Image Audio Alingment
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- Vaani/Img_Audio_Alignment/000000039769.jpg +3 -0
- Vaani/Img_Audio_Alignment/CLAP-Audio-Encoder.txt +292 -0
- Vaani/Img_Audio_Alignment/LoRA-CLAP-Audio-Encoder.txt +954 -0
- Vaani/Img_Audio_Alignment/_1_CLAP-Audio-Encoder.ipynb +0 -0
- Vaani/Img_Audio_Alignment/_2_Train.py +1495 -0
- Vaani/Img_Audio_Alignment/audio_embedding.npy +3 -0
- Vaani/Img_Audio_Alignment/audio_embedding_dismantled_msclap.npy +3 -0
- Vaani/Img_Audio_Alignment/audio_embedding_dismantled_msclap_untrained.npy +3 -0
- Vaani/SDFT/checkpoints/checkpoint.pth +1 -1
- Vaani/SDFT/samples/inference_epoch10.png +0 -0
- Vaani/SDFT/samples/inference_epoch9.png +0 -0
- Vaani/Vaani-Audio-Image-Hindi.csv +1 -0
- Vaani/VaaniLDM/ddpm_ckpt_epoch55.pt +3 -0
- Vaani/VaaniLDM/ddpm_ckpt_epoch56.pt +3 -0
- Vaani/VaaniLDM/ldmH_ckpt_epoch49.pt +3 -0
- Vaani/VaaniLDM/ldmH_ckpt_epoch50.pt +3 -0
- Vaani/VaaniLDM/samples/x0_0.png +2 -2
- Vaani/VaaniLDM/samples/x0_1.png +0 -0
- Vaani/VaaniLDM/samples/x0_10.png +0 -0
- Vaani/VaaniLDM/samples/x0_100.png +0 -0
- Vaani/VaaniLDM/samples/x0_101.png +0 -0
- Vaani/VaaniLDM/samples/x0_102.png +0 -0
- Vaani/VaaniLDM/samples/x0_103.png +0 -0
- Vaani/VaaniLDM/samples/x0_104.png +0 -0
- Vaani/VaaniLDM/samples/x0_105.png +0 -0
- Vaani/VaaniLDM/samples/x0_106.png +0 -0
- Vaani/VaaniLDM/samples/x0_107.png +0 -0
- Vaani/VaaniLDM/samples/x0_108.png +0 -0
- Vaani/VaaniLDM/samples/x0_109.png +0 -0
- Vaani/VaaniLDM/samples/x0_11.png +0 -0
- Vaani/VaaniLDM/samples/x0_110.png +0 -0
- Vaani/VaaniLDM/samples/x0_111.png +0 -0
- Vaani/VaaniLDM/samples/x0_112.png +0 -0
- Vaani/VaaniLDM/samples/x0_113.png +0 -0
- Vaani/VaaniLDM/samples/x0_114.png +0 -0
- Vaani/VaaniLDM/samples/x0_115.png +0 -0
- Vaani/VaaniLDM/samples/x0_116.png +0 -0
- Vaani/VaaniLDM/samples/x0_117.png +0 -0
- Vaani/VaaniLDM/samples/x0_118.png +0 -0
- Vaani/VaaniLDM/samples/x0_119.png +0 -0
- Vaani/VaaniLDM/samples/x0_12.png +0 -0
- Vaani/VaaniLDM/samples/x0_120.png +0 -0
- Vaani/VaaniLDM/samples/x0_121.png +0 -0
- Vaani/VaaniLDM/samples/x0_122.png +0 -0
- Vaani/VaaniLDM/samples/x0_123.png +0 -0
- Vaani/VaaniLDM/samples/x0_124.png +0 -0
- Vaani/VaaniLDM/samples/x0_125.png +0 -0
- Vaani/VaaniLDM/samples/x0_126.png +0 -0
- Vaani/VaaniLDM/samples/x0_127.png +0 -0
.gitattributes
CHANGED
@@ -137,3 +137,8 @@ Vaani/sampleJSON.json filter=lfs diff=lfs merge=lfs -text
|
|
137 |
tools/__pycache__/pynvml.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
138 |
Vaani/VaaniLDM/samplesH/x0_0.png filter=lfs diff=lfs merge=lfs -text
|
139 |
Vaani/SDFT/astronaut_horse_mars.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
137 |
tools/__pycache__/pynvml.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
138 |
Vaani/VaaniLDM/samplesH/x0_0.png filter=lfs diff=lfs merge=lfs -text
|
139 |
Vaani/SDFT/astronaut_horse_mars.png filter=lfs diff=lfs merge=lfs -text
|
140 |
+
Vaani/Img_Audio_Alignment/000000039769.jpg filter=lfs diff=lfs merge=lfs -text
|
141 |
+
Vaani/audio_urls[[:space:]]copy.txt filter=lfs diff=lfs merge=lfs -text
|
142 |
+
Vaani/imageBY.csv filter=lfs diff=lfs merge=lfs -text
|
143 |
+
Vaani/imageBY2.csv filter=lfs diff=lfs merge=lfs -text
|
144 |
+
Vaani/imageBY3.csv filter=lfs diff=lfs merge=lfs -text
|
Vaani/Img_Audio_Alignment/000000039769.jpg
ADDED
![]() |
Git LFS Details
|
Vaani/Img_Audio_Alignment/CLAP-Audio-Encoder.txt
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AudioEncoder(
|
2 |
+
(base): HTSATWrapper(
|
3 |
+
(htsat): HTSAT_Swin_Transformer(
|
4 |
+
(spectrogram_extractor): Spectrogram(
|
5 |
+
(stft): STFT(
|
6 |
+
(conv_real): Conv1d(1, 513, kernel_size=(1024,), stride=(320,), bias=False)
|
7 |
+
(conv_imag): Conv1d(1, 513, kernel_size=(1024,), stride=(320,), bias=False)
|
8 |
+
)
|
9 |
+
)
|
10 |
+
(logmel_extractor): LogmelFilterBank()
|
11 |
+
(spec_augmenter): SpecAugmentation(
|
12 |
+
(time_dropper): DropStripes()
|
13 |
+
(freq_dropper): DropStripes()
|
14 |
+
)
|
15 |
+
(bn0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
16 |
+
(patch_embed): PatchEmbed(
|
17 |
+
(proj): Conv2d(1, 96, kernel_size=(4, 4), stride=(4, 4))
|
18 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
19 |
+
)
|
20 |
+
(pos_drop): Dropout(p=0.0, inplace=False)
|
21 |
+
(layers): ModuleList(
|
22 |
+
(0): BasicLayer(
|
23 |
+
dim=96, input_resolution=(64, 64), depth=2
|
24 |
+
(blocks): ModuleList(
|
25 |
+
(0): SwinTransformerBlock(
|
26 |
+
dim=96, input_resolution=(64, 64), num_heads=4, window_size=8, shift_size=0, mlp_ratio=4.0
|
27 |
+
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
28 |
+
(attn): WindowAttention(
|
29 |
+
dim=96, window_size=(8, 8), num_heads=4
|
30 |
+
(qkv): Linear(in_features=96, out_features=288, bias=True)
|
31 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
32 |
+
(proj): Linear(in_features=96, out_features=96, bias=True)
|
33 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
34 |
+
(softmax): Softmax(dim=-1)
|
35 |
+
)
|
36 |
+
(drop_path): Identity()
|
37 |
+
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
38 |
+
(mlp): Mlp(
|
39 |
+
(fc1): Linear(in_features=96, out_features=384, bias=True)
|
40 |
+
(act): GELU(approximate='none')
|
41 |
+
(fc2): Linear(in_features=384, out_features=96, bias=True)
|
42 |
+
(drop): Dropout(p=0.0, inplace=False)
|
43 |
+
)
|
44 |
+
)
|
45 |
+
(1): SwinTransformerBlock(
|
46 |
+
dim=96, input_resolution=(64, 64), num_heads=4, window_size=8, shift_size=4, mlp_ratio=4.0
|
47 |
+
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(attn): WindowAttention(
|
49 |
+
dim=96, window_size=(8, 8), num_heads=4
|
50 |
+
(qkv): Linear(in_features=96, out_features=288, bias=True)
|
51 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
52 |
+
(proj): Linear(in_features=96, out_features=96, bias=True)
|
53 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
54 |
+
(softmax): Softmax(dim=-1)
|
55 |
+
)
|
56 |
+
(drop_path): DropPath()
|
57 |
+
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
58 |
+
(mlp): Mlp(
|
59 |
+
(fc1): Linear(in_features=96, out_features=384, bias=True)
|
60 |
+
(act): GELU(approximate='none')
|
61 |
+
(fc2): Linear(in_features=384, out_features=96, bias=True)
|
62 |
+
(drop): Dropout(p=0.0, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(downsample): PatchMerging(
|
67 |
+
input_resolution=(64, 64), dim=96
|
68 |
+
(reduction): Linear(in_features=384, out_features=192, bias=False)
|
69 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
70 |
+
)
|
71 |
+
)
|
72 |
+
(1): BasicLayer(
|
73 |
+
dim=192, input_resolution=(32, 32), depth=2
|
74 |
+
(blocks): ModuleList(
|
75 |
+
(0): SwinTransformerBlock(
|
76 |
+
dim=192, input_resolution=(32, 32), num_heads=8, window_size=8, shift_size=0, mlp_ratio=4.0
|
77 |
+
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
78 |
+
(attn): WindowAttention(
|
79 |
+
dim=192, window_size=(8, 8), num_heads=8
|
80 |
+
(qkv): Linear(in_features=192, out_features=576, bias=True)
|
81 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
82 |
+
(proj): Linear(in_features=192, out_features=192, bias=True)
|
83 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
84 |
+
(softmax): Softmax(dim=-1)
|
85 |
+
)
|
86 |
+
(drop_path): DropPath()
|
87 |
+
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
88 |
+
(mlp): Mlp(
|
89 |
+
(fc1): Linear(in_features=192, out_features=768, bias=True)
|
90 |
+
(act): GELU(approximate='none')
|
91 |
+
(fc2): Linear(in_features=768, out_features=192, bias=True)
|
92 |
+
(drop): Dropout(p=0.0, inplace=False)
|
93 |
+
)
|
94 |
+
)
|
95 |
+
(1): SwinTransformerBlock(
|
96 |
+
dim=192, input_resolution=(32, 32), num_heads=8, window_size=8, shift_size=4, mlp_ratio=4.0
|
97 |
+
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
98 |
+
(attn): WindowAttention(
|
99 |
+
dim=192, window_size=(8, 8), num_heads=8
|
100 |
+
(qkv): Linear(in_features=192, out_features=576, bias=True)
|
101 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
102 |
+
(proj): Linear(in_features=192, out_features=192, bias=True)
|
103 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
104 |
+
(softmax): Softmax(dim=-1)
|
105 |
+
)
|
106 |
+
(drop_path): DropPath()
|
107 |
+
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
108 |
+
(mlp): Mlp(
|
109 |
+
(fc1): Linear(in_features=192, out_features=768, bias=True)
|
110 |
+
(act): GELU(approximate='none')
|
111 |
+
(fc2): Linear(in_features=768, out_features=192, bias=True)
|
112 |
+
(drop): Dropout(p=0.0, inplace=False)
|
113 |
+
)
|
114 |
+
)
|
115 |
+
)
|
116 |
+
(downsample): PatchMerging(
|
117 |
+
input_resolution=(32, 32), dim=192
|
118 |
+
(reduction): Linear(in_features=768, out_features=384, bias=False)
|
119 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
120 |
+
)
|
121 |
+
)
|
122 |
+
(2): BasicLayer(
|
123 |
+
dim=384, input_resolution=(16, 16), depth=6
|
124 |
+
(blocks): ModuleList(
|
125 |
+
(0): SwinTransformerBlock(
|
126 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
127 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
128 |
+
(attn): WindowAttention(
|
129 |
+
dim=384, window_size=(8, 8), num_heads=16
|
130 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
131 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
132 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
133 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
134 |
+
(softmax): Softmax(dim=-1)
|
135 |
+
)
|
136 |
+
(drop_path): DropPath()
|
137 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
138 |
+
(mlp): Mlp(
|
139 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
140 |
+
(act): GELU(approximate='none')
|
141 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
142 |
+
(drop): Dropout(p=0.0, inplace=False)
|
143 |
+
)
|
144 |
+
)
|
145 |
+
(1): SwinTransformerBlock(
|
146 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
147 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
148 |
+
(attn): WindowAttention(
|
149 |
+
dim=384, window_size=(8, 8), num_heads=16
|
150 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
151 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
152 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
153 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
154 |
+
(softmax): Softmax(dim=-1)
|
155 |
+
)
|
156 |
+
(drop_path): DropPath()
|
157 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
158 |
+
(mlp): Mlp(
|
159 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
160 |
+
(act): GELU(approximate='none')
|
161 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
162 |
+
(drop): Dropout(p=0.0, inplace=False)
|
163 |
+
)
|
164 |
+
)
|
165 |
+
(2): SwinTransformerBlock(
|
166 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
167 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
168 |
+
(attn): WindowAttention(
|
169 |
+
dim=384, window_size=(8, 8), num_heads=16
|
170 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
171 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
172 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
173 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
174 |
+
(softmax): Softmax(dim=-1)
|
175 |
+
)
|
176 |
+
(drop_path): DropPath()
|
177 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
178 |
+
(mlp): Mlp(
|
179 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
180 |
+
(act): GELU(approximate='none')
|
181 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
182 |
+
(drop): Dropout(p=0.0, inplace=False)
|
183 |
+
)
|
184 |
+
)
|
185 |
+
(3): SwinTransformerBlock(
|
186 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
187 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
188 |
+
(attn): WindowAttention(
|
189 |
+
dim=384, window_size=(8, 8), num_heads=16
|
190 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
191 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
192 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
193 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
194 |
+
(softmax): Softmax(dim=-1)
|
195 |
+
)
|
196 |
+
(drop_path): DropPath()
|
197 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
198 |
+
(mlp): Mlp(
|
199 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
200 |
+
(act): GELU(approximate='none')
|
201 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
202 |
+
(drop): Dropout(p=0.0, inplace=False)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
(4): SwinTransformerBlock(
|
206 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
207 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
208 |
+
(attn): WindowAttention(
|
209 |
+
dim=384, window_size=(8, 8), num_heads=16
|
210 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
211 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
212 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
213 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
214 |
+
(softmax): Softmax(dim=-1)
|
215 |
+
)
|
216 |
+
(drop_path): DropPath()
|
217 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(mlp): Mlp(
|
219 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
220 |
+
(act): GELU(approximate='none')
|
221 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
222 |
+
(drop): Dropout(p=0.0, inplace=False)
|
223 |
+
)
|
224 |
+
)
|
225 |
+
(5): SwinTransformerBlock(
|
