LDM-train-pass, checking results
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +102 -0
- .gitignore +25 -0
- .vscode/settings.json +3 -0
- DDPM/CeleabA.parquet +3 -0
- DDPM/_1_Mnist.ipynb +546 -0
- DDPM/_3_Activation-Checkpointing-Sequential.ipynb +216 -0
- DDPM/_4_Activation-Checkpointing-VAE.ipynb +444 -0
- DDPM/_5_Activation-Ckpt-VAE-CelebA.ipynb +0 -0
- Imgui/demo-newstyle.py +298 -0
- Imgui/demo.py +301 -0
- Imgui/imgui.ini +25 -0
- LDM/notebooks/_1_Main.ipynb +1481 -0
- LDM/notebooks/_2_Rough-LPIPS.ipynb +0 -0
- LDM/scripts/Main.py +2273 -0
- LDM/scripts/_1_Lpips.py +56 -0
- LDM/scripts/config.yaml +65 -0
- Vaani/39448.err +351 -0
- Vaani/39448.out +11 -0
- Vaani/IISc_VaaniProject_M_AP_Anantpur_00014520_1544240000_APATSR_190315_1880_16300.wav +3 -0
- Vaani/LDM/__init__.py +0 -0
- Vaani/LDM/notebooks/Vaani-subplot.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-15_16.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-30_16.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-4.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-5.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6_16.png +3 -0
- Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-8_16.png +3 -0
- Vaani/LDM/notebooks/_1_Main.ipynb +0 -0
- Vaani/LDM/notebooks/_2_Rough-LPIPS.ipynb +0 -0
- Vaani/LDM/scripts/AE-training.log +126 -0
- Vaani/LDM/scripts/Main.py +2303 -0
- Vaani/LDM/scripts/SLURM-AE-Train.sh +21 -0
- Vaani/LDM/scripts/SLURM-AE-Train2.sh +21 -0
- Vaani/LDM/scripts/Vaani-VQVAE-Main.py +1151 -0
- Vaani/LDM/scripts/VaaniLDM/vqvaq_ckpt-15.pth +3 -0
- Vaani/LDM/scripts/VaaniLDM/vqvaq_ckpt.pth +3 -0
- Vaani/LDM/scripts/_1_Lpips.py +56 -0
- Vaani/LDM/scripts/__init__.py +0 -0
- Vaani/LDM/scripts/config.yaml +65 -0
- Vaani/LDM/scripts/dotdict.py +53 -0
- Vaani/SLURM_test.sh +20 -0
- Vaani/VQVAE_architecture.svg +0 -0
- Vaani/VQVAE_summary.txt +438 -0
- Vaani/VQVAE_training.sh +19 -0
- Vaani/Vaani-Audio-Image-English.csv +0 -0
- Vaani/Vaani-Images-Audio-MetaData.parquet +3 -0
- Vaani/Vaani-subplot.png +3 -0
- Vaani/VaaniLDM/ddpm_ckpt_epoch14.pt +3 -0
- Vaani/VaaniLDM/ddpm_ckpt_epoch15.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,105 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Vaani/IISc_VaaniProject_M_AP_Anantpur_00014520_1544240000_APATSR_190315_1880_16300.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Vaani/LDM/notebooks/Vaani-subplot.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-15_16.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-30_16.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-4.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-5.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6_16.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-8_16.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
Vaani/Vaani-subplot.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
Vaani/VaaniLDM/samples/x0_0.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-10_16.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-11_16.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-12_16.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-13_16.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-14_16.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-15_16.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-16_16.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-17_16.png filter=lfs diff=lfs merge=lfs -text
|
55 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-18_16.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-19_16.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-20_16.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-21_16.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-22_16.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-23_16.png filter=lfs diff=lfs merge=lfs -text
|
61 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-24_16.png filter=lfs diff=lfs merge=lfs -text
|
62 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-25_16.png filter=lfs diff=lfs merge=lfs -text
|
63 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-26_16.png filter=lfs diff=lfs merge=lfs -text
|
64 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-27_16.png filter=lfs diff=lfs merge=lfs -text
|
65 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-28_16.png filter=lfs diff=lfs merge=lfs -text
|
66 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-29_16.png filter=lfs diff=lfs merge=lfs -text
|
67 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-31_16.png filter=lfs diff=lfs merge=lfs -text
|
68 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-32_16.png filter=lfs diff=lfs merge=lfs -text
|
69 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-33_16.png filter=lfs diff=lfs merge=lfs -text
|
70 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-34_16.png filter=lfs diff=lfs merge=lfs -text
|
71 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-36_16.png filter=lfs diff=lfs merge=lfs -text
|
72 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-37_16.png filter=lfs diff=lfs merge=lfs -text
|
73 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-38_16.png filter=lfs diff=lfs merge=lfs -text
|
74 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-39_16.png filter=lfs diff=lfs merge=lfs -text
|
75 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-40_16.png filter=lfs diff=lfs merge=lfs -text
|
76 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-41_16.png filter=lfs diff=lfs merge=lfs -text
|
77 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-42_16.png filter=lfs diff=lfs merge=lfs -text
|
78 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-43_16.png filter=lfs diff=lfs merge=lfs -text
|
79 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-44_16.png filter=lfs diff=lfs merge=lfs -text
|
80 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-45_16.png filter=lfs diff=lfs merge=lfs -text
|
81 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-46_16.png filter=lfs diff=lfs merge=lfs -text
|
82 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-47_16.png filter=lfs diff=lfs merge=lfs -text
|
83 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-48_16.png filter=lfs diff=lfs merge=lfs -text
|
84 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-49_16.png filter=lfs diff=lfs merge=lfs -text
|
85 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-51_16.png filter=lfs diff=lfs merge=lfs -text
|
86 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-52_16.png filter=lfs diff=lfs merge=lfs -text
|
87 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-53_16.png filter=lfs diff=lfs merge=lfs -text
|
88 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-54_16.png filter=lfs diff=lfs merge=lfs -text
|
89 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-55_16.png filter=lfs diff=lfs merge=lfs -text
|
90 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-56_16.png filter=lfs diff=lfs merge=lfs -text
|
91 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-57_16.png filter=lfs diff=lfs merge=lfs -text
|
92 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-58_16.png filter=lfs diff=lfs merge=lfs -text
|
93 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-59_16.png filter=lfs diff=lfs merge=lfs -text
|
94 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-60_16.png filter=lfs diff=lfs merge=lfs -text
|
95 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-61_16.png filter=lfs diff=lfs merge=lfs -text
|
96 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-62_16.png filter=lfs diff=lfs merge=lfs -text
|
97 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-63_16.png filter=lfs diff=lfs merge=lfs -text
|
98 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-64_16.png filter=lfs diff=lfs merge=lfs -text
|
99 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-65_16.png filter=lfs diff=lfs merge=lfs -text
|
100 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-66_16.png filter=lfs diff=lfs merge=lfs -text
|
101 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-67_16.png filter=lfs diff=lfs merge=lfs -text
|
102 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-68_16.png filter=lfs diff=lfs merge=lfs -text
|
103 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-69_16.png filter=lfs diff=lfs merge=lfs -text
|
104 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-71_16.png filter=lfs diff=lfs merge=lfs -text
|
105 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-73_16.png filter=lfs diff=lfs merge=lfs -text
|
106 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-74_16.png filter=lfs diff=lfs merge=lfs -text
|
107 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-75_16.png filter=lfs diff=lfs merge=lfs -text
|
108 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-76_16.png filter=lfs diff=lfs merge=lfs -text
|
109 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-77_16.png filter=lfs diff=lfs merge=lfs -text
|
110 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-78_16.png filter=lfs diff=lfs merge=lfs -text
|
111 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-79_16.png filter=lfs diff=lfs merge=lfs -text
|
112 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-81_16.png filter=lfs diff=lfs merge=lfs -text
|
113 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-82_16.png filter=lfs diff=lfs merge=lfs -text
|
114 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-83_16.png filter=lfs diff=lfs merge=lfs -text
|
115 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-84_16.png filter=lfs diff=lfs merge=lfs -text
|
116 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-85_16.png filter=lfs diff=lfs merge=lfs -text
