Upload InstellaForCausalLM
Browse files- README.md +199 -0
- config.json +31 -0
- configuration_instella.py +167 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +406 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"InstellaForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_instella.InstellaConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_instella.InstellaForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 6912,
|
17 |
+
"max_position_embeddings": 32768,
|
18 |
+
"model_type": "instella",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 36,
|
21 |
+
"num_key_value_heads": 32,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 192144.46,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.47.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 50304
|
31 |
+
}
|
configuration_instella.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OLMo configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import AutoConfig, PretrainedConfig
|
6 |
+
|
7 |
+
class InstellaConfig(PretrainedConfig):
|
8 |
+
r"""
|
9 |
+
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
|
10 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
11 |
+
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 50304):
|
19 |
+
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`Olmo2Model`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
22 |
+
Dimension of the hidden representations.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
24 |
+
Dimension of the MLP representations.
|
25 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
26 |
+
Number of hidden layers in the Transformer decoder.
|
27 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
28 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
29 |
+
num_key_value_heads (`int`, *optional*):
|
30 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
31 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
32 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
33 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
34 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
35 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
36 |
+
`num_attention_heads`.
|
37 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
38 |
+
The non-linear activation function (function or string) in the decoder.
|
39 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
40 |
+
The maximum sequence length that this model might ever be used with.
|
41 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
42 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
43 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
45 |
+
relevant if `config.is_decoder=True`.
|
46 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
47 |
+
Padding token id.
|
48 |
+
bos_token_id (`int`, *optional*):
|
49 |
+
Beginning of stream token id.
|
50 |
+
eos_token_id (`int`, *optional*, defaults to 50279):
|
51 |
+
End of stream token id.
|
52 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
53 |
+
Whether to tie weight embeddings
|
54 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
55 |
+
The base period of the RoPE embeddings.
|
56 |
+
rope_scaling (`Dict`, *optional*):
|
57 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
58 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
59 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
60 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
61 |
+
these scaling strategies behave:
|
62 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
63 |
+
experimental feature, subject to breaking API changes in future versions.
|
64 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
65 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
66 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout ratio for the attention probabilities.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
|
71 |
+
```python
|
72 |
+
>>> from transformers import Olmo2Model, Olmo2Config
|
73 |
+
|
74 |
+
>>> # Initializing a Olmo2 7B style configuration
|
75 |
+
>>> configuration = Olmo2Config()
|
76 |
+
|
77 |
+
>>> # Initializing a model from the Olmo2 7B style configuration
|
78 |
+
>>> model = Olmo2Model(configuration)
|
79 |
+
|
80 |
+
>>> # Accessing the model configuration
|
81 |
+
>>> configuration = model.config
|
82 |
+
```
|
83 |
+
"""
|
84 |
+
|
85 |
+
model_type = "instella"
|
86 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
vocab_size=50304,
|
91 |
+
hidden_size=4096,
|
92 |
+
intermediate_size=11008,
|
93 |
+
num_hidden_layers=32,
|
94 |
+
num_attention_heads=32,
|
95 |
+
num_key_value_heads=None,
|
96 |
+
hidden_act="silu",
|
97 |
+
max_position_embeddings=2048,
|
98 |
+
initializer_range=0.02,
|
99 |
+
use_cache=True,
|
100 |
+
pad_token_id=1,
|
101 |
+
bos_token_id=None,
|
102 |
+
eos_token_id=50279,
|
103 |
+
tie_word_embeddings=False,
|
104 |
+
rope_theta=10000.0,
|
105 |
+
rope_scaling=None,
|
106 |
+
attention_bias=False,
|
107 |
+
attention_dropout=0.0,
|
108 |
+
rms_norm_eps=1e-5,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(
|
112 |
+
pad_token_id=pad_token_id,
|
113 |
+
bos_token_id=bos_token_id,
|
114 |
+
eos_token_id=eos_token_id,
|
115 |
+
tie_word_embeddings=tie_word_embeddings,
|
116 |
+
**kwargs,
|
117 |
+
)
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.max_position_embeddings = max_position_embeddings
|
120 |
+
self.hidden_size = hidden_size
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
|
125 |
+
# for backward compatibility
|
126 |
+
if num_key_value_heads is None:
|
127 |
+
num_key_value_heads = num_attention_heads
|
128 |
+
|
129 |
+
self.num_key_value_heads = num_key_value_heads
|
130 |
+
self.hidden_act = hidden_act
|
131 |
+
self.initializer_range = initializer_range
|
132 |
+
self.use_cache = use_cache
|
133 |
+
self.rope_theta = rope_theta
|
134 |
+
self.rope_scaling = rope_scaling
|
135 |
+
self._rope_scaling_validation()
|
136 |
+
self.attention_bias = attention_bias
|
137 |
+
self.attention_dropout = attention_dropout
|
138 |
+
|
139 |
+
self.rms_norm_eps = rms_norm_eps
|
140 |
+
|
141 |
+
def _rope_scaling_validation(self):
|
142 |
+
"""
|
143 |
+
Validate the `rope_scaling` configuration.
|
144 |
+
"""
|
145 |
+
if self.rope_scaling is None:
|
146 |
+
return
|
147 |
+
|
148 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
149 |
+
raise ValueError(
|
150 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
151 |
+
)
|
152 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
153 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
154 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
155 |
+
raise ValueError(
|
156 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
157 |
+
)
|
158 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
159 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
160 |
+
|
161 |
+
|
162 |
+
__all__ = ["InstellaConfig"]
|
163 |
+
|
164 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
165 |
+
# OLMo is integrated directly in transformers from v4.40.0 onwards, but the version in transformers
|
166 |
+
# may not support the newest architectures we create.
|
167 |
+
AutoConfig.register("instella", InstellaConfig)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.47.1"
|
7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3b3be7df469d873da436c5bd710d57d2183d474b69e91053605f5cc3818da5a
|
3 |
+
size 4980722864
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:871646a123235ed1d0a195429410112a88ce32c8d28d987adaf98236e2138b4a
|
3 |
+
size 1244675056
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6225351680
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.13.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.14.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.15.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.16.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.17.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.18.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.19.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.2.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.20.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.21.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.22.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.23.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.24.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.25.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.26.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.27.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.28.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.29.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.3.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.30.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
286 |
+
"model.layers.31.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
287 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.32.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.33.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.34.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.34.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.35.pre_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.35.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.4.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
348 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
350 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.5.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
356 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"model.layers.6.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.7.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.8.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.9.pre_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
405 |
+
}
|
406 |
+
}
|