226 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
227 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
228 |
+
(attn): WindowAttention(
|
229 |
+
dim=384, window_size=(8, 8), num_heads=16
|
230 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
231 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
232 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
233 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
234 |
+
(softmax): Softmax(dim=-1)
|
235 |
+
)
|
236 |
+
(drop_path): DropPath()
|
237 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
238 |
+
(mlp): Mlp(
|
239 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
240 |
+
(act): GELU(approximate='none')
|
241 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
242 |
+
(drop): Dropout(p=0.0, inplace=False)
|
243 |
+
)
|
244 |
+
)
|
245 |
+
)
|
246 |
+
(downsample): PatchMerging(
|
247 |
+
input_resolution=(16, 16), dim=384
|
248 |
+
(reduction): Linear(in_features=1536, out_features=768, bias=False)
|
249 |
+
(norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
250 |
+
)
|
251 |
+
)
|
252 |
+
(3): BasicLayer(
|
253 |
+
dim=768, input_resolution=(8, 8), depth=2
|
254 |
+
(blocks): ModuleList(
|
255 |
+
(0-1): 2 x SwinTransformerBlock(
|
256 |
+
dim=768, input_resolution=(8, 8), num_heads=32, window_size=8, shift_size=0, mlp_ratio=4.0
|
257 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
258 |
+
(attn): WindowAttention(
|
259 |
+
dim=768, window_size=(8, 8), num_heads=32
|
260 |
+
(qkv): Linear(in_features=768, out_features=2304, bias=True)
|
261 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
262 |
+
(proj): Linear(in_features=768, out_features=768, bias=True)
|
263 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
264 |
+
(softmax): Softmax(dim=-1)
|
265 |
+
)
|
266 |
+
(drop_path): DropPath()
|
267 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
268 |
+
(mlp): Mlp(
|
269 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(act): GELU(approximate='none')
|
271 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
272 |
+
(drop): Dropout(p=0.0, inplace=False)
|
273 |
+
)
|
274 |
+
)
|
275 |
+
)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
279 |
+
(avgpool): AdaptiveAvgPool1d(output_size=1)
|
280 |
+
(maxpool): AdaptiveMaxPool1d(output_size=1)
|
281 |
+
(tscam_conv): Conv2d(768, 527, kernel_size=(2, 3), stride=(1, 1), padding=(0, 1))
|
282 |
+
(head): Linear(in_features=527, out_features=527, bias=True)
|
283 |
+
)
|
284 |
+
)
|
285 |
+
(projection): Projection(
|
286 |
+
(linear1): Linear(in_features=768, out_features=1024, bias=False)
|
287 |
+
(linear2): Linear(in_features=1024, out_features=1024, bias=False)
|
288 |
+
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
289 |
+
(drop): Dropout(p=0.5, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
Vaani/Img_Audio_Alignment/LoRA-CLAP-Audio-Encoder.txt
ADDED
@@ -0,0 +1,954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PeftModelForFeatureExtraction(
|
2 |
+
(base_model): LoraModel(
|
3 |
+
(model): AudioEncoder(
|
4 |
+
(base): HTSATWrapper(
|
5 |
+
(htsat): HTSAT_Swin_Transformer(
|
6 |
+
(spectrogram_extractor): Spectrogram(
|
7 |
+
(stft): STFT(
|
8 |
+
(conv_real): Conv1d(1, 513, kernel_size=(1024,), stride=(320,), bias=False)
|
9 |
+
(conv_imag): Conv1d(1, 513, kernel_size=(1024,), stride=(320,), bias=False)
|
10 |
+
)
|
11 |
+
)
|
12 |
+
(logmel_extractor): LogmelFilterBank()
|
13 |
+
(spec_augmenter): SpecAugmentation(
|
14 |
+
(time_dropper): DropStripes()
|
15 |
+
(freq_dropper): DropStripes()
|
16 |
+
)
|
17 |
+
(bn0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
18 |
+
(patch_embed): PatchEmbed(
|
19 |
+
(proj): lora.Conv2d(
|
20 |
+
(base_layer): Conv2d(1, 96, kernel_size=(4, 4), stride=(4, 4))
|
21 |
+
(lora_dropout): ModuleDict(
|
22 |
+
(default): Dropout(p=0.05, inplace=False)
|
23 |
+
)
|
24 |
+
(lora_A): ModuleDict(
|
25 |
+
(default): Conv2d(1, 8, kernel_size=(4, 4), stride=(4, 4), bias=False)
|
26 |
+
)
|
27 |
+
(lora_B): ModuleDict(
|
28 |
+
(default): Conv2d(8, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
29 |
+
)
|
30 |
+
(lora_embedding_A): ParameterDict()
|
31 |
+
(lora_embedding_B): ParameterDict()
|
32 |
+
(lora_magnitude_vector): ModuleDict()
|
33 |
+
)
|
34 |
+
(norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
35 |
+
)
|
36 |
+
(pos_drop): Dropout(p=0.0, inplace=False)
|
37 |
+
(layers): ModuleList(
|
38 |
+
(0): BasicLayer(
|
39 |
+
dim=96, input_resolution=(64, 64), depth=2
|
40 |
+
(blocks): ModuleList(
|
41 |
+
(0): SwinTransformerBlock(
|
42 |
+
dim=96, input_resolution=(64, 64), num_heads=4, window_size=8, shift_size=0, mlp_ratio=4.0
|
43 |
+
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
44 |
+
(attn): WindowAttention(
|
45 |
+
dim=96, window_size=(8, 8), num_heads=4
|
46 |
+
(qkv): lora.Linear(
|
47 |
+
(base_layer): Linear(in_features=96, out_features=288, bias=True)
|
48 |
+
(lora_dropout): ModuleDict(
|
49 |
+
(default): Dropout(p=0.05, inplace=False)
|
50 |
+
)
|
51 |
+
(lora_A): ModuleDict(
|
52 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
53 |
+
)
|
54 |
+
(lora_B): ModuleDict(
|
55 |
+
(default): Linear(in_features=8, out_features=288, bias=False)
|
56 |
+
)
|
57 |
+
(lora_embedding_A): ParameterDict()
|
58 |
+
(lora_embedding_B): ParameterDict()
|
59 |
+
(lora_magnitude_vector): ModuleDict()
|
60 |
+
)
|
61 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
62 |
+
(proj): lora.Linear(
|
63 |
+
(base_layer): Linear(in_features=96, out_features=96, bias=True)
|
64 |
+
(lora_dropout): ModuleDict(
|
65 |
+
(default): Dropout(p=0.05, inplace=False)
|
66 |
+
)
|
67 |
+
(lora_A): ModuleDict(
|
68 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
69 |
+
)
|
70 |
+
(lora_B): ModuleDict(
|
71 |
+
(default): Linear(in_features=8, out_features=96, bias=False)
|
72 |
+
)
|
73 |
+
(lora_embedding_A): ParameterDict()
|
74 |
+
(lora_embedding_B): ParameterDict()
|
75 |
+
(lora_magnitude_vector): ModuleDict()
|
76 |
+
)
|
77 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
78 |
+
(softmax): Softmax(dim=-1)
|
79 |
+
)
|
80 |
+
(drop_path): Identity()
|
81 |
+
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
82 |
+
(mlp): Mlp(
|
83 |
+
(fc1): lora.Linear(
|
84 |
+
(base_layer): Linear(in_features=96, out_features=384, bias=True)
|
85 |
+
(lora_dropout): ModuleDict(
|
86 |
+
(default): Dropout(p=0.05, inplace=False)
|
87 |
+
)
|
88 |
+
(lora_A): ModuleDict(
|
89 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
90 |
+
)
|
91 |
+
(lora_B): ModuleDict(
|
92 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
93 |
+
)
|
94 |
+
(lora_embedding_A): ParameterDict()
|
95 |
+
(lora_embedding_B): ParameterDict()
|
96 |
+
(lora_magnitude_vector): ModuleDict()
|
97 |
+
)
|
98 |
+
(act): GELU(approximate='none')
|
99 |
+
(fc2): lora.Linear(
|
100 |
+
(base_layer): Linear(in_features=384, out_features=96, bias=True)
|
101 |
+
(lora_dropout): ModuleDict(
|
102 |
+
(default): Dropout(p=0.05, inplace=False)
|
103 |
+
)
|
104 |
+
(lora_A): ModuleDict(
|
105 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
106 |
+
)
|
107 |
+
(lora_B): ModuleDict(
|
108 |
+
(default): Linear(in_features=8, out_features=96, bias=False)
|
109 |
+
)
|
110 |
+
(lora_embedding_A): ParameterDict()
|
111 |
+
(lora_embedding_B): ParameterDict()
|
112 |
+
(lora_magnitude_vector): ModuleDict()
|
113 |
+
)
|
114 |
+
(drop): Dropout(p=0.0, inplace=False)
|
115 |
+
)
|
116 |
+
)
|
117 |
+
(1): SwinTransformerBlock(
|
118 |
+
dim=96, input_resolution=(64, 64), num_heads=4, window_size=8, shift_size=4, mlp_ratio=4.0
|
119 |
+
(norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
120 |
+
(attn): WindowAttention(
|
121 |
+
dim=96, window_size=(8, 8), num_heads=4
|
122 |
+
(qkv): lora.Linear(
|
123 |
+
(base_layer): Linear(in_features=96, out_features=288, bias=True)
|
124 |
+
(lora_dropout): ModuleDict(
|
125 |
+
(default): Dropout(p=0.05, inplace=False)
|
126 |
+
)
|
127 |
+
(lora_A): ModuleDict(
|
128 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
129 |
+
)
|
130 |
+
(lora_B): ModuleDict(
|
131 |
+
(default): Linear(in_features=8, out_features=288, bias=False)
|
132 |
+
)
|
133 |
+
(lora_embedding_A): ParameterDict()
|
134 |
+
(lora_embedding_B): ParameterDict()
|
135 |
+
(lora_magnitude_vector): ModuleDict()
|
136 |
+
)
|
137 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
138 |
+
(proj): lora.Linear(
|
139 |
+
(base_layer): Linear(in_features=96, out_features=96, bias=True)
|
140 |
+
(lora_dropout): ModuleDict(
|
141 |
+
(default): Dropout(p=0.05, inplace=False)
|
142 |
+
)
|
143 |
+
(lora_A): ModuleDict(
|
144 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
145 |
+
)
|
146 |
+
(lora_B): ModuleDict(
|
147 |
+
(default): Linear(in_features=8, out_features=96, bias=False)
|
148 |
+
)
|
149 |
+
(lora_embedding_A): ParameterDict()
|
150 |
+
(lora_embedding_B): ParameterDict()
|
151 |
+
(lora_magnitude_vector): ModuleDict()
|
152 |
+
)
|
153 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
154 |
+
(softmax): Softmax(dim=-1)
|
155 |
+
)
|
156 |
+
(drop_path): DropPath()
|
157 |
+
(norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
|
158 |
+
(mlp): Mlp(
|
159 |
+
(fc1): lora.Linear(
|
160 |
+
(base_layer): Linear(in_features=96, out_features=384, bias=True)
|
161 |
+
(lora_dropout): ModuleDict(
|
162 |
+
(default): Dropout(p=0.05, inplace=False)
|
163 |
+
)
|
164 |
+
(lora_A): ModuleDict(
|
165 |
+
(default): Linear(in_features=96, out_features=8, bias=False)
|
166 |
+
)
|
167 |
+
(lora_B): ModuleDict(
|
168 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
169 |
+
)
|
170 |
+
(lora_embedding_A): ParameterDict()
|
171 |
+
(lora_embedding_B): ParameterDict()
|
172 |
+
(lora_magnitude_vector): ModuleDict()
|
173 |
+
)
|
174 |
+
(act): GELU(approximate='none')
|
175 |
+
(fc2): lora.Linear(
|
176 |
+
(base_layer): Linear(in_features=384, out_features=96, bias=True)
|
177 |
+
(lora_dropout): ModuleDict(
|
178 |
+
(default): Dropout(p=0.05, inplace=False)
|
179 |
+
)
|
180 |
+
(lora_A): ModuleDict(
|
181 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
182 |
+
)
|
183 |
+
(lora_B): ModuleDict(
|
184 |
+
(default): Linear(in_features=8, out_features=96, bias=False)
|
185 |
+
)
|
186 |
+
(lora_embedding_A): ParameterDict()
|
187 |
+
(lora_embedding_B): ParameterDict()
|
188 |
+
(lora_magnitude_vector): ModuleDict()
|
189 |
+
)
|
190 |
+
(drop): Dropout(p=0.0, inplace=False)
|
191 |
+
)
|
192 |
+
)
|
193 |
+
)
|
194 |
+
(downsample): PatchMerging(
|
195 |
+
input_resolution=(64, 64), dim=96
|
196 |
+
(reduction): Linear(in_features=384, out_features=192, bias=False)
|
197 |
+
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
198 |
+
)
|
199 |
+
)
|
200 |
+
(1): BasicLayer(
|
201 |
+
dim=192, input_resolution=(32, 32), depth=2
|
202 |
+
(blocks): ModuleList(
|
203 |
+
(0): SwinTransformerBlock(
|
204 |
+
dim=192, input_resolution=(32, 32), num_heads=8, window_size=8, shift_size=0, mlp_ratio=4.0
|
205 |
+
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
206 |
+
(attn): WindowAttention(
|
207 |
+
dim=192, window_size=(8, 8), num_heads=8
|
208 |
+
(qkv): lora.Linear(
|
209 |
+
(base_layer): Linear(in_features=192, out_features=576, bias=True)
|
210 |
+
(lora_dropout): ModuleDict(
|
211 |
+
(default): Dropout(p=0.05, inplace=False)
|
212 |
+
)
|
213 |
+
(lora_A): ModuleDict(
|
214 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
215 |
+
)
|
216 |
+
(lora_B): ModuleDict(
|
217 |
+
(default): Linear(in_features=8, out_features=576, bias=False)
|
218 |
+
)
|
219 |
+
(lora_embedding_A): ParameterDict()
|
220 |
+
(lora_embedding_B): ParameterDict()
|
221 |
+
(lora_magnitude_vector): ModuleDict()
|
222 |
+
)
|
223 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
224 |
+
(proj): lora.Linear(
|
225 |
+
(base_layer): Linear(in_features=192, out_features=192, bias=True)
|
226 |
+
(lora_dropout): ModuleDict(
|
227 |
+
(default): Dropout(p=0.05, inplace=False)
|
228 |
+
)
|
229 |
+
(lora_A): ModuleDict(
|
230 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
231 |
+
)
|
232 |
+
(lora_B): ModuleDict(
|
233 |
+
(default): Linear(in_features=8, out_features=192, bias=False)
|
234 |
+
)
|
235 |
+
(lora_embedding_A): ParameterDict()
|
236 |
+
(lora_embedding_B): ParameterDict()
|
237 |
+
(lora_magnitude_vector): ModuleDict()
|
238 |
+
)
|
239 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
240 |
+
(softmax): Softmax(dim=-1)
|
241 |
+
)
|
242 |
+
(drop_path): DropPath()
|
243 |
+
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
244 |
+
(mlp): Mlp(
|
245 |
+
(fc1): lora.Linear(
|
246 |
+
(base_layer): Linear(in_features=192, out_features=768, bias=True)
|
247 |
+
(lora_dropout): ModuleDict(
|
248 |
+
(default): Dropout(p=0.05, inplace=False)
|
249 |
+
)
|
250 |
+
(lora_A): ModuleDict(
|
251 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
252 |
+
)
|
253 |
+
(lora_B): ModuleDict(
|
254 |
+
(default): Linear(in_features=8, out_features=768, bias=False)
|
255 |
+
)
|
256 |
+
(lora_embedding_A): ParameterDict()
|
257 |
+
(lora_embedding_B): ParameterDict()
|
258 |
+
(lora_magnitude_vector): ModuleDict()
|
259 |
+
)
|
260 |
+
(act): GELU(approximate='none')
|
261 |
+
(fc2): lora.Linear(
|
262 |
+
(base_layer): Linear(in_features=768, out_features=192, bias=True)