|
117 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-86_16.png filter=lfs diff=lfs merge=lfs -text
|
118 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-87_16.png filter=lfs diff=lfs merge=lfs -text
|
119 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-88_16.png filter=lfs diff=lfs merge=lfs -text
|
120 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-89_16.png filter=lfs diff=lfs merge=lfs -text
|
121 |
+
Vaani/VaaniLDM/vqvae_recon/reconstructed_images_EP-9_16.png filter=lfs diff=lfs merge=lfs -text
|
122 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-0_16.png filter=lfs diff=lfs merge=lfs -text
|
123 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-1_16.png filter=lfs diff=lfs merge=lfs -text
|
124 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-2_16.png filter=lfs diff=lfs merge=lfs -text
|
125 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-3_16.png filter=lfs diff=lfs merge=lfs -text
|
126 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-4_16.png filter=lfs diff=lfs merge=lfs -text
|
127 |
+
Vaani/VaaniLDM_Acc/vqvae_recon/reconstructed_images_EP-5_16.png filter=lfs diff=lfs merge=lfs -text
|
128 |
+
Vaani/_1_data.ipynb filter=lfs diff=lfs merge=lfs -text
|
129 |
+
Vaani/audio_urls.txt filter=lfs diff=lfs merge=lfs -text
|
130 |
+
Vaani/finalMETA.csv filter=lfs diff=lfs merge=lfs -text
|
131 |
+
Vaani/image_metadata_summary.csv filter=lfs diff=lfs merge=lfs -text
|
132 |
+
Vaani/images_urls.txt filter=lfs diff=lfs merge=lfs -text
|
133 |
+
Vaani/output_image.png filter=lfs diff=lfs merge=lfs -text
|
134 |
+
Vaani/output_image2.png filter=lfs diff=lfs merge=lfs -text
|
135 |
+
Vaani/sampleJSON.csv filter=lfs diff=lfs merge=lfs -text
|
136 |
+
Vaani/sampleJSON.json filter=lfs diff=lfs merge=lfs -text
|
137 |
+
tools/__pycache__/pynvml.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Ignore image files
|
2 |
+
# *.jpg
|
3 |
+
# *.jpeg
|
4 |
+
# *.png
|
5 |
+
# *.gif
|
6 |
+
# *.bmp
|
7 |
+
# *.tiff
|
8 |
+
# *.webp
|
9 |
+
# *.svg
|
10 |
+
|
11 |
+
# # Ignore specified data files
|
12 |
+
# *.pth
|
13 |
+
# *.pt
|
14 |
+
# *.safetensors
|
15 |
+
# *.npz
|
16 |
+
# *.npy
|
17 |
+
# *.csv
|
18 |
+
# *.parquet
|
19 |
+
# *.json
|
20 |
+
# *.err
|
21 |
+
# *.out
|
22 |
+
|
23 |
+
|
24 |
+
# Vaani/audio_urls.txt
|
25 |
+
# Vaani/images_urls.txt
|
.vscode/settings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto-scroll.enabled": false
|
3 |
+
}
|
DDPM/CeleabA.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f41418ec864a1ceee3e4f3c4863f758b534cf434f848c64a4d1df976d10f241
|
3 |
+
size 3396938
|
DDPM/_1_Mnist.ipynb
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"import torch.nn as nn\n",
|
11 |
+
"import torch.optim as optim\n",
|
12 |
+
"import torch.utils.checkpoint as checkpoint\n",
|
13 |
+
"from torchvision import datasets, transforms\n",
|
14 |
+
"from torch.utils.data import DataLoader"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 2,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"import time\n",
|
24 |
+
"import nvidia_smi\n",
|
25 |
+
"import prettytable as pt\n",
|
26 |
+
"\n",
|
27 |
+
"def gputil_decorator(func):\n",
|
28 |
+
" def wrapper(*args, **kwargs):\n",
|
29 |
+
" import nvidia_smi\n",
|
30 |
+
" import prettytable as pt\n",
|
31 |
+
"\n",
|
32 |
+
" try:\n",
|
33 |
+
" table = pt.PrettyTable(['Devices','Mem Free','GPU-util','GPU-mem'])\n",
|
34 |
+
" nvidia_smi.nvmlInit()\n",
|
35 |
+
" deviceCount = nvidia_smi.nvmlDeviceGetCount()\n",
|
36 |
+
" for i in range(deviceCount):\n",
|
37 |
+
" handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)\n",
|
38 |
+
" res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)\n",
|
39 |
+
" mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)\n",
|
40 |
+
" table.add_row([i, f\"{mem.free/1024**2:5.2f}MB/{mem.total/1024**2:5.2f}MB\", f\"{res.gpu:3.1%}\", f\"{res.memory:3.1%}\"])\n",
|
41 |
+
"\n",
|
42 |
+
" except nvidia_smi.NVMLError as error:\n",
|
43 |
+
" print(error)\n",
|
44 |
+
"\n",
|
45 |
+
" print(table)\n",
|
46 |
+
" return func(*args, **kwargs)\n",
|
47 |
+
" return wrapper\n",
|
48 |
+
"\n",
|
49 |
+
"def gputil_decorator2(func):\n",
|
50 |
+
" def wrapper(*args, **kwargs):\n",
|
51 |
+
" try:\n",
|
52 |
+
" table = pt.PrettyTable(['Devices', 'Mem Free', 'GPU-util', 'GPU-mem'])\n",
|
53 |
+
" nvidia_smi.nvmlInit()\n",
|
54 |
+
" device_count = nvidia_smi.nvmlDeviceGetCount()\n",
|
55 |
+
" for i in range(device_count):\n",
|
56 |
+
" handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)\n",
|
57 |
+
" res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)\n",
|
58 |
+
" mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)\n",
|
59 |
+
" table.add_row([\n",
|
60 |
+
" i,\n",
|
61 |
+
" f\"{mem.free / 1024 ** 2:5.2f}MB/{mem.total / 1024 ** 2:5.2f}MB\",\n",
|
62 |
+
" f\"{res.gpu:3.1%}\",\n",
|
63 |
+
" f\"{res.memory:3.1%}\"\n",
|
64 |
+
" ])\n",
|
65 |
+
" nvidia_smi.nvmlShutdown()\n",
|
66 |
+
" except nvidia_smi.NVMLError as error:\n",
|
67 |
+
" print(f\"Error fetching GPU stats: {error}\")\n",
|
68 |
+
" print(table)\n",
|
69 |
+
" return func(*args, **kwargs)\n",
|
70 |
+
" return wrapper"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"import torch\n",
|
80 |
+
"import torch.nn as nn\n",
|
81 |
+
"import torch.optim as optim\n",
|
82 |
+
"from torchvision import datasets, transforms\n",
|
83 |
+
"from torch.utils.data import DataLoader\n",
|
84 |
+
"import torchvision.models as models\n",
|
85 |
+
"import threading\n",
|
86 |
+
"import time\n",
|
87 |
+
"import nvidia_smi\n",
|
88 |
+
"import prettytable as pt\n",
|
89 |
+
"import os\n",
|
90 |
+
"\n",
|
91 |
+
"# GPU stats decorator\n",
|
92 |
+
"def gputil_decorator2(func):\n",
|
93 |
+
" def wrapper(*args, **kwargs):\n",
|
94 |
+
" try:\n",
|
95 |
+
" table = pt.PrettyTable(['Devices', 'Mem Free', 'GPU-util', 'GPU-mem'])\n",
|
96 |
+
" nvidia_smi.nvmlInit()\n",
|
97 |
+
" device_count = nvidia_smi.nvmlDeviceGetCount()\n",
|
98 |
+
" for i in range(device_count):\n",
|
99 |
+
" handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)\n",
|
100 |
+
" res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)\n",
|
101 |
+
" mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)\n",
|
102 |
+
" table.add_row([\n",
|
103 |
+
" i,\n",
|
104 |
+
" f\"{mem.free / 1024 ** 2:5.2f}MB/{mem.total / 1024 ** 2:5.2f}MB\",\n",
|
105 |
+
" f\"{res.gpu:3.1%}\",\n",
|
106 |
+
" f\"{res.memory:3.1%}\"\n",
|
107 |
+
" ])\n",
|
108 |
+
" nvidia_smi.nvmlShutdown()\n",
|
109 |
+
" except nvidia_smi.NVMLError as error:\n",
|
110 |
+
" print(f\"Error fetching GPU stats: {error}\")\n",
|
111 |
+
" print(table)\n",
|
112 |
+
" return func(*args, **kwargs)\n",
|
113 |
+
" return wrapper\n",
|
114 |
+
"\n",
|
115 |
+
"# Function to print GPU stats every second\n",
|
116 |
+
"def print_gpu_stats(epoch_info):\n",
|
117 |
+
" while not stop_event.is_set():\n",
|
118 |
+
" os.system('cls' if os.name == 'nt' else 'clear') # Clear the terminal\n",
|
119 |
+
" gputil_decorator2(lambda: None)() # Call the decorator to print stats\n",
|
120 |
+
" print(epoch_info) # Print epoch information\n",
|
121 |
+
" time.sleep(1) # Wait for 1 second\n",
|
122 |
+
"\n",
|
123 |
+
"# Define the model\n",
|
124 |
+
"class EfficientNetCIFAR10(nn.Module):\n",
|
125 |
+
" def __init__(self, num_classes=10):\n",
|
126 |
+
" super(EfficientNetCIFAR10, self).__init__()\n",
|
127 |
+
" self.efficientnet = models.efficientnet_v2_l(weights=models.EfficientNet_V2_L_Weights.IMAGENET1K_V1)\n",
|
128 |
+
" self.efficientnet.classifier[1] = nn.Linear(self.efficientnet.classifier[1].in_features, num_classes)\n",
|
129 |
+
"\n",
|
130 |
+
" def forward(self, x):\n",
|
131 |
+
" return self.efficientnet(x)\n",
|
132 |
+
"\n",
|
133 |
+
"# Load CIFAR-10 dataset\n",
|
134 |
+
"transform = transforms.Compose([\n",
|
135 |
+
" transforms.ToTensor(),\n",
|
136 |
+
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
|
137 |
+
"])\n",
|
138 |
+
"\n",
|
139 |
+
"train_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=True, download=True, transform=transform)\n",
|
140 |
+
"train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True, num_workers=64)\n",
|
141 |
+
"\n",
|
142 |
+
"test_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=False, download=True, transform=transform)\n",
|
143 |
+
"test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=64)\n",
|
144 |
+
"\n",
|
145 |
+
"# Initialize model, loss function, and optimizer\n",
|
146 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
147 |
+
"model = EfficientNetCIFAR10(num_classes=10).to(device)\n",
|
148 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
149 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
|
150 |
+
"\n",
|
151 |
+
"# Training loop\n",
|
152 |
+
"def train(model, train_loader, criterion, optimizer, device):\n",
|
153 |
+
" model.train()\n",
|
154 |
+
" running_loss = 0.0\n",
|
155 |
+
" for inputs, labels in train_loader:\n",
|
156 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
157 |
+
"\n",
|
158 |
+
" optimizer.zero_grad()\n",
|
159 |
+
" outputs = model(inputs)\n",
|
160 |
+
" loss = criterion(outputs, labels)\n",
|
161 |
+
" loss.backward()\n",
|
162 |
+
" optimizer.step()\n",
|
163 |
+
"\n",
|
164 |
+
" running_loss += loss.item()\n",
|
165 |
+
" return running_loss / len(train_loader)\n",
|
166 |
+
"\n",
|
167 |
+
"# Testing loop\n",
|
168 |
+
"def test(model, test_loader, criterion, device):\n",
|
169 |
+
" model.eval()\n",
|
170 |
+
" correct = 0\n",
|
171 |
+
" total = 0\n",
|
172 |
+
" with torch.no_grad():\n",
|
173 |
+
" for inputs, labels in test_loader:\n",
|
174 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
