--- base_model: google/pegasus-large tags: - generated_from_trainer model-index: - name: pegasus-large results: [] --- # pegasus-large This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.7374 | 0.0 | 500 | 3.7869 | | 0.6947 | 0.01 | 1000 | 0.7657 | | 0.7536 | 0.01 | 1500 | 0.7410 | | 0.6689 | 0.01 | 2000 | 0.7213 | | 0.662 | 0.02 | 2500 | 0.7120 | | 0.7537 | 0.02 | 3000 | 0.7015 | | 0.79 | 0.02 | 3500 | 0.6990 | | 0.6765 | 0.03 | 4000 | 0.6920 | | 0.7353 | 0.03 | 4500 | 0.6881 | | 0.633 | 0.03 | 5000 | 0.6858 | | 0.5015 | 0.04 | 5500 | 0.6828 | | 0.8227 | 0.04 | 6000 | 0.6806 | | 0.832 | 0.05 | 6500 | 0.6790 | | 0.587 | 0.05 | 7000 | 0.6743 | | 0.6121 | 0.05 | 7500 | 0.6726 | | 0.621 | 0.06 | 8000 | 0.6713 | | 0.5112 | 0.06 | 8500 | 0.6714 | | 0.6596 | 0.06 | 9000 | 0.6677 | | 0.7421 | 0.07 | 9500 | 0.6682 | | 0.5891 | 0.07 | 10000 | 0.6655 | | 0.596 | 0.07 | 10500 | 0.6660 | | 0.7527 | 0.08 | 11000 | 0.6639 | | 0.8404 | 0.08 | 11500 | 0.6620 | | 0.6896 | 0.08 | 12000 | 0.6624 | | 0.7312 | 0.09 | 12500 | 0.6598 | | 0.7061 | 0.09 | 13000 | 0.6591 | | 0.5983 | 0.09 | 13500 | 0.6594 | | 0.659 | 0.1 | 14000 | 0.6587 | | 0.8656 | 0.1 | 14500 | 0.6568 | | 0.7991 | 0.1 | 15000 | 0.6571 | | 0.6637 | 0.11 | 15500 | 0.6571 | | 0.5115 | 0.11 | 16000 | 0.6558 | | 0.6464 | 0.11 | 16500 | 0.6566 | | 0.6673 | 0.12 | 17000 | 0.6550 | | 0.6477 | 0.12 | 17500 | 0.6544 | | 0.8145 | 0.13 | 18000 | 0.6542 | | 0.6216 | 0.13 | 18500 | 0.6537 | | 0.943 | 0.13 | 19000 | 0.6539 | | 0.788 | 0.14 | 19500 | 0.6538 | | 0.5921 | 0.14 | 20000 | 0.6537 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1