|
263 |
+
(lora_dropout): ModuleDict(
|
264 |
+
(default): Dropout(p=0.05, inplace=False)
|
265 |
+
)
|
266 |
+
(lora_A): ModuleDict(
|
267 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
268 |
+
)
|
269 |
+
(lora_B): ModuleDict(
|
270 |
+
(default): Linear(in_features=8, out_features=192, bias=False)
|
271 |
+
)
|
272 |
+
(lora_embedding_A): ParameterDict()
|
273 |
+
(lora_embedding_B): ParameterDict()
|
274 |
+
(lora_magnitude_vector): ModuleDict()
|
275 |
+
)
|
276 |
+
(drop): Dropout(p=0.0, inplace=False)
|
277 |
+
)
|
278 |
+
)
|
279 |
+
(1): SwinTransformerBlock(
|
280 |
+
dim=192, input_resolution=(32, 32), num_heads=8, window_size=8, shift_size=4, mlp_ratio=4.0
|
281 |
+
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
282 |
+
(attn): WindowAttention(
|
283 |
+
dim=192, window_size=(8, 8), num_heads=8
|
284 |
+
(qkv): lora.Linear(
|
285 |
+
(base_layer): Linear(in_features=192, out_features=576, bias=True)
|
286 |
+
(lora_dropout): ModuleDict(
|
287 |
+
(default): Dropout(p=0.05, inplace=False)
|
288 |
+
)
|
289 |
+
(lora_A): ModuleDict(
|
290 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
291 |
+
)
|
292 |
+
(lora_B): ModuleDict(
|
293 |
+
(default): Linear(in_features=8, out_features=576, bias=False)
|
294 |
+
)
|
295 |
+
(lora_embedding_A): ParameterDict()
|
296 |
+
(lora_embedding_B): ParameterDict()
|
297 |
+
(lora_magnitude_vector): ModuleDict()
|
298 |
+
)
|
299 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
300 |
+
(proj): lora.Linear(
|
301 |
+
(base_layer): Linear(in_features=192, out_features=192, bias=True)
|
302 |
+
(lora_dropout): ModuleDict(
|
303 |
+
(default): Dropout(p=0.05, inplace=False)
|
304 |
+
)
|
305 |
+
(lora_A): ModuleDict(
|
306 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
307 |
+
)
|
308 |
+
(lora_B): ModuleDict(
|
309 |
+
(default): Linear(in_features=8, out_features=192, bias=False)
|
310 |
+
)
|
311 |
+
(lora_embedding_A): ParameterDict()
|
312 |
+
(lora_embedding_B): ParameterDict()
|
313 |
+
(lora_magnitude_vector): ModuleDict()
|
314 |
+
)
|
315 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
316 |
+
(softmax): Softmax(dim=-1)
|
317 |
+
)
|
318 |
+
(drop_path): DropPath()
|
319 |
+
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
320 |
+
(mlp): Mlp(
|
321 |
+
(fc1): lora.Linear(
|
322 |
+
(base_layer): Linear(in_features=192, out_features=768, bias=True)
|
323 |
+
(lora_dropout): ModuleDict(
|
324 |
+
(default): Dropout(p=0.05, inplace=False)
|
325 |
+
)
|
326 |
+
(lora_A): ModuleDict(
|
327 |
+
(default): Linear(in_features=192, out_features=8, bias=False)
|
328 |
+
)
|
329 |
+
(lora_B): ModuleDict(
|
330 |
+
(default): Linear(in_features=8, out_features=768, bias=False)
|
331 |
+
)
|
332 |
+
(lora_embedding_A): ParameterDict()
|
333 |
+
(lora_embedding_B): ParameterDict()
|
334 |
+
(lora_magnitude_vector): ModuleDict()
|
335 |
+
)
|
336 |
+
(act): GELU(approximate='none')
|
337 |
+
(fc2): lora.Linear(
|
338 |
+
(base_layer): Linear(in_features=768, out_features=192, bias=True)
|
339 |
+
(lora_dropout): ModuleDict(
|
340 |
+
(default): Dropout(p=0.05, inplace=False)
|
341 |
+
)
|
342 |
+
(lora_A): ModuleDict(
|
343 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
344 |
+
)
|
345 |
+
(lora_B): ModuleDict(
|
346 |
+
(default): Linear(in_features=8, out_features=192, bias=False)
|
347 |
+
)
|
348 |
+
(lora_embedding_A): ParameterDict()
|
349 |
+
(lora_embedding_B): ParameterDict()
|
350 |
+
(lora_magnitude_vector): ModuleDict()
|
351 |
+
)
|
352 |
+
(drop): Dropout(p=0.0, inplace=False)
|
353 |
+
)
|
354 |
+
)
|
355 |
+
)
|
356 |
+
(downsample): PatchMerging(
|
357 |
+
input_resolution=(32, 32), dim=192
|
358 |
+
(reduction): Linear(in_features=768, out_features=384, bias=False)
|
359 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
360 |
+
)
|
361 |
+
)
|
362 |
+
(2): BasicLayer(
|
363 |
+
dim=384, input_resolution=(16, 16), depth=6
|
364 |
+
(blocks): ModuleList(
|
365 |
+
(0): SwinTransformerBlock(
|
366 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
367 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
368 |
+
(attn): WindowAttention(
|
369 |
+
dim=384, window_size=(8, 8), num_heads=16
|
370 |
+
(qkv): lora.Linear(
|
371 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
372 |
+
(lora_dropout): ModuleDict(
|
373 |
+
(default): Dropout(p=0.05, inplace=False)
|
374 |
+
)
|
375 |
+
(lora_A): ModuleDict(
|
376 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
377 |
+
)
|
378 |
+
(lora_B): ModuleDict(
|
379 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
380 |
+
)
|
381 |
+
(lora_embedding_A): ParameterDict()
|
382 |
+
(lora_embedding_B): ParameterDict()
|
383 |
+
(lora_magnitude_vector): ModuleDict()
|
384 |
+
)
|
385 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
386 |
+
(proj): lora.Linear(
|
387 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
388 |
+
(lora_dropout): ModuleDict(
|
389 |
+
(default): Dropout(p=0.05, inplace=False)
|
390 |
+
)
|
391 |
+
(lora_A): ModuleDict(
|
392 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
393 |
+
)
|
394 |
+
(lora_B): ModuleDict(
|
395 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
396 |
+
)
|
397 |
+
(lora_embedding_A): ParameterDict()
|
398 |
+
(lora_embedding_B): ParameterDict()
|
399 |
+
(lora_magnitude_vector): ModuleDict()
|
400 |
+
)
|
401 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
402 |
+
(softmax): Softmax(dim=-1)
|
403 |
+
)
|
404 |
+
(drop_path): DropPath()
|
405 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
406 |
+
(mlp): Mlp(
|
407 |
+
(fc1): lora.Linear(
|
408 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
409 |
+
(lora_dropout): ModuleDict(
|
410 |
+
(default): Dropout(p=0.05, inplace=False)
|
411 |
+
)
|
412 |
+
(lora_A): ModuleDict(
|
413 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
414 |
+
)
|
415 |
+
(lora_B): ModuleDict(
|
416 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
417 |
+
)
|
418 |
+
(lora_embedding_A): ParameterDict()
|
419 |
+
(lora_embedding_B): ParameterDict()
|
420 |
+
(lora_magnitude_vector): ModuleDict()
|
421 |
+
)
|
422 |
+
(act): GELU(approximate='none')
|
423 |
+
(fc2): lora.Linear(
|
424 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
425 |
+
(lora_dropout): ModuleDict(
|
426 |
+
(default): Dropout(p=0.05, inplace=False)
|
427 |
+
)
|
428 |
+
(lora_A): ModuleDict(
|
429 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
430 |
+
)
|
431 |
+
(lora_B): ModuleDict(
|
432 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
433 |
+
)
|
434 |
+
(lora_embedding_A): ParameterDict()
|
435 |
+
(lora_embedding_B): ParameterDict()
|
436 |
+
(lora_magnitude_vector): ModuleDict()
|
437 |
+
)
|
438 |
+
(drop): Dropout(p=0.0, inplace=False)
|
439 |
+
)
|
440 |
+
)
|
441 |
+
(1): SwinTransformerBlock(
|
442 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
443 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
444 |
+
(attn): WindowAttention(
|
445 |
+
dim=384, window_size=(8, 8), num_heads=16
|
446 |
+
(qkv): lora.Linear(
|
447 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
448 |
+
(lora_dropout): ModuleDict(
|
449 |
+
(default): Dropout(p=0.05, inplace=False)
|
450 |
+
)
|
451 |
+
(lora_A): ModuleDict(
|
452 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
453 |
+
)
|
454 |
+
(lora_B): ModuleDict(
|
455 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
456 |
+
)
|
457 |
+
(lora_embedding_A): ParameterDict()
|
458 |
+
(lora_embedding_B): ParameterDict()
|
459 |
+
(lora_magnitude_vector): ModuleDict()
|
460 |
+
)
|
461 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
462 |
+
(proj): lora.Linear(
|
463 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
464 |
+
(lora_dropout): ModuleDict(
|
465 |
+
(default): Dropout(p=0.05, inplace=False)
|
466 |
+
)
|
467 |
+
(lora_A): ModuleDict(
|
468 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
469 |
+
)
|
470 |
+
(lora_B): ModuleDict(
|
471 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
472 |
+
)
|
473 |
+
(lora_embedding_A): ParameterDict()
|
474 |
+
(lora_embedding_B): ParameterDict()
|
475 |
+
(lora_magnitude_vector): ModuleDict()
|
476 |
+
)
|
477 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
478 |
+
(softmax): Softmax(dim=-1)
|
479 |
+
)
|
480 |
+
(drop_path): DropPath()
|
481 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
482 |
+
(mlp): Mlp(
|
483 |
+
(fc1): lora.Linear(
|
484 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
485 |
+
(lora_dropout): ModuleDict(
|
486 |
+
(default): Dropout(p=0.05, inplace=False)
|
487 |
+
)
|
488 |
+
(lora_A): ModuleDict(
|
489 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
490 |
+
)
|
491 |
+
(lora_B): ModuleDict(
|
492 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
493 |
+
)
|
494 |
+
(lora_embedding_A): ParameterDict()
|
495 |
+
(lora_embedding_B): ParameterDict()
|
496 |
+
(lora_magnitude_vector): ModuleDict()
|
497 |
+
)
|
498 |
+
(act): GELU(approximate='none')
|
499 |
+
(fc2): lora.Linear(
|
500 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
501 |
+
(lora_dropout): ModuleDict(
|
502 |
+
(default): Dropout(p=0.05, inplace=False)
|
503 |
+
)
|
504 |
+
(lora_A): ModuleDict(
|
505 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
506 |
+
)
|
507 |
+
(lora_B): ModuleDict(
|
508 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
509 |
+
)
|
510 |
+
(lora_embedding_A): ParameterDict()
|
511 |
+
(lora_embedding_B): ParameterDict()
|
512 |
+
(lora_magnitude_vector): ModuleDict()
|
513 |
+
)
|
514 |
+
(drop): Dropout(p=0.0, inplace=False)
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(2): SwinTransformerBlock(
|
518 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
519 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
520 |
+
(attn): WindowAttention(
|
521 |
+
dim=384, window_size=(8, 8), num_heads=16
|
522 |
+
(qkv): lora.Linear(
|
523 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
524 |
+
(lora_dropout): ModuleDict(
|
525 |
+
(default): Dropout(p=0.05, inplace=False)
|
526 |
+
)
|
527 |
+
(lora_A): ModuleDict(
|
528 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
529 |
+
)
|
530 |
+
(lora_B): ModuleDict(
|
531 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
532 |
+
)
|
533 |
+
(lora_embedding_A): ParameterDict()
|
534 |
+
(lora_embedding_B): ParameterDict()
|
535 |
+
(lora_magnitude_vector): ModuleDict()
|
536 |
+
)
|
537 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
538 |
+
(proj): lora.Linear(
|
539 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
540 |
+
(lora_dropout): ModuleDict(
|
541 |
+
(default): Dropout(p=0.05, inplace=False)
|
542 |
+
)
|
543 |
+
(lora_A): ModuleDict(
|
544 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
545 |
+
)
|
546 |
+
(lora_B): ModuleDict(
|
547 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
548 |
+
)
|
549 |
+
(lora_embedding_A): ParameterDict()
|
550 |
+
(lora_embedding_B): ParameterDict()
|
551 |
+
(lora_magnitude_vector): ModuleDict()
|
552 |
+
)
|
553 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
554 |
+
(softmax): Softmax(dim=-1)
|
555 |
+
)
|
556 |
+
(drop_path): DropPath()
|
557 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
558 |
+
(mlp): Mlp(
|
559 |
+
(fc1): lora.Linear(
|
560 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
561 |
+
(lora_dropout): ModuleDict(
|
562 |
+
(default): Dropout(p=0.05, inplace=False)
|
563 |
+
)
|
564 |
+
(lora_A): ModuleDict(
|
565 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
566 |
+
)
|
567 |
+
(lora_B): ModuleDict(
|
568 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
569 |
+
)
|
570 |
+
(lora_embedding_A): ParameterDict()
|
571 |
+
(lora_embedding_B): ParameterDict()
|
572 |
+
(lora_magnitude_vector): ModuleDict()
|
573 |
+
)
|
574 |
+
(act): GELU(approximate='none')
|
575 |
+
(fc2): lora.Linear(
|
576 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
577 |
+
(lora_dropout): ModuleDict(
|
578 |
+
(default): Dropout(p=0.05, inplace=False)
|
579 |
+
)
|
580 |
+
(lora_A): ModuleDict(
|
581 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
582 |
+
)
|
583 |
+
(lora_B): ModuleDict(
|
584 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
585 |
+
)
|
586 |
+
(lora_embedding_A): ParameterDict()
|
587 |
+
(lora_embedding_B): ParameterDict()
|
588 |
+
(lora_magnitude_vector): ModuleDict()
|
589 |
+
)
|
590 |
+
(drop): Dropout(p=0.0, inplace=False)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(3): SwinTransformerBlock(
|
594 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
595 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
596 |
+
(attn): WindowAttention(
|
597 |
+
dim=384, window_size=(8, 8), num_heads=16
|
598 |
+
(qkv): lora.Linear(
|
599 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
600 |
+
(lora_dropout): ModuleDict(
|
601 |
+
(default): Dropout(p=0.05, inplace=False)
|
602 |
+
)
|
603 |
+
(lora_A): ModuleDict(
|
604 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
605 |
+
)
|
606 |
+
(lora_B): ModuleDict(
|
607 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
608 |
+
)
|
609 |
+
(lora_embedding_A): ParameterDict()
|
610 |
+
(lora_embedding_B): ParameterDict()
|
611 |
+
(lora_magnitude_vector): ModuleDict()
|
612 |
+
)
|
613 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