175 |
+
" outputs = model(inputs)\n",
|
176 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
177 |
+
" total += labels.size(0)\n",
|
178 |
+
" correct += (predicted == labels).sum().item()\n",
|
179 |
+
" return correct / total\n",
|
180 |
+
"\n",
|
181 |
+
"# Start the GPU stats printing thread\n",
|
182 |
+
"stop_event = threading.Event()\n",
|
183 |
+
"epoch_info = \"\" # Placeholder for epoch information\n",
|
184 |
+
"gpu_stats_thread = threading.Thread(target=print_gpu_stats, args=(epoch_info,))\n",
|
185 |
+
"gpu_stats_thread.start()\n",
|
186 |
+
"\n",
|
187 |
+
"# Train and test the model\n",
|
188 |
+
"num_epochs = 5\n",
|
189 |
+
"for epoch in range(num_epochs):\n",
|
190 |
+
" train_loss = train(model, train_loader, criterion, optimizer, device)\n",
|
191 |
+
" test_acc = test(model, test_loader, criterion, device)\n",
|
192 |
+
" epoch_info = f\"Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}\"\n",
|
193 |
+
" print_gpu_stats(epoch_info) # Print epoch information\n",
|
194 |
+
"\n",
|
195 |
+
"# Stop the GPU stats printing thread\n",
|
196 |
+
"stop_event.set()\n",
|
197 |
+
"gpu_stats_thread.join()"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 2,
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "stdout",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"Files already downloaded and verified\n",
|
210 |
+
"Files already downloaded and verified\n"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"# Define a simple CNN model\n",
|
216 |
+
"class SimpleCNN(nn.Module):\n",
|
217 |
+
" def __init__(self):\n",
|
218 |
+
" super(SimpleCNN, self).__init__()\n",
|
219 |
+
" self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)\n",
|
220 |
+
" self.relu1 = nn.ReLU()\n",
|
221 |
+
" self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
|
222 |
+
" self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)\n",
|
223 |
+
" self.relu2 = nn.ReLU()\n",
|
224 |
+
" self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)\n",
|
225 |
+
" self.fc1 = nn.Linear(32 * 8 * 8, 256)\n",
|
226 |
+
" self.relu3 = nn.ReLU()\n",
|
227 |
+
" self.fc2 = nn.Linear(256, 10) # CIFAR-10 has 10 classes\n",
|
228 |
+
"\n",
|
229 |
+
" def forward(self, x):\n",
|
230 |
+
" # Apply gradient/activation checkpointing to the second convolutional block\n",
|
231 |
+
" x = self.conv1(x)\n",
|
232 |
+
" x = self.relu1(x)\n",
|
233 |
+
" x = self.pool1(x)\n",
|
234 |
+
" x = checkpoint.checkpoint(self._conv2_block, x) # Checkpointing here\n",
|
235 |
+
" x = x.view(x.size(0), -1) # Flatten\n",
|
236 |
+
" x = self.fc1(x)\n",
|
237 |
+
" x = self.relu3(x)\n",
|
238 |
+
" x = self.fc2(x)\n",
|
239 |
+
" return x\n",
|
240 |
+
"\n",
|
241 |
+
" def _conv2_block(self, x):\n",
|
242 |
+
" # Helper function for the second convolutional block\n",
|
243 |
+
" x = self.conv2(x)\n",
|
244 |
+
" x = self.relu2(x)\n",
|
245 |
+
" x = self.pool2(x)\n",
|
246 |
+
" return x\n",
|
247 |
+
"\n",
|
248 |
+
"# Load CIFAR-10 dataset\n",
|
249 |
+
"transform = transforms.Compose([\n",
|
250 |
+
" transforms.ToTensor(),\n",
|
251 |
+
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
|
252 |
+
"])\n",
|
253 |
+
"\n",
|
254 |
+
"train_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=True, download=True, transform=transform)\n",
|
255 |
+
"train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)\n",
|
256 |
+
"\n",
|
257 |
+
"test_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=False, download=True, transform=transform)\n",
|
258 |
+
"test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)\n",
|
259 |
+
"\n",
|
260 |
+
"# Initialize model, loss function, and optimizer\n",
|
261 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
262 |
+
"model = SimpleCNN().to(device)\n",
|
263 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
264 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.001)"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": null,
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [
|
272 |
+
{
|
273 |
+
"name": "stdout",
|
274 |
+
"output_type": "stream",
|
275 |
+
"text": [
|
276 |
+
"+---------+-----------------------+----------+---------+\n",
|
277 |
+
"| Devices | Mem Free | GPU-util | GPU-mem |\n",
|
278 |
+
"+---------+-----------------------+----------+---------+\n",
|
279 |
+
"| 0 | 23416.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
280 |
+
"| 1 | 944.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
281 |
+
"+---------+-----------------------+----------+---------+\n"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"name": "stderr",
|
286 |
+
"output_type": "stream",
|
287 |
+
"text": [
|
288 |
+
"/home/23m1521/.conda/envs/cuda_env2/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.\n",
|
289 |
+
" return fn(*args, **kwargs)\n",
|
290 |
+
"/home/23m1521/.conda/envs/cuda_env2/lib/python3.12/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.\n",
|
291 |
+
" with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]\n",
|
292 |
+
"/home/23m1521/.conda/envs/cuda_env2/lib/python3.12/site-packages/torch/utils/checkpoint.py:92: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
293 |
+
" warnings.warn(\n"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"name": "stdout",
|
298 |
+
"output_type": "stream",
|
299 |
+
"text": [
|
300 |
+
"Epoch [1/5], Loss: 1.3807, Test Accuracy: 0.5572\n",
|
301 |
+
"+---------+-----------------------+----------+---------+\n",
|
302 |
+
"| Devices | Mem Free | GPU-util | GPU-mem |\n",
|
303 |
+
"+---------+-----------------------+----------+---------+\n",
|
304 |
+
"| 0 | 22732.75MB/24564.00MB | 300.0% | 100.0% |\n",
|
305 |
+
"| 1 | 944.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
306 |
+
"+---------+-----------------------+----------+---------+\n",
|
307 |
+
"Epoch [2/5], Loss: 1.0334, Test Accuracy: 0.6553\n",
|
308 |
+
"+---------+-----------------------+----------+---------+\n",
|
309 |
+
"| Devices | Mem Free | GPU-util | GPU-mem |\n",
|
310 |
+
"+---------+-----------------------+----------+---------+\n",
|
311 |
+
"| 0 | 22732.75MB/24564.00MB | 300.0% | 100.0% |\n",
|
312 |
+
"| 1 | 944.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
313 |
+
"+---------+-----------------------+----------+---------+\n",
|
314 |
+
"Epoch [3/5], Loss: 0.8787, Test Accuracy: 0.6824\n",
|
315 |
+
"+---------+-----------------------+----------+---------+\n",
|
316 |
+
"| Devices | Mem Free | GPU-util | GPU-mem |\n",
|
317 |
+
"+---------+-----------------------+----------+---------+\n",
|
318 |
+
"| 0 | 22732.75MB/24564.00MB | 200.0% | 100.0% |\n",
|
319 |
+
"| 1 | 944.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
320 |
+
"+---------+-----------------------+----------+---------+\n",
|
321 |
+
"Epoch [4/5], Loss: 0.7545, Test Accuracy: 0.6885\n",
|
322 |
+
"+---------+-----------------------+----------+---------+\n",
|
323 |
+
"| Devices | Mem Free | GPU-util | GPU-mem |\n",
|
324 |
+
"+---------+-----------------------+----------+---------+\n",
|
325 |
+
"| 0 | 22732.75MB/24564.00MB | 300.0% | 100.0% |\n",
|
326 |
+
"| 1 | 944.75MB/24564.00MB | 0.0% | 0.0% |\n",
|
327 |
+
"+---------+-----------------------+----------+---------+\n",
|
328 |
+
"Epoch [5/5], Loss: 0.6537, Test Accuracy: 0.6989\n"
|
329 |
+
]
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"source": [
|
333 |
+
"# Training loop\n",
|
334 |
+
"@gputil_decorator2\n",
|
335 |
+
"def train(model, train_loader, criterion, optimizer, device):\n",
|
336 |
+
" model.train()\n",
|
337 |
+
" running_loss = 0.0\n",
|
338 |
+
" for inputs, labels in train_loader:\n",
|
339 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
340 |
+
"\n",
|
341 |
+
" optimizer.zero_grad()\n",
|
342 |
+
" outputs = model(inputs)\n",
|
343 |
+
" loss = criterion(outputs, labels)\n",
|
344 |
+
" loss.backward()\n",
|
345 |
+
" optimizer.step()\n",
|
346 |
+
"\n",
|
347 |
+
" running_loss += loss.item()\n",
|
348 |
+
" return running_loss / len(train_loader)\n",
|
349 |
+
"\n",
|
350 |
+
"# Testing loop\n",
|
351 |
+
"def test(model, test_loader, criterion, device):\n",
|
352 |
+
" model.eval()\n",
|
353 |
+
" correct = 0\n",
|
354 |
+
" total = 0\n",
|
355 |
+
" with torch.no_grad():\n",
|
356 |
+
" for inputs, labels in test_loader:\n",
|
357 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
358 |
+
" outputs = model(inputs)\n",
|
359 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
360 |
+
" total += labels.size(0)\n",
|
361 |
+
" correct += (predicted == labels).sum().item()\n",
|
362 |
+
" return correct / total\n",
|
363 |
+
"\n",
|
364 |
+
"# Train and test the model\n",
|
365 |
+
"num_epochs = 5\n",
|
366 |
+
"for epoch in range(num_epochs):\n",
|
367 |
+
" train_loss = train(model, train_loader, criterion, optimizer, device)\n",
|
368 |
+
" test_acc = test(model, test_loader, criterion, device)\n",
|
369 |
+
" print(f\"Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}\")"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"cell_type": "code",
|
374 |
+
"execution_count": 16,
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"data": {
|
379 |
+
"text/plain": [
|
380 |
+
"([0.023805618286132812, 0.0],\n",
|
381 |
+
" [0.04064750671386719, 0.0],\n",
|
382 |
+
" [23.679443359375, 23.679443359375])"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
"execution_count": 16,
|
386 |
+
"metadata": {},
|
387 |
+
"output_type": "execute_result"
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"source": [
|
391 |
+
"def get_gpu_memory_usage():\n",
|
392 |
+
" allocated_memory = []\n",
|
393 |
+
" free_memory = []\n",
|
394 |
+
" total_memory = []\n",
|
395 |
+
" if torch.cuda.is_available():\n",
|
396 |
+
