File size: 4,976 Bytes
a104172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
license: apache-2.0
language:
- en
library_name: transformers
tags:
- advisory
- llm-enhancement
- crm
- salesforce
- decision-support
base_model: Qwen/Qwen3-4B
---

# ARC Advisor: Intelligent CRM Query Assistant for LLMs

<div align="center">

![Model Architecture](https://img.shields.io/badge/Architecture-Advisory%20AI-blue)
![Performance](https://img.shields.io/badge/LLM%20Improvement-X%25-green)
![License](https://img.shields.io/badge/License-Apache%202.0-yellow)

</div>

## πŸš€ Model Overview

ARC Advisor is a specialized advisory model designed to enhance Large Language Models' performance on CRM and Salesforce-related tasks. By providing intelligent guidance and query structuring suggestions, it helps LLMs achieve significantly better results on complex CRM operations.

### ✨ Key Benefits

- **X% Performance Boost**: Improves LLM accuracy on CRM tasks when used as an advisor
- **Intelligent Query Planning**: Provides structured approaches for complex Salesforce queries
- **Error Prevention**: Identifies potential pitfalls before query execution
- **Cost Efficient**: Small 4B model provides guidance to larger models, reducing overall compute costs

## 🎯 Use Cases

### 1. LLM Performance Enhancement
Boost your existing LLM's CRM capabilities by using ARC Advisor as a preprocessing step:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load ARC Advisor
advisor = AutoModelForCausalLM.from_pretrained("aman-jaglan/arc-advisor")
tokenizer = AutoTokenizer.from_pretrained("aman-jaglan/arc-advisor")

def enhance_llm_query(user_request):
    # Step 1: Get advisory guidance
    advisor_prompt = f"""As a CRM expert, provide guidance for this request:
    {user_request}
    
    Suggest the best approach, relevant objects, and query structure."""
    
    inputs = tokenizer(advisor_prompt, return_tensors="pt")
    advice = advisor.generate(**inputs, max_new_tokens=200)
    
    # Step 2: Use advice to enhance main LLM prompt
    enhanced_prompt = f"""
    Expert Guidance: {tokenizer.decode(advice[0])}
    
    Now execute: {user_request}
    """
    
    return enhanced_prompt
```

### 2. Query Optimization
Transform vague requests into structured CRM queries:

- **Input**: "Show me our best customers from last quarter"
- **ARC Advisor Output**: Structured approach with relevant Salesforce objects, filters, and aggregations
- **Result**: Precise SOQL query with proper date ranges and metrics

### 3. Multi-Step Reasoning
Guide LLMs through complex multi-object queries:

- Lead-to-Opportunity conversion analysis
- Cross-object relationship queries
- Time-based trend analysis
- Performance metric calculations

## πŸ› οΈ Integration Examples

### With OpenAI GPT Models
```python
import openai

# Get advisor guidance first
advice = get_arc_advisor_guidance(query)

# Enhanced GPT query
response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[
        {"role": "system", "content": f"CRM Expert Guidance: {advice}"},
        {"role": "user", "content": original_query}
    ]
)
```

### With Local LLMs (vLLM)
```python
# Deploy ARC Advisor on lightweight infrastructure
# Use output to guide larger local models
advisor_server = "http://localhost:8000/v1/chat/completions"
main_llm_server = "http://localhost:8001/v1/chat/completions"
```

## πŸ“Š Performance Impact

When used as an advisor:
- **Query Success Rate**: +X% improvement
- **Complex Query Handling**: +X% accuracy boost
- **Error Reduction**: X% fewer malformed queries
- **Time to Solution**: X% faster query resolution

## πŸ”§ Deployment

### Quick Start
```bash
# Using Transformers
from transformers import pipeline
advisor = pipeline("text-generation", model="aman-jaglan/arc-advisor")

# Using vLLM (recommended for production)
python -m vllm.entrypoints.openai.api_server \
    --model aman-jaglan/arc-advisor \
    --dtype bfloat16 \
    --max-model-len 4096
```

### Resource Requirements
- **GPU Memory**: 8GB (bfloat16)
- **CPU**: Supported with reduced speed
- **Optimal Batch Size**: 32-64 requests

## πŸ† Why ARC Advisor?

1. **Specialized Expertise**: Trained specifically for CRM/Salesforce domain
2. **Efficient Architecture**: Small model that enhances larger models
3. **Production Ready**: Optimized for low-latency advisory generation
4. **Cost Effective**: Reduce expensive LLM calls through better query planning

## πŸ“š Model Details

- **Architecture**: Qwen3-4B base with specialized fine-tuning
- **Context Length**: 4096 tokens
- **Output Format**: Structured advisory guidance
- **Language**: English

## 🀝 Community

Join our community to share your experiences and improvements:
- Report issues on the [model repository](https://huggingface.co/aman-jaglan/arc-advisor)
- Share your integration examples
- Contribute to best practices documentation

## πŸ“œ License

Apache 2.0 - Commercial use permitted with attribution

---

*Transform your LLM into a CRM expert with ARC Advisor*