614 |
+
(proj): lora.Linear(
|
615 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
616 |
+
(lora_dropout): ModuleDict(
|
617 |
+
(default): Dropout(p=0.05, inplace=False)
|
618 |
+
)
|
619 |
+
(lora_A): ModuleDict(
|
620 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
621 |
+
)
|
622 |
+
(lora_B): ModuleDict(
|
623 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
624 |
+
)
|
625 |
+
(lora_embedding_A): ParameterDict()
|
626 |
+
(lora_embedding_B): ParameterDict()
|
627 |
+
(lora_magnitude_vector): ModuleDict()
|
628 |
+
)
|
629 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
630 |
+
(softmax): Softmax(dim=-1)
|
631 |
+
)
|
632 |
+
(drop_path): DropPath()
|
633 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
634 |
+
(mlp): Mlp(
|
635 |
+
(fc1): lora.Linear(
|
636 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
637 |
+
(lora_dropout): ModuleDict(
|
638 |
+
(default): Dropout(p=0.05, inplace=False)
|
639 |
+
)
|
640 |
+
(lora_A): ModuleDict(
|
641 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
642 |
+
)
|
643 |
+
(lora_B): ModuleDict(
|
644 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
645 |
+
)
|
646 |
+
(lora_embedding_A): ParameterDict()
|
647 |
+
(lora_embedding_B): ParameterDict()
|
648 |
+
(lora_magnitude_vector): ModuleDict()
|
649 |
+
)
|
650 |
+
(act): GELU(approximate='none')
|
651 |
+
(fc2): lora.Linear(
|
652 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
653 |
+
(lora_dropout): ModuleDict(
|
654 |
+
(default): Dropout(p=0.05, inplace=False)
|
655 |
+
)
|
656 |
+
(lora_A): ModuleDict(
|
657 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
658 |
+
)
|
659 |
+
(lora_B): ModuleDict(
|
660 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
661 |
+
)
|
662 |
+
(lora_embedding_A): ParameterDict()
|
663 |
+
(lora_embedding_B): ParameterDict()
|
664 |
+
(lora_magnitude_vector): ModuleDict()
|
665 |
+
)
|
666 |
+
(drop): Dropout(p=0.0, inplace=False)
|
667 |
+
)
|
668 |
+
)
|
669 |
+
(4): SwinTransformerBlock(
|
670 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=0, mlp_ratio=4.0
|
671 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
672 |
+
(attn): WindowAttention(
|
673 |
+
dim=384, window_size=(8, 8), num_heads=16
|
674 |
+
(qkv): lora.Linear(
|
675 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
676 |
+
(lora_dropout): ModuleDict(
|
677 |
+
(default): Dropout(p=0.05, inplace=False)
|
678 |
+
)
|
679 |
+
(lora_A): ModuleDict(
|
680 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
681 |
+
)
|
682 |
+
(lora_B): ModuleDict(
|
683 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
684 |
+
)
|
685 |
+
(lora_embedding_A): ParameterDict()
|
686 |
+
(lora_embedding_B): ParameterDict()
|
687 |
+
(lora_magnitude_vector): ModuleDict()
|
688 |
+
)
|
689 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
690 |
+
(proj): lora.Linear(
|
691 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
692 |
+
(lora_dropout): ModuleDict(
|
693 |
+
(default): Dropout(p=0.05, inplace=False)
|
694 |
+
)
|
695 |
+
(lora_A): ModuleDict(
|
696 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
697 |
+
)
|
698 |
+
(lora_B): ModuleDict(
|
699 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
700 |
+
)
|
701 |
+
(lora_embedding_A): ParameterDict()
|
702 |
+
(lora_embedding_B): ParameterDict()
|
703 |
+
(lora_magnitude_vector): ModuleDict()
|
704 |
+
)
|
705 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
706 |
+
(softmax): Softmax(dim=-1)
|
707 |
+
)
|
708 |
+
(drop_path): DropPath()
|
709 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
710 |
+
(mlp): Mlp(
|
711 |
+
(fc1): lora.Linear(
|
712 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
713 |
+
(lora_dropout): ModuleDict(
|
714 |
+
(default): Dropout(p=0.05, inplace=False)
|
715 |
+
)
|
716 |
+
(lora_A): ModuleDict(
|
717 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
718 |
+
)
|
719 |
+
(lora_B): ModuleDict(
|
720 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
721 |
+
)
|
722 |
+
(lora_embedding_A): ParameterDict()
|
723 |
+
(lora_embedding_B): ParameterDict()
|
724 |
+
(lora_magnitude_vector): ModuleDict()
|
725 |
+
)
|
726 |
+
(act): GELU(approximate='none')
|
727 |
+
(fc2): lora.Linear(
|
728 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
729 |
+
(lora_dropout): ModuleDict(
|
730 |
+
(default): Dropout(p=0.05, inplace=False)
|
731 |
+
)
|
732 |
+
(lora_A): ModuleDict(
|
733 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
734 |
+
)
|
735 |
+
(lora_B): ModuleDict(
|
736 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
737 |
+
)
|
738 |
+
(lora_embedding_A): ParameterDict()
|
739 |
+
(lora_embedding_B): ParameterDict()
|
740 |
+
(lora_magnitude_vector): ModuleDict()
|
741 |
+
)
|
742 |
+
(drop): Dropout(p=0.0, inplace=False)
|
743 |
+
)
|
744 |
+
)
|
745 |
+
(5): SwinTransformerBlock(
|
746 |
+
dim=384, input_resolution=(16, 16), num_heads=16, window_size=8, shift_size=4, mlp_ratio=4.0
|
747 |
+
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
748 |
+
(attn): WindowAttention(
|
749 |
+
dim=384, window_size=(8, 8), num_heads=16
|
750 |
+
(qkv): lora.Linear(
|
751 |
+
(base_layer): Linear(in_features=384, out_features=1152, bias=True)
|
752 |
+
(lora_dropout): ModuleDict(
|
753 |
+
(default): Dropout(p=0.05, inplace=False)
|
754 |
+
)
|
755 |
+
(lora_A): ModuleDict(
|
756 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
757 |
+
)
|
758 |
+
(lora_B): ModuleDict(
|
759 |
+
(default): Linear(in_features=8, out_features=1152, bias=False)
|
760 |
+
)
|
761 |
+
(lora_embedding_A): ParameterDict()
|
762 |
+
(lora_embedding_B): ParameterDict()
|
763 |
+
(lora_magnitude_vector): ModuleDict()
|
764 |
+
)
|
765 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
766 |
+
(proj): lora.Linear(
|
767 |
+
(base_layer): Linear(in_features=384, out_features=384, bias=True)
|
768 |
+
(lora_dropout): ModuleDict(
|
769 |
+
(default): Dropout(p=0.05, inplace=False)
|
770 |
+
)
|
771 |
+
(lora_A): ModuleDict(
|
772 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
773 |
+
)
|
774 |
+
(lora_B): ModuleDict(
|
775 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
776 |
+
)
|
777 |
+
(lora_embedding_A): ParameterDict()
|
778 |
+
(lora_embedding_B): ParameterDict()
|
779 |
+
(lora_magnitude_vector): ModuleDict()
|
780 |
+
)
|
781 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
782 |
+
(softmax): Softmax(dim=-1)
|
783 |
+
)
|
784 |
+
(drop_path): DropPath()
|
785 |
+
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
|
786 |
+
(mlp): Mlp(
|
787 |
+
(fc1): lora.Linear(
|
788 |
+
(base_layer): Linear(in_features=384, out_features=1536, bias=True)
|
789 |
+
(lora_dropout): ModuleDict(
|
790 |
+
(default): Dropout(p=0.05, inplace=False)
|
791 |
+
)
|
792 |
+
(lora_A): ModuleDict(
|
793 |
+
(default): Linear(in_features=384, out_features=8, bias=False)
|
794 |
+
)
|
795 |
+
(lora_B): ModuleDict(
|
796 |
+
(default): Linear(in_features=8, out_features=1536, bias=False)
|
797 |
+
)
|
798 |
+
(lora_embedding_A): ParameterDict()
|
799 |
+
(lora_embedding_B): ParameterDict()
|
800 |
+
(lora_magnitude_vector): ModuleDict()
|
801 |
+
)
|
802 |
+
(act): GELU(approximate='none')
|
803 |
+
(fc2): lora.Linear(
|
804 |
+
(base_layer): Linear(in_features=1536, out_features=384, bias=True)
|
805 |
+
(lora_dropout): ModuleDict(
|
806 |
+
(default): Dropout(p=0.05, inplace=False)
|
807 |
+
)
|
808 |
+
(lora_A): ModuleDict(
|
809 |
+
(default): Linear(in_features=1536, out_features=8, bias=False)
|
810 |
+
)
|
811 |
+
(lora_B): ModuleDict(
|
812 |
+
(default): Linear(in_features=8, out_features=384, bias=False)
|
813 |
+
)
|
814 |
+
(lora_embedding_A): ParameterDict()
|
815 |
+
(lora_embedding_B): ParameterDict()
|
816 |
+
(lora_magnitude_vector): ModuleDict()
|
817 |
+
)
|
818 |
+
(drop): Dropout(p=0.0, inplace=False)
|
819 |
+
)
|
820 |
+
)
|
821 |
+
)
|
822 |
+
(downsample): PatchMerging(
|
823 |
+
input_resolution=(16, 16), dim=384
|
824 |
+
(reduction): Linear(in_features=1536, out_features=768, bias=False)
|
825 |
+
(norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
|
826 |
+
)
|
827 |
+
)
|
828 |
+
(3): BasicLayer(
|
829 |
+
dim=768, input_resolution=(8, 8), depth=2
|
830 |
+
(blocks): ModuleList(
|
831 |
+
(0-1): 2 x SwinTransformerBlock(
|
832 |
+
dim=768, input_resolution=(8, 8), num_heads=32, window_size=8, shift_size=0, mlp_ratio=4.0
|
833 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
834 |
+
(attn): WindowAttention(
|
835 |
+
dim=768, window_size=(8, 8), num_heads=32
|
836 |
+
(qkv): lora.Linear(
|
837 |
+
(base_layer): Linear(in_features=768, out_features=2304, bias=True)
|
838 |
+
(lora_dropout): ModuleDict(
|
839 |
+
(default): Dropout(p=0.05, inplace=False)
|
840 |
+
)
|
841 |
+
(lora_A): ModuleDict(
|
842 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
843 |
+
)
|
844 |
+
(lora_B): ModuleDict(
|
845 |
+
(default): Linear(in_features=8, out_features=2304, bias=False)
|
846 |
+
)
|
847 |
+
(lora_embedding_A): ParameterDict()
|
848 |
+
(lora_embedding_B): ParameterDict()
|
849 |
+
(lora_magnitude_vector): ModuleDict()
|
850 |
+
)
|
851 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
852 |
+
(proj): lora.Linear(
|
853 |
+
(base_layer): Linear(in_features=768, out_features=768, bias=True)
|
854 |
+
(lora_dropout): ModuleDict(
|
855 |
+
(default): Dropout(p=0.05, inplace=False)
|
856 |
+
)
|
857 |
+
(lora_A): ModuleDict(
|
858 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
859 |
+
)
|
860 |
+
(lora_B): ModuleDict(
|
861 |
+
(default): Linear(in_features=8, out_features=768, bias=False)
|
862 |
+
)
|
863 |
+
(lora_embedding_A): ParameterDict()
|
864 |
+
(lora_embedding_B): ParameterDict()
|
865 |
+
(lora_magnitude_vector): ModuleDict()
|
866 |
+
)
|
867 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
868 |
+
(softmax): Softmax(dim=-1)
|
869 |
+
)
|
870 |
+
(drop_path): DropPath()
|
871 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
872 |
+
(mlp): Mlp(
|
873 |
+
(fc1): lora.Linear(
|
874 |
+
(base_layer): Linear(in_features=768, out_features=3072, bias=True)
|
875 |
+
(lora_dropout): ModuleDict(
|
876 |
+
(default): Dropout(p=0.05, inplace=False)
|
877 |
+
)
|
878 |
+
(lora_A): ModuleDict(
|
879 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
880 |
+
)
|
881 |
+
(lora_B): ModuleDict(
|
882 |
+
(default): Linear(in_features=8, out_features=3072, bias=False)
|
883 |
+
)
|
884 |
+
(lora_embedding_A): ParameterDict()
|
885 |
+
(lora_embedding_B): ParameterDict()
|
886 |
+
(lora_magnitude_vector): ModuleDict()
|
887 |
+
)
|
888 |
+
(act): GELU(approximate='none')
|
889 |
+
(fc2): lora.Linear(
|
890 |
+
(base_layer): Linear(in_features=3072, out_features=768, bias=True)
|
891 |
+
(lora_dropout): ModuleDict(
|
892 |
+
(default): Dropout(p=0.05, inplace=False)
|
893 |
+
)
|
894 |
+
(lora_A): ModuleDict(
|
895 |
+
(default): Linear(in_features=3072, out_features=8, bias=False)
|
896 |
+
)
|
897 |
+
(lora_B): ModuleDict(
|
898 |
+
(default): Linear(in_features=8, out_features=768, bias=False)
|
899 |
+
)
|
900 |
+
(lora_embedding_A): ParameterDict()
|
901 |
+
(lora_embedding_B): ParameterDict()
|
902 |
+
(lora_magnitude_vector): ModuleDict()
|
903 |
+
)
|
904 |
+
(drop): Dropout(p=0.0, inplace=False)
|
905 |
+
)
|
906 |
+
)
|
907 |
+
)
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
911 |
+
(avgpool): AdaptiveAvgPool1d(output_size=1)
|
912 |
+
(maxpool): AdaptiveMaxPool1d(output_size=1)
|
913 |
+
(tscam_conv): Conv2d(768, 527, kernel_size=(2, 3), stride=(1, 1), padding=(0, 1))
|
914 |
+
(head): Linear(in_features=527, out_features=527, bias=True)
|
915 |
+
)
|
916 |
+
)
|
917 |
+
(projection): Projection(
|
918 |
+
(linear1): lora.Linear(
|
919 |
+
(base_layer): Linear(in_features=768, out_features=1024, bias=False)
|
920 |
+
(lora_dropout): ModuleDict(
|
921 |
+
(default): Dropout(p=0.05, inplace=False)
|
922 |
+
)
|
923 |
+
(lora_A): ModuleDict(
|
924 |
+
(default): Linear(in_features=768, out_features=8, bias=False)
|
925 |
+
)
|
926 |
+
(lora_B): ModuleDict(
|
927 |
+
(default): Linear(in_features=8, out_features=1024, bias=False)
|
928 |
+
)
|
929 |
+
(lora_embedding_A): ParameterDict()
|
930 |
+
(lora_embedding_B): ParameterDict()
|
931 |
+
(lora_magnitude_vector): ModuleDict()
|
932 |
+
)
|
933 |
+
(linear2): lora.Linear(
|
934 |
+
(base_layer): Linear(in_features=1024, out_features=1024, bias=False)
|
935 |
+
(lora_dropout): ModuleDict(
|
936 |
+
(default): Dropout(p=0.05, inplace=False)
|
937 |
+
)
|
938 |
+
(lora_A): ModuleDict(
|
939 |
+
(default): Linear(in_features=1024, out_features=8, bias=False)
|
940 |
+
)
|
941 |
+
(lora_B): ModuleDict(
|
942 |
+
(default): Linear(in_features=8, out_features=1024, bias=False)
|
943 |
+
)
|
944 |
+
(lora_embedding_A): ParameterDict()
|
945 |
+
(lora_embedding_B): ParameterDict()
|
946 |
+
(lora_magnitude_vector): ModuleDict()
|
947 |
+
)
|
948 |
+
(layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
949 |
+
(drop): Dropout(p=0.5, inplace=False)
|
950 |
+
)
|
951 |
+
)
|
952 |
+
)
|
953 |
+
)
|
954 |
+
|
Vaani/Img_Audio_Alignment/_1_CLAP-Audio-Encoder.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Vaani/Img_Audio_Alignment/_2_Train.py
ADDED
@@ -0,0 +1,1495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# L A T E N T D I F F U S I O N M O D E L