" for i in range(torch.cuda.device_count()):\n",
|
397 |
+
" device = torch.device(f\"cuda:{i}\")\n",
|
398 |
+
" total = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3) # GB\n",
|
399 |
+
" allocated = torch.cuda.memory_allocated(device) / (1024 ** 3) # GB\n",
|
400 |
+
" reserved = torch.cuda.memory_reserved(device) / (1024 ** 3) # GB\n",
|
401 |
+
" free = reserved - allocated\n",
|
402 |
+
" total_memory.append(total)\n",
|
403 |
+
" allocated_memory.append(allocated)\n",
|
404 |
+
" free_memory.append(free)\n",
|
405 |
+
" return allocated_memory, free_memory, total_memory\n",
|
406 |
+
"get_gpu_memory_usage()"
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"execution_count": 1,
|
412 |
+
"metadata": {},
|
413 |
+
"outputs": [
|
414 |
+
{
|
415 |
+
"name": "stdout",
|
416 |
+
"output_type": "stream",
|
417 |
+
"text": [
|
418 |
+
"Files already downloaded and verified\n",
|
419 |
+
"Files already downloaded and verified\n"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"name": "stderr",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"Downloading: \"https://download.pytorch.org/models/efficientnet_v2_l-59c71312.pth\" to /home/23m1521/.cache/torch/hub/checkpoints/efficientnet_v2_l-59c71312.pth\n",
|
427 |
+
"100%|██████████| 455M/455M [00:04<00:00, 117MB/s] \n"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"name": "stdout",
|
432 |
+
"output_type": "stream",
|
433 |
+
"text": [
|
434 |
+
"Epoch [1/5], Loss: 1.0192, Test Accuracy: 0.8080\n",
|
435 |
+
"Epoch [2/5], Loss: 0.4376, Test Accuracy: 0.8487\n",
|
436 |
+
"Epoch [3/5], Loss: 0.2590, Test Accuracy: 0.8334\n",
|
437 |
+
"Epoch [4/5], Loss: 0.1696, Test Accuracy: 0.8626\n",
|
438 |
+
"Epoch [5/5], Loss: 0.1257, Test Accuracy: 0.8621\n"
|
439 |
+
]
|
440 |
+
}
|
441 |
+
],
|
442 |
+
"source": [
|
443 |
+
"import torch\n",
|
444 |
+
"import torch.nn as nn\n",
|
445 |
+
"import torch.optim as optim\n",
|
446 |
+
"import torch.utils.checkpoint as checkpoint\n",
|
447 |
+
"from torchvision import datasets, transforms\n",
|
448 |
+
"from torch.utils.data import DataLoader\n",
|
449 |
+
"\n",
|
450 |
+
"import torch\n",
|
451 |
+
"import torch.nn as nn\n",
|
452 |
+
"import torchvision.models as models\n",
|
453 |
+
"\n",
|
454 |
+
"class EfficientNetCIFAR10(nn.Module):\n",
|
455 |
+
" def __init__(self, num_classes=10):\n",
|
456 |
+
" super(EfficientNetCIFAR10, self).__init__()\n",
|
457 |
+
" \n",
|
458 |
+
" # Load a pre-trained EfficientNet model\n",
|
459 |
+
" self.efficientnet = models.efficientnet_v2_l(weights=models.EfficientNet_V2_L_Weights.IMAGENET1K_V1)\n",
|
460 |
+
" \n",
|
461 |
+
" # Modify the classifier head for CIFAR-10 (10 classes)\n",
|
462 |
+
" self.efficientnet.classifier[1] = nn.Linear(self.efficientnet.classifier[1].in_features, num_classes)\n",
|
463 |
+
"\n",
|
464 |
+
" def forward(self, x):\n",
|
465 |
+
" return self.efficientnet(x)\n",
|
466 |
+
"\n",
|
467 |
+
"\n",
|
468 |
+
"# Load CIFAR-10 dataset\n",
|
469 |
+
"transform = transforms.Compose([\n",
|
470 |
+
" transforms.ToTensor(),\n",
|
471 |
+
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
|
472 |
+
"])\n",
|
473 |
+
"\n",
|
474 |
+
"train_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=True, download=True, transform=transform)\n",
|
475 |
+
"train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True, num_workers=64)\n",
|
476 |
+
"\n",
|
477 |
+
"test_dataset = datasets.CIFAR10(root='/home/23m1521/datasets', train=False, download=True, transform=transform)\n",
|
478 |
+
"test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=64)\n",
|
479 |
+
"\n",
|
480 |
+
"# Initialize model, loss function, and optimizer\n",
|
481 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
482 |
+
"model = EfficientNetCIFAR10(num_classes=10).to(device)\n",
|
483 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
484 |
+
"optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
|
485 |
+
"\n",
|
486 |
+
"# Training loop\n",
|
487 |
+
"def train(model, train_loader, criterion, optimizer, device):\n",
|
488 |
+
" model.train()\n",
|
489 |
+
" running_loss = 0.0\n",
|
490 |
+
" for inputs, labels in train_loader:\n",
|
491 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
492 |
+
"\n",
|
493 |
+
" optimizer.zero_grad()\n",
|
494 |
+
" outputs = model(inputs)\n",
|
495 |
+
" loss = criterion(outputs, labels)\n",
|
496 |
+
" loss.backward()\n",
|
497 |
+
" optimizer.step()\n",
|
498 |
+
"\n",
|
499 |
+
" running_loss += loss.item()\n",
|
500 |
+
" return running_loss / len(train_loader)\n",
|
501 |
+
"\n",
|
502 |
+
"# Testing loop\n",
|
503 |
+
"def test(model, test_loader, criterion, device):\n",
|
504 |
+
" model.eval()\n",
|
505 |
+
" correct = 0\n",
|
506 |
+
" total = 0\n",
|
507 |
+
" with torch.no_grad():\n",
|
508 |
+
" for inputs, labels in test_loader:\n",
|
509 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
510 |
+
" outputs = model(inputs)\n",
|
511 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
512 |
+
" total += labels.size(0)\n",
|
513 |
+
" correct += (predicted == labels).sum().item()\n",
|
514 |
+
" return correct / total\n",
|
515 |
+
"\n",
|
516 |
+
"# Train and test the model\n",
|
517 |
+
"num_epochs = 5\n",
|
518 |
+
"for epoch in range(num_epochs):\n",
|
519 |
+
" train_loss = train(model, train_loader, criterion, optimizer, device)\n",
|
520 |
+
" test_acc = test(model, test_loader, criterion, device)\n",
|
521 |
+
" print(f\"Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}\")"
|
522 |
+
]
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"metadata": {
|
526 |
+
"kernelspec": {
|
527 |
+
"display_name": "cuda_env2",
|
528 |
+
"language": "python",
|
529 |
+
"name": "python3"
|
530 |
+
},
|
531 |
+
"language_info": {
|
532 |
+
"codemirror_mode": {
|
533 |
+
"name": "ipython",
|
534 |
+
"version": 3
|
535 |
+
},
|
536 |
+
"file_extension": ".py",
|
537 |
+
"mimetype": "text/x-python",
|
538 |
+
"name": "python",
|
539 |
+
"nbconvert_exporter": "python",
|
540 |
+
"pygments_lexer": "ipython3",
|
541 |
+
"version": "3.12.2"
|
542 |
+
}
|
543 |
+
},
|
544 |
+
"nbformat": 4,
|
545 |
+
"nbformat_minor": 2
|
546 |
+
}
|
DDPM/_3_Activation-Checkpointing-Sequential.ipynb
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"id": "CqFGp-OjP0_G"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import torch\n",
|
12 |
+
"from torch.autograd import Variable"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"metadata": {
|
18 |
+
"id": "to7suvjJQJAM"
|
19 |
+
},
|
20 |
+
"source": [
|
21 |
+
"# [1] Checkpointing sequential models"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 5,
|
27 |
+
"metadata": {
|
28 |
+
"colab": {
|
29 |
+
"base_uri": "https://localhost:8080/"
|
30 |
+
},
|
31 |
+
"id": "1YmlCf4MQEXV",
|
32 |
+
"outputId": "03833d29-11aa-4def-a9e4-650e349201a3"
|
33 |
+
},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"data": {
|
37 |
+
"text/plain": [
|
38 |
+
"[Linear(in_features=100, out_features=50, bias=True),\n",
|
39 |
+
" ReLU(),\n",
|
40 |
+
" Linear(in_features=50, out_features=20, bias=True),\n",
|
41 |
+
" ReLU(),\n",
|
42 |
+
" Linear(in_features=20, out_features=5, bias=True),\n",
|
43 |
+
" ReLU()]"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"execution_count": 5,
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "execute_result"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"from torch.utils.checkpoint import checkpoint_sequential\n",
|
53 |
+
"import torch.nn as nn\n",
|
54 |
+
"\n",
|
55 |
+
"model = nn.Sequential(\n",
|
56 |
+
" nn.Linear(100, 50),\n",
|
57 |
+
" nn.ReLU(),\n",
|
58 |
+
" nn.Linear(50, 20),\n",
|
59 |
+
" nn.ReLU(),\n",
|
60 |
+
" nn.Linear(20, 5),\n",
|
61 |
+
" nn.ReLU()\n",
|
62 |
+
")\n",
|
63 |
+
"\n",
|
64 |
+
"input_var = Variable(torch.randn(1, 100), requires_grad=True)\n",
|
65 |
+
"segments = 2\n",
|
66 |
+
"\n",
|
67 |
+
"modules = [module for k, module in model._modules.items()]\n",
|
68 |
+
"modules"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 7,
|
74 |
+
"metadata": {
|
75 |
+
"colab": {
|
76 |
+
"base_uri": "https://localhost:8080/"
|
77 |
+
},
|
78 |
+
"id": "aHSqU-keQaPe",
|
79 |
+
"outputId": "7ebc66fb-99ab-4d22-fa39-5710fb7ca2cd"
|
80 |
+
},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"data": {
|
84 |
+
"text/plain": [
|
85 |
+
"tensor([[0.0000, 0.3800, 0.0000, 0.0000, 0.0000]], grad_fn=<ReluBackward0>)"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"execution_count": 7,
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "execute_result"
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"out = checkpoint_sequential(modules, segments, input_var, use_reentrant=False)\n",
|
95 |
+
"out"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 8,
|
101 |
+
"metadata": {
|
102 |
+
"id": "Q94h7De4RBGA"
|
103 |
+
},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"# run the backwards pass on the model. For backwards pass, for simplicity purpose,\n",
|
107 |
+
"# we won't calculate the loss and rather backprop on out.sum()\n",
|
108 |
+
"model.zero_grad()\n",
|
109 |
+
"out.sum().backward()"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 9,
|
115 |
+
"metadata": {
|
116 |
+
"id": "LgNWA7fyRGAk"
|
117 |
+
},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"# now we save the output and parameter gradients that we will use for comparison purposes with\n",
|
121 |
+
"# the non-checkpointed run.\n",
|
122 |
+
"output_checkpointed = out.data.clone()\n",
|
123 |
+
"grad_checkpointed = {}\n",
|
124 |
+
"for name, param in model.named_parameters():\n",
|
125 |
+
" grad_checkpointed[name] = param.grad.data.clone()"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "markdown",
|
130 |
+
"metadata": {
