.1056 | 0.1487 | 0.3548 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0