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : May 11, 2025
|
6 |
+
# Description: This script implements the training of a VQ-VAE model for
|
7 |
+
# image reconstruction, integrated with Latent Diffusion Models (LDMs) and
|
8 |
+
# audio conditioning. The VQ-VAE maps images to a discrete latent space,
|
9 |
+
# which is then modeled by the LDM for learning a diffusion process over the
|
10 |
+
# compressed representation. Audio features are used as conditioning inputs
|
11 |
+
# to guide the generation process. The training minimizes a combination of
|
12 |
+
# LPIPS (Learned Perceptual Image Patch Similarity) loss for perceptual
|
13 |
+
# fidelity and PatchGAN loss to enforce local realism. This setup enables
|
14 |
+
# efficient and semantically-aware generation of high-quality images driven
|
15 |
+
# by audio cues.
|
16 |
+
# ==================================================================
|
17 |
+
# I M P O R T S
|
18 |
+
# ==================================================================
|
19 |
+
from __future__ import annotations
|
20 |
+
import warnings
|
21 |
+
warnings.filterwarnings("ignore")
|
22 |
+
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
import math
|
26 |
+
import random
|
27 |
+
import collections
|
28 |
+
import collections.abc
|
29 |
+
import re
|
30 |
+
from itertools import repeat
|
31 |
+
from pathlib import Path
|
32 |
+
from typing import Optional, Tuple, Union, List, Dict
|
33 |
+
|
34 |
+
import requests
|
35 |
+
from PIL import Image
|
36 |
+
import numpy as np
|
37 |
+
import torch
|
38 |
+
import torch.nn.functional as F
|
39 |
+
from torch import nn
|
40 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
41 |
+
import torch.utils.checkpoint as checkpoint
|
42 |
+
|
43 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
print(f"Using device: {device}")
|
46 |
+
|
47 |
+
import torchaudio
|
48 |
+
import torchaudio.transforms as T
|
49 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
50 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
51 |
+
|
52 |
+
from transformers import AutoModel, AutoTokenizer, logging
|
53 |
+
from huggingface_hub.file_download import hf_hub_download
|
54 |
+
from huggingface_hub.file_download import hf_hub_download
|
55 |
+
from peft import get_peft_config, get_peft_model
|
56 |
+
from transformers import CLIPVisionModel, AutoProcessor
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
# ==================================================================
|
61 |
+
# H T S - A T
|
62 |
+
# ==================================================================
|
63 |
+
class HTSATConfig:
|
64 |
+
# Ke Chen
|
65 | |
66 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
67 |
+
# The configuration for training the model
|
68 |
+
|
69 |
+
exp_name = "exp_htsat_pretrain" # the saved ckpt prefix name of the model
|
70 |
+
workspace = "/home/kechen/Research/HTSAT" # the folder of your code
|
71 |
+
dataset_path = "/home/Research/audioset" # the dataset path
|
72 |
+
desed_folder = "/home/Research/DESED" # the desed file
|
73 |
+
|
74 |
+
dataset_type = "audioset" # "audioset" "esc-50" "scv2"
|
75 |
+
index_type = "full_train" # only works for audioset
|
76 |
+
balanced_data = True # only works for audioset
|
77 |
+
|
78 |
+
loss_type = "clip_bce" #
|
79 |
+
# AudioSet & SCV2: "clip_bce" | ESC-50: "clip_ce"
|
80 |
+
|
81 |
+
# trained from a checkpoint, or evaluate a single model
|
82 |
+
resume_checkpoint = None
|
83 |
+
# "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_1.ckpt"
|
84 |
+
|
85 |
+
esc_fold = 0 # just for esc dataset, select the fold you need for evaluation and (+1) validation
|
86 |
+
|
87 |
+
|
88 |
+
debug = False
|
89 |
+
|
90 |
+
random_seed = 970131 # 19970318 970131 12412 127777 1009 34047
|
91 |
+
batch_size = 32 * 4 # batch size per GPU x GPU number , default is 32 x 4 = 128
|
92 |
+
learning_rate = 1e-3 # 1e-4 also workable
|
93 |
+
max_epoch = 100
|
94 |
+
num_workers = 3
|
95 |
+
|
96 |
+
lr_scheduler_epoch = [10,20,30]
|
97 |
+
lr_rate = [0.02, 0.05, 0.1]
|
98 |
+
|
99 |
+
# these data preparation optimizations do not bring many improvements, so deprecated
|
100 |
+
enable_token_label = False # token label
|
101 |
+
class_map_path = "class_hier_map.npy"
|
102 |
+
class_filter = None
|
103 |
+
retrieval_index = [15382, 9202, 130, 17618, 17157, 17516, 16356, 6165, 13992, 9238, 5550, 5733, 1914, 1600, 3450, 13735, 11108, 3762,
|
104 |
+
9840, 11318, 8131, 4429, 16748, 4992, 16783, 12691, 4945, 8779, 2805, 9418, 2797, 14357, 5603, 212, 3852, 12666, 1338, 10269, 2388, 8260, 4293, 14454, 7677, 11253, 5060, 14938, 8840, 4542, 2627, 16336, 8992, 15496, 11140, 446, 6126, 10691, 8624, 10127, 9068, 16710, 10155, 14358, 7567, 5695, 2354, 8057, 17635, 133, 16183, 14535, 7248, 4560, 14429, 2463, 10773, 113, 2462, 9223, 4929, 14274, 4716, 17307, 4617, 2132, 11083, 1039, 1403, 9621, 13936, 2229, 2875, 17840, 9359, 13311, 9790, 13288, 4750, 17052, 8260, 14900]
|
105 |
+
token_label_range = [0.2,0.6]
|
106 |
+
enable_time_shift = False # shift time
|
107 |
+
enable_label_enhance = False # enhance hierarchical label
|
108 |
+
enable_repeat_mode = False # repeat the spectrogram / reshape the spectrogram
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
# for model's design
|
113 |
+
enable_tscam = True # enbale the token-semantic layer
|
114 |
+
|
115 |
+
# for signal processing
|
116 |
+
sample_rate = 32000 # 16000 for scv2, 32000 for audioset and esc-50
|
117 |
+
clip_samples = sample_rate * 10 # audio_set 10-sec clip
|
118 |
+
window_size = 1024
|
119 |
+
hop_size = 320 # 160 for scv2, 320 for audioset and esc-50
|
120 |
+
mel_bins = 64
|
121 |
+
fmin = 50
|
122 |
+
fmax = 14000
|
123 |
+
shift_max = int(clip_samples * 0.5)
|
124 |
+
|
125 |
+
# for data collection
|
126 |
+
classes_num = 527 # esc: 50 | audioset: 527 | scv2: 35
|
127 |
+
patch_size = (25, 4) # deprecated
|
128 |
+
crop_size = None # int(clip_samples * 0.5) deprecated
|
129 |
+
|
130 |
+
# for htsat hyperparamater
|
131 |
+
htsat_window_size = 8
|
132 |
+
htsat_spec_size = 256
|
133 |
+
htsat_patch_size = 4
|
134 |
+
htsat_stride = (4, 4)
|
135 |
+
htsat_num_head = [4,8,16,32]
|
136 |
+
htsat_dim = 96
|
137 |
+
htsat_depth = [2,2,6,2]
|
138 |
+
|
139 |
+
swin_pretrain_path = None
|
140 |
+
# "/home/Research/model_backup/pretrain/swin_tiny_c24_patch4_window8_256.pth"
|
141 |
+
|
142 |
+
# Some Deprecated Optimization in the model design, check the model code for details
|
143 |
+
htsat_attn_heatmap = False
|
144 |
+
htsat_hier_output = False
|
145 |
+
htsat_use_max = False
|
146 |
+
|
147 |
+
|
148 |
+
# for ensemble test
|
149 |
+
|
150 |
+
ensemble_checkpoints = []
|
151 |
+
ensemble_strides = []
|
152 |
+
|
153 |
+
|
154 |
+
# weight average folder
|
155 |
+
wa_folder = "/home/version_0/checkpoints/"
|
156 |
+
# weight average output filename
|
157 |
+
wa_model_path = "HTSAT_AudioSet_Saved_x.ckpt"
|
158 |
+
|
159 |
+
esm_model_pathes = [
|
160 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_1.ckpt",
|
161 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_2.ckpt",
|
162 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_3.ckpt",
|
163 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_4.ckpt",
|
164 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_5.ckpt",
|
165 |
+
"/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_6.ckpt"
|
166 |
+
]
|
167 |
+
|
168 |
+
# for framewise localization
|
169 |
+
heatmap_dir = "/home/Research/heatmap_output"
|
170 |
+
test_file = "htsat-test-ensemble"
|
171 |
+
fl_local = False # indicate if we need to use this dataset for the framewise detection
|
172 |
+
fl_dataset = "/home/Research/desed/desed_eval.npy"
|
173 |
+
fl_class_num = [
|
174 |
+
"Speech", "Frying", "Dishes", "Running_water",
|
175 |
+
"Blender", "Electric_shaver_toothbrush", "Alarm_bell_ringing",
|
176 |
+
"Cat", "Dog", "Vacuum_cleaner"
|
177 |
+
]
|
178 |
+
|
179 |
+
# map 527 classes into 10 classes
|
180 |
+
fl_audioset_mapping = [
|
181 |
+
[0,1,2,3,4,5,6,7],
|
182 |
+
[366, 367, 368],
|
183 |
+
[364],
|
184 |
+
[288, 289, 290, 291, 292, 293, 294, 295, 296, 297],
|
185 |
+
[369],
|
186 |
+
[382],
|
187 |
+
[310, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402],
|
188 |
+
[81, 82, 83, 84, 85],
|
189 |
+
[74, 75, 76, 77, 78, 79],
|
190 |
+
[377]
|
191 |
+
]
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
def _ntuple(n):
|
196 |
+
def parse(x):
|
197 |
+
if isinstance(x, collections.abc.Iterable):
|
198 |
+
return x
|
199 |
+
return tuple(repeat(x, n))
|
200 |
+
return parse
|
201 |
+
|
202 |
+
to_1tuple = _ntuple(1)
|
203 |
+
to_2tuple = _ntuple(2)
|
204 |
+
to_3tuple = _ntuple(3)
|
205 |
+
to_4tuple = _ntuple(4)
|
206 |
+
to_ntuple = _ntuple
|
207 |
+
|
208 |
+
def do_mixup(x, mixup_lambda):
|
209 |
+
"""Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes
|
210 |
+
(1, 3, 5, ...).
|
211 |
+
Args:
|
212 |
+
x: (batch_size * 2, ...)
|
213 |
+
mixup_lambda: (batch_size * 2,)
|
214 |
+
Returns:
|
215 |
+
out: (batch_size, ...)
|
216 |
+
"""
|
217 |
+
out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \
|
218 |
+
x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1)
|
219 |
+
return out
|
220 |
+
|
221 |
+
def interpolate(x, ratio):
|
222 |
+
"""Interpolate data in time domain. This is used to compensate the
|
223 |
+
resolution reduction in downsampling of a CNN.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
x: (batch_size, time_steps, classes_num)
|
227 |
+
ratio: int, ratio to interpolate
|
228 |
+
Returns:
|
229 |
+
upsampled: (batch_size, time_steps * ratio, classes_num)
|
230 |
+
"""
|
231 |
+
(batch_size, time_steps, classes_num) = x.shape
|
232 |
+
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
|
233 |
+
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
|
234 |
+
return upsampled
|
235 |
+
|
236 |
+
|
237 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
238 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
239 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
240 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
241 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
242 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
243 |
+
'survival rate' as the argument.
|
244 |
+
"""
|
245 |
+
if drop_prob == 0. or not training:
|
246 |
+
return x
|
247 |
+
keep_prob = 1 - drop_prob
|
248 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
249 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
250 |
+
random_tensor.floor_() # binarize
|
251 |
+
output = x.div(keep_prob) * random_tensor
|
252 |
+
return output
|
253 |
+
|
254 |
+
|
255 |
+
class DropPath(nn.Module):
|
256 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
257 |
+
"""
|
258 |
+
def __init__(self, drop_prob=None):
|
259 |
+
super(DropPath, self).__init__()
|
260 |
+
self.drop_prob = drop_prob
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
return drop_path(x, self.drop_prob, self.training)
|
264 |
+
|
265 |
+
class PatchEmbed(nn.Module):
|
266 |
+
""" 2D Image to Patch Embedding
|
267 |
+
"""
|
268 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16):
|
269 |
+
super().__init__()
|
270 |
+
img_size = to_2tuple(img_size)
|
271 |
+
patch_size = to_2tuple(patch_size)
|
272 |
+
patch_stride = to_2tuple(patch_stride)
|
273 |
+
self.img_size = img_size
|
274 |
+
self.patch_size = patch_size
|
275 |
+
self.patch_stride = patch_stride
|
276 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
277 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
278 |
+
self.flatten = flatten
|
279 |
+
self.in_chans = in_chans
|
280 |
+
self.embed_dim = embed_dim
|
281 |
+
|
282 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
283 |
+
|
284 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
285 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
286 |
+
|
287 |
+
def forward(self, x):
|
288 |
+
B, C, H, W = x.shape
|
289 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
290 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
291 |
+
x = self.proj(x)
|
292 |
+
if self.flatten:
|
293 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
294 |
+
x = self.norm(x)
|
295 |
+
return x
|
296 |
+
|
297 |
+
class Mlp(nn.Module):
|
298 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
299 |
+
"""
|
300 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
301 |
+
super().__init__()
|
302 |
+
out_features = out_features or in_features
|
303 |
+
hidden_features = hidden_features or in_features
|
304 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
305 |
+
self.act = act_layer()
|
306 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
307 |
+
self.drop = nn.Dropout(drop)
|
308 |
+
|
309 |
+
def forward(self, x):
|
310 |
+
x = self.fc1(x)
|
311 |
+
x = self.act(x)
|
312 |
+
x = self.drop(x)
|
313 |
+
x = self.fc2(x)
|
314 |
+
x = self.drop(x)
|
315 |
+
return x
|
316 |
+
|
317 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
318 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
319 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
320 |
+
def norm_cdf(x):
|
321 |
+
# Computes standard normal cumulative distribution function
|
322 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
323 |
+
|
324 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
325 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
326 |
+
"The distribution of values may be incorrect.",
|
327 |
+
stacklevel=2)
|
328 |
+
|
329 |
+
with torch.no_grad():
|
330 |
+
# Values are generated by using a truncated uniform distribution and
|
331 |
+
# then using the inverse CDF for the normal distribution.
|
332 |
+
# Get upper and lower cdf values
|
333 |
+
l = norm_cdf((a - mean) / std)
|
334 |
+
u = norm_cdf((b - mean) / std)
|
335 |
+
|
336 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
337 |
+
# [2l-1, 2u-1].
|
338 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
339 |
+
|
340 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
341 |
+
# standard normal
|
342 |
+
tensor.erfinv_()
|
343 |
+
|
344 |
+
# Transform to proper mean, std
|
345 |
+
tensor.mul_(std * math.sqrt(2.))
|
346 |
+
tensor.add_(mean)
|
347 |
+
|
348 |
+
# Clamp to ensure it's in the proper range
|
349 |
+
tensor.clamp_(min=a, max=b)
|
350 |
+
return tensor
|
351 |
+
|
352 |
+
|
353 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
354 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
355 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
356 |
+
normal distribution. The values are effectively drawn from the
|
357 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
358 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
359 |
+
the bounds. The method used for generating the random values works
|
360 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
361 |
+
Args:
|
362 |
+
tensor: an n-dimensional `torch.Tensor`
|
363 |
+
mean: the mean of the normal distribution
|
364 |
+
std: the standard deviation of the normal distribution
|
365 |
+
a: the minimum cutoff value
|
366 |
+
b: the maximum cutoff value
|
367 |
+
Examples:
|
368 |
+
>>> w = torch.empty(3, 5)
|
369 |
+
>>> nn.init.trunc_normal_(w)
|
370 |
+
"""
|
371 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
372 |
+
|
373 |
+
|
374 |
+
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
375 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
376 |
+
if mode == 'fan_in':
|
377 |
+
denom = fan_in
|
378 |
+
elif mode == 'fan_out':
|
379 |
+
denom = fan_out
|
380 |
+
elif mode == 'fan_avg':
|
381 |
+
denom = (fan_in + fan_out) / 2
|
382 |
+
|
383 |
+
variance = scale / denom
|
384 |
+
|
385 |
+
if distribution == "truncated_normal":
|
386 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
387 |
+
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
388 |
+
elif distribution == "normal":
|
389 |
+
tensor.normal_(std=math.sqrt(variance))
|
390 |
+
elif distribution == "uniform":
|
391 |
+
bound = math.sqrt(3 * variance)
|
392 |
+
tensor.uniform_(-bound, bound)
|
393 |
+
else:
|
394 |
+
raise ValueError(f"invalid distribution {distribution}")
|
395 |
+
|
396 |
+
|
397 |
+
def lecun_normal_(tensor):
|
398 |
+
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
|
399 |
+
|
400 |
+
|
401 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
402 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
403 |
+
|
404 |
+
def window_partition(x, window_size):
|
405 |
+
"""
|
406 |
+
Args:
|
407 |
+
x: (B, H, W, C)
|
408 |
+
window_size (int): window size
|
409 |
+
Returns:
|
410 |
+
windows: (num_windows*B, window_size, window_size, C)
|
411 |
+
"""
|
412 |
+
B, H, W, C = x.shape
|
413 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
414 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
415 |
+
return windows
|
416 |
+
|
417 |
+
|
418 |
+
def window_reverse(windows, window_size, H, W):
|
419 |
+
"""
|
420 |
+
Args:
|
421 |
+
windows: (num_windows*B, window_size, window_size, C)
|
422 |
+
window_size (int): Window size
|
423 |
+
H (int): Height of image
|
424 |
+
W (int): Width of image
|
425 |
+
Returns:
|
426 |
+
x: (B, H, W, C)
|
427 |
+
"""
|
428 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
429 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
430 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
431 |
+
return x
|
432 |
+
|
433 |
+
|
434 |
+
class WindowAttention(nn.Module):
|
435 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
436 |
+
It supports both of shifted and non-shifted window.
|
437 |
+
Args:
|
438 |
+
dim (int): Number of input channels.
|
439 |
+
window_size (tuple[int]): The height and width of the window.
|
440 |
+
num_heads (int): Number of attention heads.