|
131 |
+
"id": "qkdJd-B3RRWh"
|
132 |
+
},
|
133 |
+
"source": [
|
134 |
+
"Now that we have executed the checkpointed pass on the model, let's also run the non-checkpointed model and verify that the checkpoint API doesn't change the model outputs or the parameter gradients."
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": 10,
|
140 |
+
"metadata": {
|
141 |
+
"id": "Ts5GQzxkRVrU"
|
142 |
+
},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"# non-checkpointed run of the model\n",
|
146 |
+
"original = model\n",
|
147 |
+
"\n",
|
148 |
+
"# create a new variable using the same tensor data\n",
|
149 |
+
"x = Variable(input_var.data, requires_grad=True)\n",
|
150 |
+
"\n",
|
151 |
+
"# get the model output and save it to prevent any modifications\n",
|
152 |
+
"out = original(x)\n",
|
153 |
+
"out_not_checkpointed = out.data.clone()\n",
|
154 |
+
"\n",
|
155 |
+
"# calculate the gradient now and save the parameter gradients values\n",
|
156 |
+
"original.zero_grad()\n",
|
157 |
+
"out.sum().backward()\n",
|
158 |
+
"grad_not_checkpointed = {}\n",
|
159 |
+
"for name, param in model.named_parameters():\n",
|
160 |
+
" grad_not_checkpointed[name] = param.grad.data.clone()"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "markdown",
|
165 |
+
"metadata": {
|
166 |
+
"id": "YiV1VBzyRX2Y"
|
167 |
+
},
|
168 |
+
"source": [
|
169 |
+
"Now that we have done the checkpointed and non-checkpointed pass of the model and saved the output and parameter gradients, let's compare their values"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 13,
|
175 |
+
"metadata": {
|
176 |
+
"colab": {
|
177 |
+
"base_uri": "https://localhost:8080/"
|
178 |
+
},
|
179 |
+
"id": "v9Tj9o8VRYq2",
|
180 |
+
"outputId": "bd8a8100-d660-4858-eb48-4a85aca01c69"
|
181 |
+
},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"Checkpointed and non-checkpointed results match!\n"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"try:\n",
|
193 |
+
" assert torch.equal(output_checkpointed, out_not_checkpointed), \"Outputs do not match!\"\n",
|
194 |
+
" for name in grad_checkpointed:\n",
|
195 |
+
" assert torch.equal(grad_checkpointed[name], grad_not_checkpointed[name]), f\"Gradients for {name} do not match!\"\n",
|
196 |
+
" print(\"Checkpointed and non-checkpointed results match!\")\n",
|
197 |
+
"except AssertionError as e:\n",
|
198 |
+
" print(f\"Assertion failed: {e}\")"
|
199 |
+
]
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"metadata": {
|
203 |
+
"colab": {
|
204 |
+
"provenance": []
|
205 |
+
},
|
206 |
+
"kernelspec": {
|
207 |
+
"display_name": "Python 3",
|
208 |
+
"name": "python3"
|
209 |
+
},
|
210 |
+
"language_info": {
|
211 |
+
"name": "python"
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"nbformat": 4,
|
215 |
+
"nbformat_minor": 0
|
216 |
+
}
|
DDPM/_4_Activation-Checkpointing-VAE.ipynb
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 7,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"gpu_ram_utilization_bytes = torch.cuda.memory_allocated()\n",
|
10 |
+
"gpu_ram_utilization_mb = gpu_ram_utilization_bytes / (1024 * 1024)\n",
|
11 |
+
"gpu_ram_total_bytes = torch.cuda.get_device_properties(0).total_memory\n",
|
12 |
+
"gpu_ram_percentage = (gpu_ram_utilization_bytes / gpu_ram_total_bytes) * 100"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"gpu_ram_utilization_mb, gpu_ram_total_bytes"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"metadata": {
|
28 |
+
"colab": {
|
29 |
+
"base_uri": "https://localhost:8080/"
|
30 |
+
},
|
31 |
+
"id": "ellNFnP7f2Wx",
|
32 |
+
"outputId": "3adb85e1-f41a-433f-bd77-f1301abb7731"
|
33 |
+
},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"import os\n",
|
37 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
38 |
+
"\n",
|
39 |
+
"import psutil\n",
|
40 |
+
"import torch\n",
|
41 |
+
"from datetime import datetime\n",
|
42 |
+
"import time\n",
|
43 |
+
"import matplotlib.pyplot as plt\n",
|
44 |
+
"\n",
|
45 |
+
"\n",
|
46 |
+
"import torch\n",
|
47 |
+
"import torch.nn as nn\n",
|
48 |
+
"import torch.optim as optim\n",
|
49 |
+
"from torch.utils.data import DataLoader\n",
|
50 |
+
"from torchvision import datasets, transforms\n",
|
51 |
+
"import torch.nn.functional as F\n",
|
52 |
+
"\n",
|
53 |
+
"\n",
|
54 |
+
"\n",
|
55 |
+
"timestamps = []\n",
|
56 |
+
"cpu_ram_mb = []\n",
|
57 |
+
"cpu_ram_percent = []\n",
|
58 |
+
"gpu_ram_mb = []\n",
|
59 |
+
"gpu_ram_percent = []\n",
|
60 |
+
"\n",
|
61 |
+
"\n",
|
62 |
+
"\n",
|
63 |
+
"# --- System Utilization ---------------------------------------------------------------------------\n",
|
64 |
+
"def get_system_utilization():\n",
|
65 |
+
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
|
66 |
+
"\n",
|
67 |
+
" cpu_ram = psutil.virtual_memory()\n",
|
68 |
+
" cpu_ram_utilization_bytes = cpu_ram.used\n",
|
69 |
+
" cpu_ram_utilization_mb = cpu_ram_utilization_bytes / (1024 * 1024)\n",
|
70 |
+
" cpu_ram_percentage = cpu_ram.percent\n",
|
71 |
+
"\n",
|
72 |
+
" gpu_ram_utilization_mb = None\n",
|
73 |
+
" gpu_ram_percentage = None\n",
|
74 |
+
" if torch.cuda.is_available():\n",
|
75 |
+
" gpu_ram_utilization_bytes = torch.cuda.memory_allocated()\n",
|
76 |
+
" gpu_ram_utilization_mb = gpu_ram_utilization_bytes / (1024 * 1024)\n",
|
77 |
+
" gpu_ram_total_bytes = torch.cuda.get_device_properties(0).total_memory\n",
|
78 |
+
" gpu_ram_percentage = (gpu_ram_utilization_bytes / gpu_ram_total_bytes) * 100\n",
|
79 |
+
"\n",
|
80 |
+
" return {\n",
|
81 |
+
" \"time\": current_time,\n",
|
82 |
+
" \"cpu_ram_utilization_mb\": cpu_ram_utilization_mb,\n",
|
83 |
+
" \"cpu_ram_percentage\": cpu_ram_percentage,\n",
|
84 |
+
" \"gpu_ram_utilization_mb\": gpu_ram_utilization_mb,\n",
|
85 |
+
" \"gpu_ram_percentage\": gpu_ram_percentage\n",
|
86 |
+
" }\n",
|
87 |
+
"\n",
|
88 |
+
"\n",
|
89 |
+
"\n",
|
90 |
+
"def update_utilization_lists():\n",
|
91 |
+
" global timestamps, cpu_ram_mb, cpu_ram_percent, gpu_ram_mb, gpu_ram_percent\n",
|
92 |
+
"\n",
|
93 |
+
" utilization = get_system_utilization()\n",
|
94 |
+
"\n",
|
95 |
+
" timestamps.append(utilization[\"time\"])\n",
|
96 |
+
" cpu_ram_mb.append(utilization[\"cpu_ram_utilization_mb\"])\n",
|
97 |
+
" cpu_ram_percent.append(utilization[\"cpu_ram_percentage\"])\n",
|
98 |
+
" gpu_ram_mb.append(utilization[\"gpu_ram_utilization_mb\"])\n",
|
99 |
+
" gpu_ram_percent.append(utilization[\"gpu_ram_percentage\"])\n",
|
100 |
+
"\n",
|
101 |
+
"\n",
|
102 |
+
"\n",
|
103 |
+
"# --- Define the VAE model -------------------------------------------------------------------------\n",
|
104 |
+
"class VAE(nn.Module):\n",
|
105 |
+
" update_utilization_lists()\n",
|
106 |
+
" def __init__(self, latent_dim=20):\n",
|
107 |
+
" super(VAE, self).__init__()\n",
|
108 |
+
" self.latent_dim = latent_dim\n",
|
109 |
+
"\n",
|
110 |
+
" # Encoder\n",
|
111 |
+
" update_utilization_lists()\n",
|
112 |
+
" self.encoder = nn.Sequential(\n",
|
113 |
+
" nn.Linear(28 * 28, 512),\n",
|
114 |
+
" nn.ReLU(),\n",
|
115 |
+
" nn.Linear(512, 256),\n",
|
116 |
+
" nn.ReLU(),\n",
|
117 |
+
" nn.Linear(256, 2 * latent_dim) # Output mean and log variance\n",
|
118 |
+
" )\n",
|
119 |
+
"\n",
|
120 |
+
" # Decoder\n",
|
121 |
+
" update_utilization_lists()\n",
|
122 |
+
" self.decoder = nn.Sequential(\n",
|
123 |
+
" nn.Linear(latent_dim, 256),\n",
|
124 |
+
" nn.ReLU(),\n",
|
125 |
+
" nn.Linear(256, 512),\n",
|
126 |
+
" nn.ReLU(),\n",
|
127 |
+
" nn.Linear(512, 28 * 28),\n",
|
128 |
+
" nn.Sigmoid()\n",
|
129 |
+
" )\n",
|
130 |
+
"\n",
|
131 |
+
" def encode(self, x):\n",
|
132 |
+
" update_utilization_lists()\n",
|
133 |
+
" h = self.encoder(x)\n",
|
134 |
+
"\n",
|
135 |
+
" update_utilization_lists()\n",
|
136 |
+
" mu, logvar = h.chunk(2, dim=-1) # Split into mean and log variance\n",
|
137 |
+
"\n",
|
138 |
+
" update_utilization_lists()\n",
|
139 |
+
" return mu, logvar\n",
|
140 |
+
"\n",
|
141 |
+
" def reparameterize(self, mu, logvar):\n",
|
142 |
+
" update_utilization_lists()\n",
|
143 |
+
" std = torch.exp(0.5 * logvar)\n",
|
144 |
+
"\n",
|
145 |
+
" update_utilization_lists()\n",
|
146 |
+
" eps = torch.randn_like(std)\n",
|
147 |
+
"\n",
|
148 |
+
" update_utilization_lists()\n",
|
149 |
+
" return mu + eps * std\n",
|
150 |
+
"\n",
|
151 |
+
" def decode(self, z):\n",
|
152 |
+
" update_utilization_lists()\n",
|
153 |
+
" decoded = self.decoder(z)\n",
|
154 |
+
"\n",
|
155 |
+
" update_utilization_lists()\n",
|
156 |
+
" return decoded\n",
|
157 |
+
"\n",
|
158 |
+
" def forward(self, x):\n",
|
159 |
+
" update_utilization_lists()\n",
|
160 |
+
" mu, logvar = self.encode(x.view(-1, 28 * 28))\n",
|
161 |
+
"\n",
|
162 |
+
" z = self.reparameterize(mu, logvar)\n",
|
163 |
+
" return self.decode(z), mu, logvar\n",
|
164 |
+
"\n",
|
165 |
+
"\n",
|
166 |
+
"\n",
|
167 |
+
"# --- Loss function --------------------------------------------------------------------------------\n",
|
168 |
+
"def loss_function(recon_x, x, mu, logvar):\n",
|
169 |
+
" update_utilization_lists()\n",
|
170 |
+
" BCE = F.binary_cross_entropy(recon_x, x.view(-1, 28 * 28), reduction='sum')\n",
|
171 |
+
" \n",
|
172 |
+
" update_utilization_lists()\n",
|
173 |
+
" KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())\n",
|
174 |
+
" \n",
|
175 |
+
" update_utilization_lists()\n",
|
176 |
+
" return BCE + KLD\n",
|
177 |
+
"\n",
|
178 |
+
"\n",
|
179 |
+
"\n",
|
180 |
+
"# --- Load MNIST dataset ---------------------------------------------------------------------------\n",
|
181 |
+
"transform = transforms.Compose([transforms.ToTensor()])\n",
|
182 |
+
"train_dataset = datasets.MNIST(root='/home/23m1521/datasets/MNIST', train=True, download=True, transform=transform)\n",
|