|
441 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
442 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
443 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
444 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
445 |
+
"""
|
446 |
+
|
447 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
448 |
+
|
449 |
+
super().__init__()
|
450 |
+
self.dim = dim
|
451 |
+
self.window_size = window_size # Wh, Ww
|
452 |
+
self.num_heads = num_heads
|
453 |
+
head_dim = dim // num_heads
|
454 |
+
self.scale = qk_scale or head_dim ** -0.5
|
455 |
+
|
456 |
+
# define a parameter table of relative position bias
|
457 |
+
self.relative_position_bias_table = nn.Parameter(
|
458 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
459 |
+
|
460 |
+
# get pair-wise relative position index for each token inside the window
|
461 |
+
coords_h = torch.arange(self.window_size[0])
|
462 |
+
coords_w = torch.arange(self.window_size[1])
|
463 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
464 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
465 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
466 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
467 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
468 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
469 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
470 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
471 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
472 |
+
|
473 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
474 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
475 |
+
self.proj = nn.Linear(dim, dim)
|
476 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
477 |
+
|
478 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
479 |
+
self.softmax = nn.Softmax(dim=-1)
|
480 |
+
|
481 |
+
def forward(self, x, mask=None):
|
482 |
+
"""
|
483 |
+
Args:
|
484 |
+
x: input features with shape of (num_windows*B, N, C)
|
485 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
486 |
+
"""
|
487 |
+
B_, N, C = x.shape
|
488 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
489 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
490 |
+
|
491 |
+
q = q * self.scale
|
492 |
+
attn = (q @ k.transpose(-2, -1))
|
493 |
+
|
494 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
495 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
496 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
497 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
498 |
+
|
499 |
+
if mask is not None:
|
500 |
+
nW = mask.shape[0]
|
501 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
502 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
503 |
+
attn = self.softmax(attn)
|
504 |
+
else:
|
505 |
+
attn = self.softmax(attn)
|
506 |
+
|
507 |
+
attn = self.attn_drop(attn)
|
508 |
+
|
509 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
510 |
+
x = self.proj(x)
|
511 |
+
x = self.proj_drop(x)
|
512 |
+
return x, attn
|
513 |
+
|
514 |
+
def extra_repr(self):
|
515 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
516 |
+
|
517 |
+
|
518 |
+
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
|
519 |
+
class SwinTransformerBlock(nn.Module):
|
520 |
+
r""" Swin Transformer Block.
|
521 |
+
Args:
|
522 |
+
dim (int): Number of input channels.
|
523 |
+
input_resolution (tuple[int]): Input resulotion.
|
524 |
+
num_heads (int): Number of attention heads.
|
525 |
+
window_size (int): Window size.
|
526 |
+
shift_size (int): Shift size for SW-MSA.
|
527 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
528 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
529 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
530 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
531 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
532 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
533 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
534 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
535 |
+
"""
|
536 |
+
|
537 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
538 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
539 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
|
540 |
+
super().__init__()
|
541 |
+
self.dim = dim
|
542 |
+
self.input_resolution = input_resolution
|
543 |
+
self.num_heads = num_heads
|
544 |
+
self.window_size = window_size
|
545 |
+
self.shift_size = shift_size
|
546 |
+
self.mlp_ratio = mlp_ratio
|
547 |
+
self.norm_before_mlp = norm_before_mlp
|
548 |
+
if min(self.input_resolution) <= self.window_size:
|
549 |
+
# if window size is larger than input resolution, we don't partition windows
|
550 |
+
self.shift_size = 0
|
551 |
+
self.window_size = min(self.input_resolution)
|
552 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
553 |
+
|
554 |
+
self.norm1 = norm_layer(dim)
|
555 |
+
self.attn = WindowAttention(
|
556 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
557 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
558 |
+
|
559 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
560 |
+
if self.norm_before_mlp == 'ln':
|
561 |
+
self.norm2 = nn.LayerNorm(dim)
|
562 |
+
elif self.norm_before_mlp == 'bn':
|
563 |
+
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
|
564 |
+
else:
|
565 |
+
raise NotImplementedError
|
566 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
567 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
568 |
+
|
569 |
+
if self.shift_size > 0:
|
570 |
+
# calculate attention mask for SW-MSA
|
571 |
+
H, W = self.input_resolution
|
572 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
573 |
+
h_slices = (slice(0, -self.window_size),
|
574 |
+
slice(-self.window_size, -self.shift_size),
|
575 |
+
slice(-self.shift_size, None))
|
576 |
+
w_slices = (slice(0, -self.window_size),
|
577 |
+
slice(-self.window_size, -self.shift_size),
|
578 |
+
slice(-self.shift_size, None))
|
579 |
+
cnt = 0
|
580 |
+
for h in h_slices:
|
581 |
+
for w in w_slices:
|
582 |
+
img_mask[:, h, w, :] = cnt
|
583 |
+
cnt += 1
|
584 |
+
|
585 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
586 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
587 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
588 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
589 |
+
else:
|
590 |
+
attn_mask = None
|
591 |
+
|
592 |
+
self.register_buffer("attn_mask", attn_mask)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
# pdb.set_trace()
|
596 |
+
H, W = self.input_resolution
|
597 |
+
# print("H: ", H)
|
598 |
+
# print("W: ", W)
|
599 |
+
# pdb.set_trace()
|
600 |
+
B, L, C = x.shape
|
601 |
+
# assert L == H * W, "input feature has wrong size"
|
602 |
+
|
603 |
+
shortcut = x
|
604 |
+
x = self.norm1(x)
|
605 |
+
x = x.view(B, H, W, C)
|
606 |
+
|
607 |
+
# cyclic shift
|
608 |
+
if self.shift_size > 0:
|
609 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
610 |
+
else:
|
611 |
+
shifted_x = x
|
612 |
+
|
613 |
+
# partition windows
|
614 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
615 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
616 |
+
|
617 |
+
# W-MSA/SW-MSA
|
618 |
+
attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
619 |
+
|
620 |
+
# merge windows
|
621 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
622 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
623 |
+
|
624 |
+
# reverse cyclic shift
|
625 |
+
if self.shift_size > 0:
|
626 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
627 |
+
else:
|
628 |
+
x = shifted_x
|
629 |
+
x = x.view(B, H * W, C)
|
630 |
+
|
631 |
+
# FFN
|
632 |
+
x = shortcut + self.drop_path(x)
|
633 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
634 |
+
|
635 |
+
return x, attn
|
636 |
+
|
637 |
+
def extra_repr(self):
|
638 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
639 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
class PatchMerging(nn.Module):
|
644 |
+
r""" Patch Merging Layer.
|
645 |
+
Args:
|
646 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
647 |
+
dim (int): Number of input channels.
|
648 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
649 |
+
"""
|
650 |
+
|
651 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
652 |
+
super().__init__()
|
653 |
+
self.input_resolution = input_resolution
|
654 |
+
self.dim = dim
|
655 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
656 |
+
self.norm = norm_layer(4 * dim)
|
657 |
+
|
658 |
+
def forward(self, x):
|
659 |
+
"""
|
660 |
+
x: B, H*W, C
|
661 |
+
"""
|
662 |
+
H, W = self.input_resolution
|
663 |
+
B, L, C = x.shape
|
664 |
+
assert L == H * W, "input feature has wrong size"
|
665 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
666 |
+
|
667 |
+
x = x.view(B, H, W, C)
|
668 |
+
|
669 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
670 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
671 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
672 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
673 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
674 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
675 |
+
|
676 |
+
x = self.norm(x)
|
677 |
+
x = self.reduction(x)
|
678 |
+
|
679 |
+
return x
|
680 |
+
|
681 |
+
def extra_repr(self):
|
682 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
683 |
+
|
684 |
+
|
685 |
+
class BasicLayer(nn.Module):
|
686 |
+
""" A basic Swin Transformer layer for one stage.
|
687 |
+
Args:
|
688 |
+
dim (int): Number of input channels.
|
689 |
+
input_resolution (tuple[int]): Input resolution.
|
690 |
+
depth (int): Number of blocks.
|
691 |
+
num_heads (int): Number of attention heads.
|
692 |
+
window_size (int): Local window size.
|
693 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
694 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
695 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
696 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
697 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
698 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
699 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
700 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
701 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
705 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
706 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
707 |
+
norm_before_mlp='ln'):
|
708 |
+
|
709 |
+
super().__init__()
|
710 |
+
self.dim = dim
|
711 |
+
self.input_resolution = input_resolution
|
712 |
+
self.depth = depth
|
713 |
+
self.use_checkpoint = use_checkpoint
|
714 |
+
|
715 |
+
# build blocks
|
716 |
+
self.blocks = nn.ModuleList([
|
717 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
718 |
+
num_heads=num_heads, window_size=window_size,
|
719 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
720 |
+
mlp_ratio=mlp_ratio,
|
721 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
722 |
+
drop=drop, attn_drop=attn_drop,
|
723 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
724 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
725 |
+
for i in range(depth)])
|
726 |
+
|
727 |
+
# patch merging layer
|
728 |
+
if downsample is not None:
|
729 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
730 |
+
else:
|
731 |
+
self.downsample = None
|
732 |
+
|
733 |
+
def forward(self, x):
|
734 |
+
attns = []
|
735 |
+
for blk in self.blocks:
|
736 |
+
if self.use_checkpoint:
|
737 |
+
x = checkpoint.checkpoint(blk, x)
|
738 |
+
else:
|
739 |
+
x, attn = blk(x)
|
740 |
+
if not self.training:
|
741 |
+
attns.append(attn.unsqueeze(0))
|
742 |
+
if self.downsample is not None:
|
743 |
+
x = self.downsample(x)
|
744 |
+
if not self.training:
|
745 |
+
attn = torch.cat(attns, dim = 0)
|
746 |
+
attn = torch.mean(attn, dim = 0)
|
747 |
+
return x, attn
|
748 |
+
|
749 |
+
def extra_repr(self):
|
750 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
751 |
+
|
752 |
+
|
753 |
+
# The Core of HTSAT
|
754 |
+
class HTSAT_Swin_Transformer(nn.Module):
|
755 |
+
r"""HTSAT based on the Swin Transformer
|
756 |
+
Args:
|
757 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
758 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
759 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
760 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
761 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
762 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
763 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
764 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
765 |
+
window_size (int): Window size. Default: 8
|
766 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
767 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
768 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
769 |
+
drop_rate (float): Dropout rate. Default: 0
|
770 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
771 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
772 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
773 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
774 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
775 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
776 |
+
config (module): The configuration Module from config.py (HTSATConfig Class)
|
777 |
+
"""
|
778 |
+
|
779 |
+
def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
|
780 |
+
in_chans=1, num_classes=527,
|
781 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
|
782 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
783 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
784 |
+
norm_layer=nn.LayerNorm,
|
785 |
+
ape=False, patch_norm=True,
|
786 |
+
use_checkpoint=False, norm_before_mlp='ln', config = None, **kwargs):
|
787 |
+
super(HTSAT_Swin_Transformer, self).__init__()
|
788 |
+
|
789 |
+
self.config = config
|
790 |
+
self.spec_size = spec_size
|
791 |
+
self.patch_stride = patch_stride
|
792 |
+
self.patch_size = patch_size
|
793 |
+
self.window_size = window_size
|
794 |
+
self.embed_dim = embed_dim
|
795 |
+
self.depths = depths
|
796 |
+
self.ape = ape
|
797 |
+
self.in_chans = in_chans
|
798 |
+
self.num_classes = num_classes
|
799 |
+
self.num_heads = num_heads
|
800 |
+
self.num_layers = len(self.depths)
|
801 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
802 |
+
|
803 |
+
self.drop_rate = drop_rate
|
804 |
+
self.attn_drop_rate = attn_drop_rate
|
805 |
+
self.drop_path_rate = drop_path_rate
|
806 |
+
|
807 |
+
self.qkv_bias = qkv_bias
|
808 |
+
self.qk_scale = None
|
809 |
+
|
810 |
+
self.patch_norm = patch_norm
|
811 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
812 |
+
self.norm_before_mlp = norm_before_mlp
|
813 |
+
self.mlp_ratio = mlp_ratio
|
814 |
+
|
815 |
+
self.use_checkpoint = use_checkpoint
|
816 |
+
|
817 |
+
# process mel-spec ; used only once
|
818 |
+
self.freq_ratio = self.spec_size // self.config.mel_bins
|
819 |
+
window = 'hann'
|
820 |
+
center = True
|
821 |
+
pad_mode = 'reflect'
|
822 |
+
ref = 1.0
|
823 |
+
amin = 1e-10
|
824 |
+
top_db = None
|
825 |
+
self.interpolate_ratio = 32 # Downsampled ratio
|
826 |
+
# Spectrogram extractor
|
827 |
+
self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
|
828 |
+
win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
|
829 |
+
freeze_parameters=True)
|
830 |
+
# Logmel feature extractor
|
831 |
+
self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
|
832 |
+
n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
|
833 |
+
freeze_parameters=True)
|
834 |
+
# Spec augmenter
|
835 |
+
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
836 |
+
freq_drop_width=8, freq_stripes_num=2) # 2 2
|
837 |
+
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
|
838 |
+
|
839 |
+
|
840 |
+
# split spctrogram into non-overlapping patches
|
841 |
+
self.patch_embed = PatchEmbed(
|
842 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
843 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride)
|
844 |
+
|
845 |
+
num_patches = self.patch_embed.num_patches
|
846 |
+
patches_resolution = self.patch_embed.grid_size
|
847 |
+
self.patches_resolution = patches_resolution
|
848 |
+
|
849 |
+
# absolute position embedding
|
850 |
+
if self.ape:
|
851 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
|
852 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
853 |
+
|
854 |
+
self.pos_drop = nn.Dropout(p=self.drop_rate)
|
855 |
+
|
856 |
+
# stochastic depth
|
857 |
+
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
858 |
+
|
859 |
+
# build layers
|
860 |
+
self.layers = nn.ModuleList()
|
861 |
+
for i_layer in range(self.num_layers):
|
862 |
+
layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
|
863 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
864 |
+
patches_resolution[1] // (2 ** i_layer)),
|
865 |
+
depth=self.depths[i_layer],