183 |
+
"train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=os.cpu_count())\n",
|
184 |
+
"\n",
|
185 |
+
"\n",
|
186 |
+
"\n",
|
187 |
+
"# --- Initialize model, optimizer ------------------------------------------------------------------\n",
|
188 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
189 |
+
"model = VAE(latent_dim=20).to(device)\n",
|
190 |
+
"optimizer = optim.Adam(model.parameters(), lr=1e-3)\n",
|
191 |
+
"\n",
|
192 |
+
"\n",
|
193 |
+
"\n",
|
194 |
+
"# --- Training loop --------------------------------------------------------------------------------\n",
|
195 |
+
"def train(epoch):\n",
|
196 |
+
" update_utilization_lists()\n",
|
197 |
+
" model.train()\n",
|
198 |
+
" \n",
|
199 |
+
" train_loss = 0\n",
|
200 |
+
" for batch_idx, (data, _) in enumerate(train_loader):\n",
|
201 |
+
" update_utilization_lists()\n",
|
202 |
+
" \n",
|
203 |
+
" data = data.to(device)\n",
|
204 |
+
" update_utilization_lists()\n",
|
205 |
+
" \n",
|
206 |
+
" optimizer.zero_grad()\n",
|
207 |
+
" update_utilization_lists()\n",
|
208 |
+
" \n",
|
209 |
+
" recon_batch, mu, logvar = model(data)\n",
|
210 |
+
" update_utilization_lists()\n",
|
211 |
+
" \n",
|
212 |
+
" loss = loss_function(recon_batch, data, mu, logvar)\n",
|
213 |
+
" update_utilization_lists()\n",
|
214 |
+
" \n",
|
215 |
+
" loss.backward()\n",
|
216 |
+
" update_utilization_lists()\n",
|
217 |
+
" \n",
|
218 |
+
" train_loss += loss.item()\n",
|
219 |
+
" update_utilization_lists()\n",
|
220 |
+
" \n",
|
221 |
+
" optimizer.step()\n",
|
222 |
+
" update_utilization_lists()\n",
|
223 |
+
"\n",
|
224 |
+
" if batch_idx % 100 == 0:\n",
|
225 |
+
" print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '\n",
|
226 |
+
" f'({100. * batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item() / len(data):.6f}')\n",
|
227 |
+
"\n",
|
228 |
+
" print(f'====> Epoch: {epoch} Average loss: {train_loss / len(train_loader.dataset):.4f}')\n",
|
229 |
+
"\n",
|
230 |
+
"\n",
|
231 |
+
"\n",
|
232 |
+
"# --- Train for 10 epochs --------------------------------------------------------------------------\n",
|
233 |
+
"for epoch in range(1,3):\n",
|
234 |
+
" update_utilization_lists()\n",
|
235 |
+
" train(epoch)\n",
|
236 |
+
" update_utilization_lists()"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": null,
|
242 |
+
"metadata": {
|
243 |
+
"colab": {
|
244 |
+
"base_uri": "https://localhost:8080/"
|
245 |
+
},
|
246 |
+
"id": "6M9KOwxshmZF",
|
247 |
+
"outputId": "274be81e-b8a7-4100-f6d8-235d5a8ffb6d"
|
248 |
+
},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"print(\"CPU RAM (MB):\", min(cpu_ram_mb), max(cpu_ram_mb))\n",
|
252 |
+
"print(\"CPU RAM (%):\", min(cpu_ram_percent), max(cpu_ram_percent))\n",
|
253 |
+
"if torch.cuda.is_available():\n",
|
254 |
+
" print(\"GPU RAM (MB):\", min(gpu_ram_mb), max(gpu_ram_mb))\n",
|
255 |
+
" print(\"GPU RAM (%):\", min(gpu_ram_percent), max(gpu_ram_percent))"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": null,
|
261 |
+
"metadata": {
|
262 |
+
"colab": {
|
263 |
+
"base_uri": "https://localhost:8080/",
|
264 |
+
"height": 400
|
265 |
+
},
|
266 |
+
"id": "mKdK390Ehq7u",
|
267 |
+
"outputId": "524a035c-98c5-4c45-99c8-96a882007427"
|
268 |
+
},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"plt.figure(figsize=(21, 8))\n",
|
272 |
+
"\n",
|
273 |
+
"# --- Plot CPU RAM Utilization (MB) ----------------------------------------------------------------\n",
|
274 |
+
"plt.subplot(2, 2, 1)\n",
|
275 |
+
"plt.plot(range(len(timestamps)), cpu_ram_mb, label=\"CPU RAM (MB)\")\n",
|
276 |
+
"plt.title(\"CPU RAM Utilization (MB)\")\n",
|
277 |
+
"plt.xlabel(\"Time\")\n",
|
278 |
+
"plt.ylabel(\"MB\")\n",
|
279 |
+
"plt.xticks(rotation=45)\n",
|
280 |
+
"plt.grid(True)\n",
|
281 |
+
"plt.legend()\n",
|
282 |
+
"\n",
|
283 |
+
"# --- Plot CPU RAM Utilization (%) -----------------------------------------------------------------\n",
|
284 |
+
"plt.subplot(2, 2, 2)\n",
|
285 |
+
"plt.plot(range(len(timestamps)), cpu_ram_percent, label=\"CPU RAM (%)\", color=\"orange\")\n",
|
286 |
+
"plt.title(\"CPU RAM Utilization (%)\")\n",
|
287 |
+
"plt.xlabel(\"Time\")\n",
|
288 |
+
"plt.ylabel(\"Percentage\")\n",
|
289 |
+
"plt.xticks(rotation=45)\n",
|
290 |
+
"plt.grid(True)\n",
|
291 |
+
"plt.legend()\n",
|
292 |
+
"\n",
|
293 |
+
"# --- Plot GPU RAM Utilization (MB) if GPU exists --------------------------------------------------\n",
|
294 |
+
"if torch.cuda.is_available():\n",
|
295 |
+
" plt.subplot(2, 2, 3)\n",
|
296 |
+
" plt.plot(range(len(timestamps)), gpu_ram_mb, label=\"GPU RAM (MB)\", color=\"green\")\n",
|
297 |
+
" plt.title(\"GPU RAM Utilization (MB)\")\n",
|
298 |
+
" plt.xlabel(\"Time\")\n",
|
299 |
+
" plt.ylabel(\"MB\")\n",
|
300 |
+
" plt.xticks(rotation=45)\n",
|
301 |
+
" plt.grid(True)\n",
|
302 |
+
" plt.legend()\n",
|
303 |
+
"\n",
|
304 |
+
"\n",
|
305 |
+
"# --- Plot GPU RAM Utilization (%) if GPU exists ---------------------------------------------------\n",
|
306 |
+
" plt.subplot(2, 2, 4)\n",
|
307 |
+
" plt.plot(range(len(timestamps)), gpu_ram_percent, label=\"GPU RAM (%)\", color=\"red\")\n",
|
308 |
+
" plt.title(\"GPU RAM Utilization (%)\")\n",
|
309 |
+
" plt.xlabel(\"Time\")\n",
|
310 |
+
" plt.ylabel(\"Percentage\")\n",
|
311 |
+
" plt.xticks(rotation=45)\n",
|
312 |
+
" plt.grid(True)\n",
|
313 |
+
" plt.legend()\n",
|
314 |
+
"\n",
|
315 |
+
"\n",
|
316 |
+
"plt.tight_layout()\n",
|
317 |
+
"plt.show()"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": null,
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"if torch.cuda.is_available():\n",
|
327 |
+
" fig.add_trace(\n",
|
328 |
+
" go.Scatter(x=list(range(len(timestamps))), y=gpu_ram_mb, mode='lines', name='GPU RAM (MB)', line=dict(color='green')),\n",
|
329 |
+
" row=2, col=1\n",
|
330 |
+
" )\n",
|
331 |
+
"fig.show() "
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": null,
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"import plotly.graph_objects as go\n",
|
341 |
+
"from plotly.subplots import make_subplots\n",
|
342 |
+
"import torch\n",
|
343 |
+
"\n",
|
344 |
+
"# Create subplots\n",
|
345 |
+
"fig = make_subplots(\n",
|
346 |
+
" rows=2, cols=2,\n",
|
347 |
+
" subplot_titles=(\"CPU RAM Utilization (MB)\", \"CPU RAM Utilization (%)\",\n",
|
348 |
+
" \"GPU RAM Utilization (MB)\", \"GPU RAM Utilization (%)\")\n",
|
349 |
+
")\n",
|
350 |
+
"\n",
|
351 |
+
"# Plot CPU RAM Utilization (MB)\n",
|
352 |
+
"fig.add_trace(\n",
|
353 |
+
" go.Scatter(x=list(range(len(timestamps))), y=cpu_ram_mb, mode='lines', name='CPU RAM (MB)'),\n",
|
354 |
+
" row=1, col=1\n",
|
355 |
+
")\n",
|
356 |
+
"\n",
|
357 |
+
"# Plot CPU RAM Utilization (%)\n",
|
358 |
+
"fig.add_trace(\n",
|
359 |
+
" go.Scatter(x=list(range(len(timestamps))), y=cpu_ram_percent, mode='lines', name='CPU RAM (%)', line=dict(color='orange')),\n",
|
360 |
+
" row=1, col=2\n",
|
361 |
+
")\n",
|
362 |
+
"\n",
|
363 |
+
"# Plot GPU RAM Utilization (MB) if GPU exists\n",
|
364 |
+
"if torch.cuda.is_available():\n",
|
365 |
+
" fig.add_trace(\n",
|
366 |
+
" go.Scatter(x=list(range(len(timestamps))), y=gpu_ram_mb, mode='lines', name='GPU RAM (MB)', line=dict(color='green')),\n",
|
367 |
+
" row=2, col=1\n",
|
368 |
+
" )\n",
|
369 |
+
"\n",
|
370 |
+
" # Plot GPU RAM Utilization (%)\n",
|
371 |
+
" fig.add_trace(\n",
|
372 |
+
" go.Scatter(x=list(range(len(timestamps))), y=gpu_ram_percent, mode='lines', name='GPU RAM (%)', line=dict(color='red')),\n",
|
373 |
+
" row=2, col=2\n",
|
374 |
+
" )\n",
|
375 |
+
"\n",
|
376 |
+
"# Update layout\n",
|
377 |
+
"fig.update_layout(\n",
|
378 |
+
" height=800, width=1200,\n",
|
379 |
+
" title_text=\"System Resource Utilization\",\n",
|
380 |
+
" showlegend=True\n",
|
381 |
+
")\n",
|
382 |
+
"\n",
|
383 |
+
"fig.update_xaxes(title_text=\"Time\", tickangle=45)\n",
|
384 |
+
"fig.update_yaxes(title_text=\"MB or Percentage\")\n",
|
385 |
+
"\n",
|
386 |
+
"# Show plot\n",
|
387 |
+
"fig.show()"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": null,
|
393 |
+
"metadata": {
|
394 |
+
"colab": {
|
395 |
+
"base_uri": "https://localhost:8080/",
|
396 |
+
"height": 454
|
397 |
+
},
|
398 |
+
"id": "3MGfGd_Ojcrf",
|
399 |
+
"outputId": "f1091984-2658-4053-ff08-c7c300c08d0e"
|
400 |
+
},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"plt.figure(figsize=(21, 4))\n",
|
404 |
+
"\n",
|
405 |
+
"r = 12000 # range(len(timestamps))\n",
|
406 |
+
"x, y = range(r), cpu_ram_mb[:r]\n",
|
407 |
+
"\n",
|
408 |
+
"plt.plot(x, y, label=\"CPU RAM (MB)\")\n",
|
409 |
+
"plt.title(\"CPU RAM Utilization (MB)\")\n",
|
410 |
+
"plt.xlabel(\"Time\")\n",
|
411 |
+
"plt.ylabel(\"MB\")\n",
|
412 |
+
"plt.xticks(rotation=45)\n",
|
413 |
+
"plt.grid(True)\n",
|
414 |
+
"plt.legend()\n",
|
415 |
+
"plt.tight_layout()\n",
|
416 |
+
"plt.show()"
|
417 |
+
]
|
418 |
+
}
|
419 |
+
],
|
420 |
+
"metadata": {
|
421 |
+
"colab": {
|
422 |
+
"provenance": []
|
423 |
+
},
|
424 |
+
"kernelspec": {
|
425 |
+
"display_name": "cuda_env2",
|
426 |
+
"language": "python",
|
427 |
+
"name": "python3"
|
428 |
+
},
|
429 |
+
"language_info": {
|
430 |
+
"codemirror_mode": {
|
431 |
+
"name": "ipython",
|
432 |
+
"version": 3
|
433 |
+
},
|
434 |
+
"file_extension": ".py",
|
435 |
+
"mimetype": "text/x-python",
|
436 |
+
"name": "python",
|
437 |
+
"nbconvert_exporter": "python",
|
438 |
+
"pygments_lexer": "ipython3",
|
439 |
+
"version": "3.12.2"
|
440 |
+
}
|
441 |
+
},
|
442 |
+
"nbformat": 4,
|
443 |
+
"nbformat_minor": 0
|
444 |
+
}
|
DDPM/_5_Activation-Ckpt-VAE-CelebA.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Imgui/demo-newstyle.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# For Linux/Wayland users.