|
866 |
+
num_heads=self.num_heads[i_layer],
|
867 |
+
window_size=self.window_size,
|
868 |
+
mlp_ratio=self.mlp_ratio,
|
869 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
870 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
871 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
872 |
+
norm_layer=self.norm_layer,
|
873 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
874 |
+
use_checkpoint=use_checkpoint,
|
875 |
+
norm_before_mlp=self.norm_before_mlp)
|
876 |
+
self.layers.append(layer)
|
877 |
+
|
878 |
+
self.norm = self.norm_layer(self.num_features)
|
879 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
880 |
+
self.maxpool = nn.AdaptiveMaxPool1d(1)
|
881 |
+
|
882 |
+
if self.config.enable_tscam:
|
883 |
+
SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
|
884 |
+
self.tscam_conv = nn.Conv2d(
|
885 |
+
in_channels = self.num_features,
|
886 |
+
out_channels = self.num_classes,
|
887 |
+
kernel_size = (SF,3),
|
888 |
+
padding = (0,1)
|
889 |
+
)
|
890 |
+
self.head = nn.Linear(num_classes, num_classes)
|
891 |
+
else:
|
892 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
893 |
+
|
894 |
+
self.apply(self._init_weights)
|
895 |
+
|
896 |
+
def _init_weights(self, m):
|
897 |
+
if isinstance(m, nn.Linear):
|
898 |
+
trunc_normal_(m.weight, std=.02)
|
899 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
900 |
+
nn.init.constant_(m.bias, 0)
|
901 |
+
elif isinstance(m, nn.LayerNorm):
|
902 |
+
nn.init.constant_(m.bias, 0)
|
903 |
+
nn.init.constant_(m.weight, 1.0)
|
904 |
+
|
905 |
+
@torch.jit.ignore
|
906 |
+
def no_weight_decay(self):
|
907 |
+
return {'absolute_pos_embed'}
|
908 |
+
|
909 |
+
@torch.jit.ignore
|
910 |
+
def no_weight_decay_keywords(self):
|
911 |
+
return {'relative_position_bias_table'}
|
912 |
+
|
913 |
+
def forward_features(self, x):
|
914 |
+
frames_num = x.shape[2]
|
915 |
+
x = self.patch_embed(x)
|
916 |
+
if self.ape:
|
917 |
+
x = x + self.absolute_pos_embed
|
918 |
+
x = self.pos_drop(x)
|
919 |
+
for i, layer in enumerate(self.layers):
|
920 |
+
x, attn = layer(x)
|
921 |
+
|
922 |
+
if self.config.enable_tscam:
|
923 |
+
# for x
|
924 |
+
x = self.norm(x)
|
925 |
+
B, N, C = x.shape
|
926 |
+
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
927 |
+
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
928 |
+
x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
929 |
+
B, C, F, T = x.shape
|
930 |
+
# group 2D CNN
|
931 |
+
c_freq_bin = F // self.freq_ratio
|
932 |
+
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
933 |
+
x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
934 |
+
|
935 |
+
# get latent_output
|
936 |
+
latent_output = self.avgpool(torch.flatten(x,2))
|
937 |
+
latent_output = torch.flatten(latent_output, 1)
|
938 |
+
|
939 |
+
# display the attention map, if needed
|
940 |
+
if self.config.htsat_attn_heatmap:
|
941 |
+
# for attn
|
942 |
+
attn = torch.mean(attn, dim = 1)
|
943 |
+
attn = torch.mean(attn, dim = 1)
|
944 |
+
attn = attn.reshape(B, SF, ST)
|
945 |
+
c_freq_bin = SF // self.freq_ratio
|
946 |
+
attn = attn.reshape(B, SF // c_freq_bin, c_freq_bin, ST)
|
947 |
+
attn = attn.permute(0,2,1,3).contiguous().reshape(B, c_freq_bin, -1)
|
948 |
+
attn = attn.mean(dim = 1)
|
949 |
+
attn_max = torch.max(attn, dim = 1, keepdim = True)[0]
|
950 |
+
attn_min = torch.min(attn, dim = 1, keepdim = True)[0]
|
951 |
+
attn = ((attn * 0.15) + (attn_max * 0.85 - attn_min)) / (attn_max - attn_min)
|
952 |
+
attn = attn.unsqueeze(dim = 2)
|
953 |
+
|
954 |
+
x = self.tscam_conv(x)
|
955 |
+
x = torch.flatten(x, 2) # B, C, T
|
956 |
+
|
957 |
+
if self.config.htsat_attn_heatmap:
|
958 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous() * attn, 8 * self.patch_stride[1])
|
959 |
+
else:
|
960 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
961 |
+
|
962 |
+
x = self.avgpool(x)
|
963 |
+
x = torch.flatten(x, 1)
|
964 |
+
|
965 |
+
if self.config.loss_type == "clip_ce":
|
966 |
+
output_dict = {
|
967 |
+
'framewise_output': fpx, # already sigmoided
|
968 |
+
'clipwise_output': x,
|
969 |
+
'latent_output': latent_output
|
970 |
+
}
|
971 |
+
else:
|
972 |
+
output_dict = {
|
973 |
+
'framewise_output': fpx, # already sigmoided
|
974 |
+
'clipwise_output': torch.sigmoid(x),
|
975 |
+
'latent_output': latent_output
|
976 |
+
}
|
977 |
+
|
978 |
+
else:
|
979 |
+
x = self.norm(x) # B N C
|
980 |
+
B, N, C = x.shape
|
981 |
+
|
982 |
+
fpx = x.permute(0,2,1).contiguous().reshape(B, C, frames_num // (2 ** (len(self.depths) + 1)), frames_num // (2 ** (len(self.depths) + 1)) )
|
983 |
+
B, C, F, T = fpx.shape
|
984 |
+
c_freq_bin = F // self.freq_ratio
|
985 |
+
fpx = fpx.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
986 |
+
fpx = fpx.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
987 |
+
fpx = torch.sum(fpx, dim = 2)
|
988 |
+
fpx = interpolate(fpx.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
989 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
990 |
+
x = torch.flatten(x, 1)
|
991 |
+
if self.num_classes > 0:
|
992 |
+
x = self.head(x)
|
993 |
+
fpx = self.head(fpx)
|
994 |
+
output_dict = {'framewise_output': torch.sigmoid(fpx),
|
995 |
+
'clipwise_output': torch.sigmoid(x)}
|
996 |
+
return output_dict
|
997 |
+
|
998 |
+
def crop_wav(self, x, crop_size, spe_pos = None):
|
999 |
+
time_steps = x.shape[2]
|
1000 |
+
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
|
1001 |
+
for i in range(len(x)):
|
1002 |
+
if spe_pos is None:
|
1003 |
+
crop_pos = random.randint(0, time_steps - crop_size - 1)
|
1004 |
+
else:
|
1005 |
+
crop_pos = spe_pos
|
1006 |
+
tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
|
1007 |
+
return tx
|
1008 |
+
|
1009 |
+
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
|
1010 |
+
def reshape_wav2img(self, x):
|
1011 |
+
B, C, T, F = x.shape
|
1012 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
1013 |
+
target_F = self.spec_size // self.freq_ratio
|
1014 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
1015 |
+
# to avoid bicubic zero error
|
1016 |
+
if T < target_T:
|
1017 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
1018 |
+
if F < target_F:
|
1019 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
1020 |
+
x = x.permute(0,1,3,2).contiguous()
|
1021 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
|
1022 |
+
# print(x.shape)
|
1023 |
+
x = x.permute(0,1,3,2,4).contiguous()
|
1024 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
|
1025 |
+
return x
|
1026 |
+
|
1027 |
+
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
|
1028 |
+
def repeat_wat2img(self, x, cur_pos):
|
1029 |
+
B, C, T, F = x.shape
|
1030 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
1031 |
+
target_F = self.spec_size // self.freq_ratio
|
1032 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
1033 |
+
# to avoid bicubic zero error
|
1034 |
+
if T < target_T:
|
1035 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
1036 |
+
if F < target_F:
|
1037 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
1038 |
+
x = x.permute(0,1,3,2).contiguous() # B C F T
|
1039 |
+
x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
|
1040 |
+
x = x.repeat(repeats = (1,1,4,1))
|
1041 |
+
return x
|
1042 |
+
|
1043 |
+
def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False):# out_feat_keys: List[str] = None):
|
1044 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
1045 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
1046 |
+
|
1047 |
+
|
1048 |
+
x = x.transpose(1, 3)
|
1049 |
+
x = self.bn0(x)
|
1050 |
+
x = x.transpose(1, 3)
|
1051 |
+
if self.training:
|
1052 |
+
x = self.spec_augmenter(x)
|
1053 |
+
if self.training and mixup_lambda is not None:
|
1054 |
+
x = do_mixup(x, mixup_lambda)
|
1055 |
+
|
1056 |
+
if infer_mode:
|
1057 |
+
# in infer mode. we need to handle different length audio input
|
1058 |
+
frame_num = x.shape[2]
|
1059 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
1060 |
+
repeat_ratio = math.floor(target_T / frame_num)
|
1061 |
+
x = x.repeat(repeats=(1,1,repeat_ratio,1))
|
1062 |
+
x = self.reshape_wav2img(x)
|
1063 |
+
output_dict = self.forward_features(x)
|
1064 |
+
elif self.config.enable_repeat_mode:
|
1065 |
+
if self.training:
|
1066 |
+
cur_pos = random.randint(0, (self.freq_ratio - 1) * self.spec_size - 1)
|
1067 |
+
x = self.repeat_wat2img(x, cur_pos)
|
1068 |
+
output_dict = self.forward_features(x)
|
1069 |
+
else:
|
1070 |
+
output_dicts = []
|
1071 |
+
for cur_pos in range(0, (self.freq_ratio - 1) * self.spec_size + 1, self.spec_size):
|
1072 |
+
tx = x.clone()
|
1073 |
+
tx = self.repeat_wat2img(tx, cur_pos)
|
1074 |
+
output_dicts.append(self.forward_features(tx))
|
1075 |
+
clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
1076 |
+
framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
1077 |
+
for d in output_dicts:
|
1078 |
+
clipwise_output += d["clipwise_output"]
|
1079 |
+
framewise_output += d["framewise_output"]
|
1080 |
+
clipwise_output = clipwise_output / len(output_dicts)
|
1081 |
+
framewise_output = framewise_output / len(output_dicts)
|
1082 |
+
|
1083 |
+
output_dict = {
|
1084 |
+
'framewise_output': framewise_output,
|
1085 |
+
'clipwise_output': clipwise_output
|
1086 |
+
}
|
1087 |
+
else:
|
1088 |
+
if x.shape[2] > self.freq_ratio * self.spec_size:
|
1089 |
+
if self.training:
|
1090 |
+
x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
|
1091 |
+
x = self.reshape_wav2img(x)
|
1092 |
+
output_dict = self.forward_features(x)
|
1093 |
+
else:
|
1094 |
+
# Change: Hard code here
|
1095 |
+
overlap_size = 344 #(x.shape[2] - 1) // 4
|
1096 |
+
output_dicts = []
|
1097 |
+
crop_size = 689 #(x.shape[2] - 1) // 2
|
1098 |
+
for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
|
1099 |
+
tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
|
1100 |
+
tx = self.reshape_wav2img(tx)
|
1101 |
+
output_dicts.append(self.forward_features(tx))
|
1102 |
+
clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
1103 |
+
framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
1104 |
+
latent_output = torch.zeros_like(output_dicts[0]["latent_output"]).float().to(x.device)
|
1105 |
+
for d in output_dicts:
|
1106 |
+
clipwise_output += d["clipwise_output"]
|
1107 |
+
framewise_output += d["framewise_output"]
|
1108 |
+
latent_output += d["latent_output"]
|
1109 |
+
clipwise_output = clipwise_output / len(output_dicts)
|
1110 |
+
framewise_output = framewise_output / len(output_dicts)
|
1111 |
+
latent_output = latent_output / len(output_dicts)
|
1112 |
+
output_dict = {
|
1113 |
+
'framewise_output': framewise_output,
|
1114 |
+
'clipwise_output': clipwise_output,
|
1115 |
+
'latent_output': latent_output,
|
1116 |
+
}
|
1117 |
+
else: # this part is typically used, and most easy one
|
1118 |
+
x = self.reshape_wav2img(x)
|
1119 |
+
output_dict = self.forward_features(x)
|
1120 |
+
# x = self.head(x)
|
1121 |
+
return output_dict
|
1122 |
+
|
1123 |
+
class HTSATWrapper(nn.Module):
|
1124 |
+
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin,
|
1125 |
+
fmax, classes_num, out_emb):
|
1126 |
+
super().__init__()
|
1127 |
+
|
1128 |
+
# print("parameters are being overidden when using HTSAT")
|
1129 |
+
# print("HTSAT only support loading a pretrained model on AudioSet")
|
1130 |
+
# @TODO later look at what parameters are same and can be merged
|
1131 |
+
|
1132 |
+
self.htsat = HTSAT_Swin_Transformer(config=HTSATConfig())
|
1133 |
+
|
1134 |
+
def forward(self, x):
|
1135 |
+
out_dict = self.htsat(x)
|
1136 |
+
out_dict['embedding'] = out_dict['latent_output']
|
1137 |
+
return out_dict
|
1138 |
+
|
1139 |
+
|
1140 |
+
def get_audio_encoder(name: str):
|
1141 |
+
if name == "HTSAT":
|
1142 |
+
return HTSATWrapper
|
1143 |
+
else:
|
1144 |
+
raise Exception('The audio encoder name {} is incorrect or not supported'.format(name))
|
1145 |
+
|
1146 |
+
class Projection(nn.Module):
|
1147 |
+
def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None:
|
1148 |
+
super().__init__()
|
1149 |
+
self.linear1 = nn.Linear(d_in, d_out, bias=False)
|
1150 |
+
self.linear2 = nn.Linear(d_out, d_out, bias=False)
|
1151 |
+
self.layer_norm = nn.LayerNorm(d_out)
|
1152 |
+
self.drop = nn.Dropout(p)
|
1153 |
+
|
1154 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1155 |
+
embed1 = self.linear1(x)
|
1156 |
+
embed2 = self.drop(self.linear2(F.gelu(embed1)))
|
1157 |
+
embeds = self.layer_norm(embed1 + embed2)
|
1158 |
+
return embeds
|
1159 |
+
|
1160 |
+
class AudioEncoder(nn.Module):
|
1161 |
+
def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int,
|
1162 |
+
hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None:
|
1163 |
+
super().__init__()
|
1164 |
+
|
1165 |
+
audio_encoder = get_audio_encoder(audioenc_name)
|
1166 |
+
|
1167 |
+
self.base = audio_encoder(
|
1168 |
+
sample_rate, window_size,
|
1169 |
+
hop_size, mel_bins, fmin, fmax,
|
1170 |
+
classes_num, d_in)
|
1171 |
+
|
1172 |
+
self.projection = Projection(d_in, d_out)
|
1173 |
+
|
1174 |
+
def forward(self, x):
|
1175 |
+
out_dict = self.base(x)
|
1176 |
+
audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output']
|
1177 |
+
projected_vec = self.projection(audio_features)
|
1178 |
+
return projected_vec, audio_classification_output
|
1179 |
+
|
1180 |
+
class TextEncoder(nn.Module):
|
1181 |
+
def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None:
|
1182 |
+
super().__init__()
|
1183 |
+
self.text_model = text_model
|
1184 |
+
self.base = AutoModel.from_pretrained(text_model)
|
1185 |
+
|
1186 |
+
if 'clip' in text_model:
|
1187 |
+
self.clip_text_projection = self.base.text_projection
|
1188 |
+
self.base = self.base.text_model
|
1189 |
+
if 'base' in text_model:
|
1190 |
+
transformer_embed_dim = 512
|
1191 |
+
|
1192 |
+
self.projection = Projection(transformer_embed_dim, d_out)
|
1193 |
+
|
1194 |
+
def forward(self, x):
|
1195 |
+
if 'clip' in self.text_model:
|
1196 |
+
pooled_output = self.base(**x)[1] # get pooled output
|
1197 |
+
out = self.clip_text_projection(pooled_output) # get CLS token output
|
1198 |
+
elif 'gpt' in self.text_model:
|
1199 |
+
batch_size = x['input_ids'].shape[0]
|
1200 |
+
hidden_states = self.base(**x)[0] # (batch_size=4, seq_len, 768)
|
1201 |
+
|
1202 |
+
sequence_lengths = torch.ne(x['input_ids'], 0).sum(-1) - 1 # tensor([13, 14, 18, 17])
|
1203 |
+
out = hidden_states[torch.arange(batch_size, device=hidden_states.device), sequence_lengths] # [batch_size, 768] = [4, 768]
|
1204 |
+
else:
|
1205 |
+
out = self.base(**x)[0]
|
1206 |
+
out = out[:, 0, :] # get CLS token output
|
1207 |
+
|
1208 |
+
projected_vec = self.projection(out)
|
1209 |
+
|
1210 |
+
return projected_vec
|
1211 |
+
|
1212 |
+
class CLAP(nn.Module):
|
1213 |
+
def __init__(self,
|
1214 |
+
# audio
|
1215 |
+
audioenc_name: str,
|
1216 |
+
sample_rate: int,
|
1217 |
+
window_size: int,
|
1218 |
+
hop_size: int,
|
1219 |
+
mel_bins: int,
|
1220 |
+
fmin: int,
|
1221 |
+
fmax: int,
|
1222 |
+
classes_num: int,
|
1223 |
+
out_emb: int,
|
1224 |
+
# text
|
1225 |
+
text_model: str,
|
1226 |
+
transformer_embed_dim: int,
|
1227 |
+
# common
|
1228 |
+
d_proj: int,
|
1229 |
+
):
|
1230 |
+
super().__init__()
|
1231 |
+
|
1232 |
+
|
1233 |
+
self.audio_encoder = AudioEncoder(
|
1234 |
+
audioenc_name, out_emb, d_proj,
|
1235 |
+
sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num)
|
1236 |
+
|
1237 |
+
self.caption_encoder = TextEncoder(
|
1238 |
+
d_proj, text_model, transformer_embed_dim
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1242 |
+
|
1243 |
+
def forward(self, audio, text):
|
1244 |
+
audio_embed, _ = self.audio_encoder(audio)
|
1245 |
+
caption_embed = self.caption_encoder(text)
|
1246 |
+
|
1247 |
+
return caption_embed, audio_embed, self.logit_scale.exp()
|
1248 |
+
|
1249 |
+
|
1250 |
+
|
1251 |
+
# ==================================================================
|
1252 |
+
# A U D I O - P R E - P R O C E S S I N G
|
1253 |
+
# ==================================================================
|
1254 |
+
def read_audio(audio_path, resample=True):
|
1255 |
+
r"""Loads audio file or array and returns a torch tensor"""
|
1256 |
+
# Randomly sample a segment of audio_duration from the clip or pad to match duration
|
1257 |
+
audio_time_series, sample_rate = torchaudio.load(audio_path)
|
1258 |
+
|
1259 |
+
resample_rate = clapConfig.sample_rate
|
1260 |
+
if resample and resample_rate != sample_rate:
|
1261 |
+
resampler = T.Resample(sample_rate, resample_rate)
|
1262 |
+
audio_time_series = resampler(audio_time_series)
|
1263 |
+
return audio_time_series, resample_rate
|
1264 |
+
|
1265 |
+
def load_audio_into_tensor(audio_path, audio_duration, resample=False):
|
1266 |
+
r"""Loads audio file and returns raw audio."""
|
1267 |
+
# Randomly sample a segment of audio_duration from the clip or pad to match duration
|
1268 |
+
audio_time_series, sample_rate = read_audio(audio_path, resample)
|
1269 |
+
audio_time_series = audio_time_series.reshape(-1)
|
1270 |
+
|
1271 |
+
# audio_time_series is shorter than predefined audio duration,
|
1272 |
+
# so audio_time_series is extended
|
1273 |
+
if audio_duration*sample_rate >= audio_time_series.shape[0]:
|
1274 |
+
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
|
1275 |
+
audio_time_series.shape[0]))
|
1276 |
+
# Repeat audio_time_series by repeat_factor to match audio_duration
|
1277 |
+
audio_time_series = audio_time_series.repeat(repeat_factor)
|
1278 |
+
# remove excess part of audio_time_series
|
1279 |
+
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
|
1280 |
+
else:
|
1281 |
+
# audio_time_series is longer than predefined audio duration,
|
1282 |
+
# so audio_time_series is trimmed
|
1283 |
+
start_index = random.randrange(
|
1284 |
+
audio_time_series.shape[0] - audio_duration*sample_rate)
|
1285 |
+
audio_time_series = audio_time_series[start_index:start_index +
|
1286 |
+
audio_duration*sample_rate]
|
1287 |
+
return torch.FloatTensor(audio_time_series)
|
1288 |
+
|
1289 |
+
np_str_obj_array_pattern = re.compile(r'[SaUO]')
|
1290 |
+
default_collate_err_msg_format = (
|
1291 |
+
"default_collate: batch must contain tensors, numpy arrays, numbers, "
|
1292 |
+
"dicts or lists; found {}")
|
1293 |
+
|
1294 |
+
def default_collate(batch):
|
1295 |
+
r"""Puts each data field into a tensor with outer dimension batch size"""
|
1296 |
+
elem = batch[0]
|
1297 |
+
elem_type = type(elem)
|
1298 |
+
if isinstance(elem, torch.Tensor):
|
1299 |
+
out = None
|
1300 |
+
if torch.utils.data.get_worker_info() is not None:
|
1301 |
+
# If we're in a background process, concatenate directly into a
|
1302 |
+
# shared memory tensor to avoid an extra copy
|
1303 |
+
numel = sum([x.numel() for x in batch])
|
1304 |
+
storage = elem.storage()._new_shared(numel)
|
1305 |
+
out = elem.new(storage)
|
1306 |
+
return torch.stack(batch, 0, out=out)
|
1307 |
+
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
1308 |
+
and elem_type.__name__ != 'string_':
|
1309 |
+
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
|
1310 |
+
# array of string classes and object
|
1311 |
+
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
1312 |
+
raise TypeError(
|
1313 |
+
default_collate_err_msg_format.format(elem.dtype))
|
1314 |
+
|
1315 |
+
return default_collate([torch.as_tensor(b) for b in batch])
|
1316 |
+
elif elem.shape == (): # scalars
|
1317 |
+
return torch.as_tensor(batch)
|
1318 |
+
elif isinstance(elem, float):
|
1319 |
+
return torch.tensor(batch, dtype=torch.float64)
|
1320 |
+
elif isinstance(elem, int):
|
1321 |
+
return torch.tensor(batch)
|
1322 |
+
elif isinstance(elem, str):
|
1323 |
+
return batch
|
1324 |
+
elif isinstance(elem, collections.abc.Mapping):
|
1325 |
+
return {key: default_collate([d[key] for d in batch]) for key in elem}
|
1326 |
+
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
|
1327 |
+
return elem_type(*(default_collate(samples) for samples in zip(*batch)))
|
1328 |
+
elif isinstance(elem, collections.abc.Sequence):
|
1329 |
+
# check to make sure that the elements in batch have consistent size
|
1330 |
+
it = iter(batch)
|
1331 |
+
elem_size = len(next(it))
|
1332 |
+
if not all(len(elem) == elem_size for elem in it):
|
1333 |
+
raise RuntimeError(
|
1334 |
+
'each element in list of batch should be of equal size')
|
1335 |
+
transposed = zip(*batch)
|
1336 |
+
return [default_collate(samples) for samples in transposed]
|
1337 |
+
|
1338 |
+
raise TypeError(default_collate_err_msg_format.format(elem_type))
|
1339 |
+
|
1340 |
+
def preprocess_audio(audio_files, resample):
|
1341 |
+
r"""Load list of audio files and return raw audio"""
|
1342 |
+
audio_tensors = []
|
1343 |
+
for audio_file in audio_files:
|
1344 |
+
audio_tensor = load_audio_into_tensor(
|
1345 |
+
audio_file, clapConfig.duration, resample)
|
1346 |
+
audio_tensor = audio_tensor.reshape(1, -1).to(device)
|
1347 |
+
audio_tensors.append(audio_tensor)
|
1348 |
+
return default_collate(audio_tensors)
|
1349 |
+
|
1350 |
+
|
1351 |
+
|
1352 |
+
# ==================================================================
|
1353 |
+
# A U D I O - E M B E D D I N G S - H E L P E R
|
1354 |
+
# ==================================================================
|
1355 |
+
def get_audio_embeddings(audio_files: List[str], audio_encoder, resample=True):
|
1356 |
+
"""Load list of audio files and return audio embeddings"""
|
1357 |
+
preprocessed_audio = preprocess_audio(audio_files, resample)
|
1358 |
+
with torch.no_grad():
|
1359 |
+
preprocessed_audio = preprocessed_audio.reshape(
|
1360 |
+
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
|
1361 |
+
return audio_encoder(preprocessed_audio)[0]
|
1362 |
+
|
1363 |
+
|
1364 |
+
# ==================================================================
|
1365 |
+
# C L A P
|
1366 |
+
# ==================================================================
|
1367 |
+
class ClapConfig:
|
1368 |
+
# TEXT ENCODER CONFIG
|
1369 |
+
text_model = 'gpt2'
|
1370 |
+
text_len = 77
|
1371 |
+
transformer_embed_dim = 768
|
1372 |
+
freeze_text_encoder_weights = True
|
1373 |
+
|
1374 |
+
# AUDIO ENCODER CONFIG
|
1375 |
+
audioenc_name = 'HTSAT'
|
1376 |
+
out_emb = 768
|
1377 |
+
sample_rate = 44100
|
1378 |
+
duration = 7
|
1379 |
+
fmin = 50
|
1380 |
+
fmax = 8000 # 14000
|
1381 |
+
n_fft = 1024 # 1028
|
1382 |
+
hop_size = 320
|
1383 |
+
mel_bins = 64
|
1384 |
+
window_size = 1024
|
1385 |
+
|
1386 |
+
# PROJECTION SPACE CONFIG
|
1387 |
+
d_proj = 1024
|
1388 |
+
temperature = 0.003
|
1389 |
+
|
1390 |
+
# TRAINING AND EVALUATION CONFIG
|
1391 |
+
num_classes = 527
|
1392 |
+
batch_size = 1024
|
1393 |
+
demo = False
|
1394 |
+
|
1395 |
+
|
1396 |
+
clapConfig = ClapConfig()
|
1397 |
+
clap = CLAP(
|
1398 |
+
audioenc_name=clapConfig.audioenc_name,
|
1399 |
+
sample_rate=clapConfig.sample_rate,
|
1400 |
+
window_size=clapConfig.window_size,
|
1401 |
+
hop_size=clapConfig.hop_size,
|
1402 |
+
mel_bins=clapConfig.mel_bins,
|
1403 |
+
fmin=clapConfig.fmin,
|
1404 |
+
fmax=clapConfig.fmax,
|
1405 |
+
classes_num=clapConfig.num_classes,
|
1406 |
+
out_emb=clapConfig.out_emb,
|
1407 |
+
text_model=clapConfig.text_model,
|
1408 |
+
transformer_embed_dim=clapConfig.transformer_embed_dim,
|
1409 |
+
d_proj=clapConfig.d_proj
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
model_repo = "microsoft/msclap"
|
1413 |
+
model_name = {
|
1414 |
+
'2022': 'CLAP_weights_2022.pth',
|
1415 |
+
'2023': 'CLAP_weights_2023.pth',
|
1416 |
+
'clapcap': 'clapcap_weights_2023.pth'
|
1417 |
+
}
|
1418 |
+
|
1419 |
+
version = '2023'
|
1420 |
+
model_fp = hf_hub_download(model_repo, model_name[version])
|
1421 |
+
|
1422 |
+
model_state_dict = torch.load(model_fp, map_location=torch.device('cpu'))['model']
|
1423 |
+
clap.load_state_dict(model_state_dict, strict=False)
|
1424 |
+
clap.to(device)
|
1425 |
+
clap.eval()
|
1426 |
+
|
1427 |
+
clap_audio_encoder = clap.audio_encoder.eval()
|
1428 |
+
|
1429 |
+
|
1430 |
+
ENGLISH_AUDIO_DIR = r"/home/IITB/ai-at-ieor/23m1521/datasets/Vaani/Audios/English"
|
1431 |
+
audio_files = [os.path.join(ENGLISH_AUDIO_DIR, i) for i in os.listdir(ENGLISH_AUDIO_DIR) if i.endswith(".wav")]
|
1432 |
+
audio_embedding = get_audio_embeddings(audio_files, clap_audio_encoder)
|
1433 |
+
print("CLAP Audio Encoder Embeddings:", audio_embedding.shape) # [5, 1024]
|
1434 |
+
|
1435 |
+
|
1436 |
+
# ==================================================================
|
1437 |
+
# C L A P - L o R A - M O D E L
|
1438 |
+
# ==================================================================
|
1439 |
+
LoRAconfig = {
|
1440 |
+
"peft_type": "LORA",
|
1441 |
+
"task_type": "FEATURE_EXTRACTION",
|
1442 |
+
"inference_mode": False,
|
1443 |
+
"r": 16,
|
1444 |
+
"target_modules": ["qkv", "fc1", "fc2", "proj", "linear1", "linear2"],
|
1445 |
+
"lora_alpha": 32,
|
1446 |
+
"lora_dropout": 0.05,
|
1447 |
+
"fan_in_fan_out": False,
|
1448 |
+
"bias": "all",
|
1449 |
+
}
|
1450 |
+
peft_config = get_peft_config(LoRAconfig)
|
1451 |
+
|
1452 |
+
model = clap_audio_encoder
|
1453 |
+
peft_model = get_peft_model(model, peft_config)
|
1454 |
+
|
1455 |
+
peft_model.print_trainable_parameters()
|
1456 |
+
|
1457 |
+
# peft_model.base_model
|
1458 |
+
# peft_model
|
1459 |
+
|
1460 |
+
peft_clap_audio_encoder = peft_model.base_model
|
1461 |
+
audio_embedding = get_audio_embeddings(audio_files, peft_clap_audio_encoder)
|
1462 |
+
print("CLAP LoRA Audio Encoder Embeddings:", audio_embedding.shape) # [5, 1024]
|
1463 |
+
|
1464 |
+
|
1465 |
+
# ==================================================================
|
1466 |
+
# C L I P - M O D E L
|
1467 |
+
# ==================================================================
|
1468 |
+
from transformers import CLIPImageProcessorFast, CLIPImageProcessor
|
1469 |
+
clip_vision_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
1470 |
+
# clip_vision_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1471 |
+
# clip_vision_processor = CLIPImageProcessorFast.from_pretrained("openai/clip-vit-base-patch32")
|
1472 |
+
clip_vision_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1473 |
+
|
1474 |
+
image = Image.open("/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/000000039769.jpg")
|
1475 |
+
inputs = clip_vision_processor(images=image, return_tensors="pt")
|
1476 |
+
print("CLIP input image:", inputs['pixel_values'].shape)
|
1477 |
+
# input_data = {'pixel_values': inputs}
|
1478 |
+
|
1479 |
+
IMAGE_SIZE = 224
|
1480 |
+
dummy_input = torch.randn(1, 3, IMAGE_SIZE, IMAGE_SIZE) # [1, 3, 224, 224]
|
1481 |
+
# dummy_input_data = {'pixel_values': dummy_input}
|
1482 |
+
|
1483 |
+
# class VisionModelWrapper(nn.Module):
|
1484 |
+
# def __init__(self, peft_model):
|
1485 |
+
# super().__init__()
|
1486 |
+
# self.model = peft_model.base_model
|
1487 |
+
|
1488 |
+
# def forward(self, x):
|
1489 |
+
# return self.model(pixel_values=x).last_hidden_state
|
1490 |
+
|
1491 |
+
# wrapped_model = VisionModelWrapper(peft_model)
|
1492 |
+
# output = wrapped_model(input_data)
|
1493 |
+
output = clip_vision_model(inputs['pixel_values'])
|
1494 |
+
print("CLIP Image Encoder Embeddings:", output.last_hidden_state.shape) # [1, 50, 768]
|
1495 |
+
print("CLIP Image Encoder Pooled Output:", output.pooler_output.shape) # [1, 768]
|
Vaani/Img_Audio_Alignment/audio_embedding.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71297113c0308ee06bedc099a3a8ebb889a76bfc987ef0872bdba9283bf1a3b9
|
3 |
+
size 20608
|
Vaani/Img_Audio_Alignment/audio_embedding_dismantled_msclap.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e015b9f4b8babb25e50c3557e8a2dfd5a09f2a659ed443d7db9a30b51ab40e3d
|
3 |
+
size 20608
|
Vaani/Img_Audio_Alignment/audio_embedding_dismantled_msclap_untrained.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a2090189a3c657c42ffa73cffdddce10671b43cb664d6b3dae2899d8500cc3e
|
3 |
+
size 20608
|
Vaani/SDFT/checkpoints/checkpoint.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2866661866
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc0ddf905f5bac4366d70408fabf6f224ed2056d9a3290a227983839635ff3d4
|
3 |
size 2866661866
|
Vaani/SDFT/samples/inference_epoch10.png
ADDED
![]() |
Vaani/SDFT/samples/inference_epoch9.png
ADDED
![]() |
Vaani/Vaani-Audio-Image-Hindi.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
audio_path,referenceImage,gender,state,district
|
Vaani/VaaniLDM/ddpm_ckpt_epoch55.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb8ca92e67d7a7ee3193ad69652374aa8034207c6a7cb5d8bebd8b20863bac20
|
3 |
+
size 593245226
|
Vaani/VaaniLDM/ddpm_ckpt_epoch56.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccf36158867f9e8807d9a3f9b20f7b63d51f3cdee799ba3ad86d178c2bda63c6
|
3 |
+
size 593245290
|
Vaani/VaaniLDM/ldmH_ckpt_epoch49.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ad202fa634fb05bb389a7d00162b60cb426bee5077cbacd53369f27f7c00b0
|
3 |
+
size 2476369898
|
Vaani/VaaniLDM/ldmH_ckpt_epoch50.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0845ce9ab94c92ff08afbc6066c39524f95f5dda2099731f964957c8adde96b
|
3 |
+
size 2476369962
|
Vaani/VaaniLDM/samples/x0_0.png
CHANGED
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
Vaani/VaaniLDM/samples/x0_1.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_10.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_100.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_101.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_102.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_103.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_104.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_105.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_106.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_107.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_108.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_109.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_11.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_110.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_111.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_112.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_113.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_114.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_115.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_116.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_117.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_118.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_119.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_12.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_120.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_121.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_122.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_123.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_124.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_125.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_126.png
CHANGED
![]() |
![]() |
Vaani/VaaniLDM/samples/x0_127.png
CHANGED
![]() |
![]() |