|
6 |
+
if os.getenv("XDG_SESSION_TYPE") == "wayland":
|
7 |
+
os.environ["XDG_SESSION_TYPE"] = "x11"
|
8 |
+
|
9 |
+
import glfw
|
10 |
+
import OpenGL.GL as gl
|
11 |
+
import imgui
|
12 |
+
from imgui.integrations.glfw import GlfwRenderer
|
13 |
+
|
14 |
+
active = {
|
15 |
+
"window": True,
|
16 |
+
"child": False,
|
17 |
+
"tooltip": False,
|
18 |
+
"menu bar": False,
|
19 |
+
"popup": False,
|
20 |
+
"popup modal": False,
|
21 |
+
"popup context item": False,
|
22 |
+
"popup context window": False,
|
23 |
+
"drag drop": False,
|
24 |
+
"group": False,
|
25 |
+
"tab bar": False,
|
26 |
+
"list box": False,
|
27 |
+
"popup context void": False,
|
28 |
+
"table": False,
|
29 |
+
}
|
30 |
+
path_to_font = None # "path/to/font.ttf"
|
31 |
+
|
32 |
+
opened_state = True
|
33 |
+
|
34 |
+
# Frame commands from the video
|
35 |
+
# def frame_commands():
|
36 |
+
# io = imgui.get_io()
|
37 |
+
# if io.key_ctrl and io.keys_down[glfw.KEY_Q]:
|
38 |
+
# sys.exit(0)
|
39 |
+
#
|
40 |
+
# if imgui.begin_main_menu_bar():
|
41 |
+
# if imgui.begin_menu("File"):
|
42 |
+
# clicked, selected = imgui.menu_item("Quit", "Ctrl+Q")
|
43 |
+
# if clicked:
|
44 |
+
# sys.exit(0)
|
45 |
+
# imgui.end_menu()
|
46 |
+
# imgui.end_main_menu_bar()
|
47 |
+
#
|
48 |
+
# with imgui.begin("A Window!"):
|
49 |
+
# if imgui.button("select"):
|
50 |
+
# imgui.open_popup("select-popup")
|
51 |
+
#
|
52 |
+
# try:
|
53 |
+
# with imgui.begin_popup("select-popup") as popup:
|
54 |
+
# if popup.opened:
|
55 |
+
# imgui.text("Select one")
|
56 |
+
# raise Exception
|
57 |
+
# except Exception:
|
58 |
+
# print("caught exception and no crash!")
|
59 |
+
|
60 |
+
|
61 |
+
def frame_commands():
|
62 |
+
io = imgui.get_io()
|
63 |
+
|
64 |
+
if io.key_ctrl and io.keys_down[glfw.KEY_Q]:
|
65 |
+
sys.exit(0)
|
66 |
+
|
67 |
+
with imgui.begin_main_menu_bar() as main_menu_bar:
|
68 |
+
if main_menu_bar.opened:
|
69 |
+
with imgui.begin_menu("File", True) as file_menu:
|
70 |
+
if file_menu.opened:
|
71 |
+
clicked_quit, selected_quit = imgui.menu_item("Quit", "Ctrl+Q")
|
72 |
+
if clicked_quit:
|
73 |
+
sys.exit(0)
|
74 |
+
|
75 |
+
# turn examples on/off
|
76 |
+
with imgui.begin("Active examples"):
|
77 |
+
for label, enabled in active.copy().items():
|
78 |
+
_, enabled = imgui.checkbox(label, enabled)
|
79 |
+
active[label] = enabled
|
80 |
+
|
81 |
+
if active["window"]:
|
82 |
+
with imgui.begin("Hello, Imgui!"):
|
83 |
+
imgui.text("Hello, World!")
|
84 |
+
|
85 |
+
if active["child"]:
|
86 |
+
with imgui.begin("Example: child region"):
|
87 |
+
with imgui.begin_child("region", 150, -50, border=True):
|
88 |
+
imgui.text("inside region")
|
89 |
+
imgui.text("outside region")
|
90 |
+
|
91 |
+
if active["tooltip"]:
|
92 |
+
with imgui.begin("Example: tooltip"):
|
93 |
+
imgui.button("Click me!")
|
94 |
+
if imgui.is_item_hovered():
|
95 |
+
with imgui.begin_tooltip():
|
96 |
+
imgui.text("This button is clickable.")
|
97 |
+
|
98 |
+
if active["menu bar"]:
|
99 |
+
try:
|
100 |
+
flags = imgui.WINDOW_MENU_BAR
|
101 |
+
with imgui.begin("Child Window - File Browser", flags=flags):
|
102 |
+
with imgui.begin_menu_bar() as menu_bar:
|
103 |
+
if menu_bar.opened:
|
104 |
+
with imgui.begin_menu('File') as file_menu:
|
105 |
+
if file_menu.opened:
|
106 |
+
clicked, state = imgui.menu_item('Close')
|
107 |
+
if clicked:
|
108 |
+
active["menu bar"] = False
|
109 |
+
raise Exception
|
110 |
+
except Exception:
|
111 |
+
print("exception handled")
|
112 |
+
|
113 |
+
if active["popup"]:
|
114 |
+
with imgui.begin("Example: simple popup"):
|
115 |
+
if imgui.button("select"):
|
116 |
+
imgui.open_popup("select-popup")
|
117 |
+
imgui.same_line()
|
118 |
+
with imgui.begin_popup("select-popup") as popup:
|
119 |
+
if popup.opened:
|
120 |
+
imgui.text("Select one")
|
121 |
+
imgui.separator()
|
122 |
+
imgui.selectable("One")
|
123 |
+
imgui.selectable("Two")
|
124 |
+
imgui.selectable("Three")
|
125 |
+
|
126 |
+
if active["popup modal"]:
|
127 |
+
with imgui.begin("Example: simple popup modal"):
|
128 |
+
if imgui.button("Open Modal popup"):
|
129 |
+
imgui.open_popup("select-popup-modal")
|
130 |
+
imgui.same_line()
|
131 |
+
with imgui.begin_popup_modal("select-popup-modal") as popup:
|
132 |
+
if popup.opened:
|
133 |
+
imgui.text("Select an option:")
|
134 |
+
imgui.separator()
|
135 |
+
imgui.selectable("One")
|
136 |
+
imgui.selectable("Two")
|
137 |
+
imgui.selectable("Three")
|
138 |
+
|
139 |
+
if active["popup context item"]:
|
140 |
+
with imgui.begin("Example: popup context view"):
|
141 |
+
imgui.text("Right-click to set value.")
|
142 |
+
with imgui.begin_popup_context_item("Item Context Menu") as popup:
|
143 |
+
if popup.opened:
|
144 |
+
imgui.selectable("Set to Zero")
|
145 |
+
|
146 |
+
if active["popup context window"]:
|
147 |
+
with imgui.begin("Example: popup context window"):
|
148 |
+
with imgui.begin_popup_context_window() as popup:
|
149 |
+
if popup.opened:
|
150 |
+
imgui.selectable("Clear")
|
151 |
+
|
152 |
+
if active["popup context void"]:
|
153 |
+
with imgui.begin_popup_context_void() as popup:
|
154 |
+
if popup.opened:
|
155 |
+
imgui.selectable("Clear")
|
156 |
+
|
157 |
+
if active["drag drop"]:
|
158 |
+
with imgui.begin("Example: drag and drop"):
|
159 |
+
imgui.button('source')
|
160 |
+
with imgui.begin_drag_drop_source() as src:
|
161 |
+
if src.dragging:
|
162 |
+
imgui.set_drag_drop_payload('itemtype', b'payload')
|
163 |
+
imgui.button('dragged source')
|
164 |
+
imgui.button('dest')
|
165 |
+
with imgui.begin_drag_drop_target() as dst:
|
166 |
+
if dst.hovered:
|
167 |
+
payload = imgui.accept_drag_drop_payload('itemtype')
|
168 |
+
if payload is not None:
|
169 |
+
print('Received:', payload)
|
170 |
+
|
171 |
+
if active["group"]:
|
172 |
+
with imgui.begin("Example: item groups"):
|
173 |
+
with imgui.begin_group():
|
174 |
+
imgui.text("First group (buttons):")
|
175 |
+
imgui.button("Button A")
|
176 |
+
imgui.button("Button B")
|
177 |
+
imgui.same_line(spacing=50)
|
178 |
+
with imgui.begin_group():
|
179 |
+
imgui.text("Second group (text and bullet texts):")
|
180 |
+
imgui.bullet_text("Bullet A")
|
181 |
+
imgui.bullet_text("Bullet B")
|
182 |
+
|
183 |
+
if active["tab bar"]:
|
184 |
+
with imgui.begin("Example Tab Bar"):
|
185 |
+
with imgui.begin_tab_bar("MyTabBar") as tab_bar:
|
186 |
+
if tab_bar.opened:
|
187 |
+
with imgui.begin_tab_item("Item 1") as item1:
|
188 |
+
if item1.opened:
|
189 |
+
imgui.text("Here is the tab content!")
|
190 |
+
with imgui.begin_tab_item("Item 2") as item2:
|
191 |
+
if item2.opened:
|
192 |
+
imgui.text("Another content...")
|
193 |
+
global opened_state
|
194 |
+
with imgui.begin_tab_item("Item 3", opened=opened_state) as item3:
|
195 |
+
opened_state = item3.opened
|
196 |
+
if item3.selected:
|
197 |
+
imgui.text("Hello Saylor!")
|
198 |
+
|
199 |
+
if active["list box"]:
|
200 |
+
with imgui.begin("Example: custom listbox"):
|
201 |
+
with imgui.begin_list_box("List", 200, 100) as list_box:
|
202 |
+
if list_box.opened:
|
203 |
+
imgui.selectable("Selected", True)
|
204 |
+
imgui.selectable("Not Selected", False)
|
205 |
+
|
206 |
+
if active["table"]:
|
207 |
+
with imgui.begin("Example: table"):
|
208 |
+
with imgui.begin_table("data", 2) as table:
|
209 |
+
if table.opened:
|
210 |
+
imgui.table_next_column()
|
211 |
+
imgui.table_header("A")
|
212 |
+
imgui.table_next_column()
|
213 |
+
imgui.table_header("B")
|
214 |
+
|
215 |
+
imgui.table_next_row()
|
216 |
+
imgui.table_next_column()
|
217 |
+
imgui.text("123")
|
218 |
+
|
219 |
+
imgui.table_next_column()
|
220 |
+
imgui.text("456")
|
221 |
+
|
222 |
+
imgui.table_next_row()
|
223 |
+
imgui.table_next_column()
|
224 |
+
imgui.text("789")
|
225 |
+
|
226 |
+
imgui.table_next_column()
|
227 |
+
imgui.text("111")
|
228 |
+
|
229 |
+
imgui.table_next_row()
|
230 |
+
imgui.table_next_column()
|
231 |
+
imgui.text("222")
|
232 |
+
|
233 |
+
imgui.table_next_column()
|
234 |
+
imgui.text("333")
|
235 |
+
|
236 |
+
|
237 |
+
def render_frame(impl, window, font):
|
238 |
+
glfw.poll_events()
|
239 |
+
impl.process_inputs()
|
240 |
+
imgui.new_frame()
|
241 |
+
|
242 |
+
gl.glClearColor(0.1, 0.1, 0.1, 1)
|
243 |
+
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
244 |
+
|
245 |
+
if font is not None:
|
246 |
+
imgui.push_font(font)
|
247 |
+
frame_commands()
|
248 |
+
if font is not None:
|
249 |
+
imgui.pop_font()
|
250 |
+
|
251 |
+
imgui.render()
|
252 |
+
impl.render(imgui.get_draw_data())
|
253 |
+
glfw.swap_buffers(window)
|
254 |
+
|
255 |
+
|
256 |
+
def impl_glfw_init():
|
257 |
+
width, height = 1600, 900
|
258 |
+
window_name = "minimal ImGui/GLFW3 example"
|
259 |
+
|
260 |
+
if not glfw.init():
|
261 |
+
print("Could not initialize OpenGL context")
|
262 |
+
sys.exit(1)
|
263 |
+
|
264 |
+
glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 3)
|
265 |
+
glfw.window_hint(glfw.CONTEXT_VERSION_MINOR, 3)
|
266 |
+
glfw.window_hint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE)
|
267 |
+
glfw.window_hint(glfw.OPENGL_FORWARD_COMPAT, gl.GL_TRUE)
|
268 |
+
|
269 |
+
window = glfw.create_window(int(width), int(height), window_name, None, None)
|
270 |
+
glfw.make_context_current(window)
|
271 |
+
|
272 |
+
if not window:
|
273 |
+
glfw.terminate()
|
274 |
+
print("Could not initialize Window")
|
275 |
+
sys.exit(1)
|
276 |
+
|
277 |
+
return window
|
278 |
+
|
279 |
+
|
280 |
+
def main():
|
281 |
+
imgui.create_context()
|
282 |
+
window = impl_glfw_init()
|
283 |
+
|
284 |
+
impl = GlfwRenderer(window)
|
285 |
+
|
286 |
+
io = imgui.get_io()
|
287 |
+
jb = io.fonts.add_font_from_file_ttf(path_to_font, 30) if path_to_font is not None else None
|
288 |
+
impl.refresh_font_texture()
|
289 |
+
|
290 |
+
while not glfw.window_should_close(window):
|
291 |
+
render_frame(impl, window, jb)
|
292 |
+
|
293 |
+
impl.shutdown()
|
294 |
+
glfw.terminate()
|
295 |
+
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
main()
|
Imgui/demo.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip install glfw
|
2 |
+
# pip install PyOpenGL
|
3 |
+
# pip install imgui
|
4 |
+
|
5 |
+
|
6 |
+
# -*- coding: utf-8 -*-
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
|
10 |
+
# For Linux/Wayland users.
|
11 |
+
if os.getenv("XDG_SESSION_TYPE") == "wayland":
|
12 |
+
os.environ["XDG_SESSION_TYPE"] = "x11"
|
13 |
+
|
14 |
+
import glfw
|
15 |
+
import OpenGL.GL as gl
|
16 |
+
import imgui
|
17 |
+
from imgui.integrations.glfw import GlfwRenderer
|
18 |
+
|
19 |
+
active = {
|
20 |
+
"window": True,
|
21 |
+
"child": False,
|
22 |
+
"tooltip": False,
|
23 |
+
"menu bar": False,
|
24 |
+
"popup": False,
|
25 |
+
"popup modal": False,
|
26 |
+
"popup context item": False,
|
27 |
+
"popup context window": False,
|
28 |
+
"drag drop": False,
|
29 |
+
"group": False,
|
30 |
+
"tab bar": False,
|
31 |
+
"list box": False,
|
32 |
+
"popup context void": False,
|
33 |
+
"table": False,
|
34 |
+
}
|
35 |
+
|
36 |
+
path_to_font = None # "path/to/font.ttf"
|
37 |
+
|
38 |
+
opened_state = True
|
39 |
+
|
40 |
+
|
41 |
+
def frame_commands():
|
42 |
+
gl.glClearColor(0.1, 0.1, 0.1, 1)
|
43 |
+
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
44 |
+
|
45 |
+
io = imgui.get_io()
|
46 |
+
|
47 |
+
if io.key_ctrl and io.keys_down[glfw.KEY_Q]:
|
48 |
+
sys.exit(0)
|
49 |
+
|
50 |
+
if imgui.begin_main_menu_bar():
|
51 |
+
if imgui.begin_menu("File", True):
|
52 |
+
clicked_quit, selected_quit = imgui.menu_item("Quit", "Ctrl+Q", False, True)
|
53 |
+
|
54 |
+
if clicked_quit:
|
55 |
+
sys.exit(0)
|
56 |
+
|
57 |
+
imgui.end_menu()
|
58 |
+
imgui.end_main_menu_bar()
|
59 |
+
|
60 |
+
# turn windows on/off
|
61 |
+
imgui.begin("Active examples")
|
62 |
+
for label, enabled in active.copy().items():
|
63 |
+
_, enabled = imgui.checkbox(label, enabled)
|
64 |
+
active[label] = enabled
|
65 |
+
imgui.end()
|
66 |
+
|
67 |
+
if active["window"]:
|
68 |
+
imgui.begin("Hello, Imgui!")
|
69 |
+
imgui.text("Hello, World!")
|
70 |
+
imgui.end()
|
71 |
+
|
72 |
+
if active["child"]:
|
73 |
+
imgui.begin("Example: child region")
|
74 |
+
imgui.begin_child("region", 150, -50, border=True)
|
75 |
+
imgui.text("inside region")
|
76 |
+
imgui.end_child()
|
77 |
+
imgui.text("outside region")
|
78 |
+
imgui.end()
|
79 |
+
|
80 |
+
if active["tooltip"]:
|
81 |
+
imgui.begin("Example: tooltip")
|
82 |
+
imgui.button("Click me!")
|
83 |
+
if imgui.is_item_hovered():
|
84 |
+
imgui.begin_tooltip()
|
85 |
+
imgui.text("This button is clickable.")
|
86 |
+
imgui.end_tooltip()
|
87 |
+
imgui.end()
|
88 |
+
|
89 |
+
if active["menu bar"]:
|
90 |
+
try:
|
91 |
+
flags = imgui.WINDOW_MENU_BAR
|
92 |
+
imgui.begin("Child Window - File Browser", flags=flags)
|
93 |
+
if imgui.begin_menu_bar():
|
94 |
+
if imgui.begin_menu('File'):
|
95 |
+
clicked, state = imgui.menu_item('Close')
|
96 |
+
if clicked:
|
97 |
+
active["menu bar"] = False
|
98 |
+
raise Exception
|
99 |
+
imgui.end_menu()
|
100 |
+
imgui.end_menu_bar()
|
101 |
+
imgui.end()
|
102 |
+
except Exception:
|
103 |
+
print("exception caught, but too late!")
|
104 |
+
|
105 |
+
if active["popup"]:
|
106 |
+
imgui.begin("Example: simple popup")
|
107 |
+
if imgui.button("select"):
|
108 |
+
imgui.open_popup("select-popup")
|
109 |
+
imgui.same_line()
|
110 |
+
if imgui.begin_popup("select-popup"):
|
111 |
+
imgui.text("Select one")
|
112 |
+
imgui.separator()
|
113 |
+
imgui.selectable("One")
|
114 |
+
imgui.selectable("Two")
|
115 |
+
imgui.selectable("Three")
|
116 |
+
imgui.end_popup()
|
117 |
+
imgui.end()
|
118 |
+
|
119 |
+
if active["popup modal"]:
|
120 |
+
imgui.begin("Example: simple popup modal")
|
121 |
+
if imgui.button("Open Modal popup"):
|
122 |
+
imgui.open_popup("select-popup-modal")
|
123 |
+
imgui.same_line()
|
124 |
+
if imgui.begin_popup_modal("select-popup-modal")[0]:
|
125 |
+
imgui.text("Select an option:")
|
126 |
+
imgui.separator()
|
127 |
+
imgui.selectable("One")
|
128 |
+
imgui.selectable("Two")
|
129 |
+
imgui.selectable("Three")
|
130 |
+
imgui.end_popup()
|
131 |
+
imgui.end()
|
132 |
+
|
133 |
+
if active["popup context item"]:
|
134 |
+
imgui.begin("Example: popup context view")
|
135 |
+
imgui.text("Right-click to set value.")
|
136 |
+
if imgui.begin_popup_context_item("Item Context Menu"):
|
137 |
+
imgui.selectable("Set to Zero")
|
138 |
+
imgui.end_popup()
|
139 |
+
imgui.end()
|
140 |
+
|
141 |
+
if active["popup context window"]:
|
142 |
+
imgui.begin("Example: popup context window")
|
143 |
+
if imgui.begin_popup_context_window():
|
144 |
+
imgui.selectable("Clear")
|
145 |
+
imgui.end_popup()
|
146 |
+
imgui.end()
|
147 |
+
|
148 |
+
if active["popup context void"]:
|
149 |
+
if imgui.begin_popup_context_void():
|
150 |
+
imgui.selectable("Clear")
|
151 |
+
imgui.end_popup()
|
152 |
+
|
153 |
+
if active["drag drop"]:
|
154 |
+
imgui.begin("Example: drag and drop")
|
155 |
+
imgui.button('source')
|
156 |
+
if imgui.begin_drag_drop_source():
|
157 |
+
imgui.set_drag_drop_payload('itemtype', b'payload')
|
158 |
+
imgui.button('dragged source')
|
159 |
+
imgui.end_drag_drop_source()
|
160 |
+
imgui.button('dest')
|
161 |
+
if imgui.begin_drag_drop_target():
|
162 |
+
payload = imgui.accept_drag_drop_payload('itemtype')
|
163 |
+
if payload is not None:
|
164 |
+
print('Received:', payload)
|
165 |
+
imgui.end_drag_drop_target()
|
166 |
+
imgui.end()
|
167 |
+
|
168 |
+
if active["group"]:
|
169 |
+
imgui.begin("Example: item groups")
|
170 |
+
imgui.begin_group()
|
171 |
+
imgui.text("First group (buttons):")
|
172 |
+
imgui.button("Button A")
|
173 |
+
imgui.button("Button B")
|
174 |
+
imgui.end_group()
|
175 |
+
imgui.same_line(spacing=50)
|
176 |
+
imgui.begin_group()
|
177 |
+
imgui.text("Second group (text and bullet texts):")
|
178 |
+
imgui.bullet_text("Bullet A")
|
179 |
+
imgui.bullet_text("Bullet B")
|
180 |
+
imgui.end_group()
|
181 |
+
imgui.end()
|
182 |
+
|
183 |
+
if active["tab bar"]:
|
184 |
+
imgui.begin("Example Tab Bar")
|
185 |
+
if imgui.begin_tab_bar("MyTabBar"):
|
186 |
+
if imgui.begin_tab_item("Item 1")[0]:
|
187 |
+
imgui.text("Here is the tab content!")
|
188 |
+
imgui.end_tab_item()
|
189 |
+
if imgui.begin_tab_item("Item 2")[0]:
|
190 |
+
imgui.text("Another content...")
|
191 |
+
imgui.end_tab_item()
|
192 |
+
global opened_state
|
193 |
+
selected, opened_state = imgui.begin_tab_item("Item 3", opened=opened_state)
|
194 |
+
if selected:
|
195 |
+
imgui.text("Hello Saylor!")
|
196 |
+
imgui.end_tab_item()
|
197 |
+
imgui.end_tab_bar()
|
198 |
+
imgui.end()
|
199 |
+
|
200 |
+
if active["list box"]:
|
201 |
+
imgui.begin("Example: custom listbox")
|
202 |
+
if imgui.begin_list_box("List", 200, 100):
|
203 |
+
imgui.selectable("Selected", True)
|
204 |
+
imgui.selectable("Not Selected", False)
|
205 |
+
imgui.end_list_box()
|
206 |
+
imgui.end()
|
207 |
+
|
208 |
+
if active["table"]:
|
209 |
+
imgui.begin("Example: table")
|
210 |
+
if imgui.begin_table("data", 2):
|
211 |
+
imgui.table_next_column()
|
212 |
+
imgui.table_header("A")
|
213 |
+
imgui.table_next_column()
|
214 |
+
imgui.table_header("B")
|
215 |
+
|
216 |
+
imgui.table_next_row()
|
217 |
+
imgui.table_next_column()
|
218 |
+
imgui.text("123")
|
219 |
+
|
220 |
+
imgui.table_next_column()
|
221 |
+
imgui.text("456")
|
222 |
+
|
223 |
+
imgui.table_next_row()
|
224 |
+
imgui.table_next_column()
|
225 |
+
imgui.text("789")
|
226 |
+
|
227 |
+
imgui.table_next_column()
|
228 |
+
imgui.text("111")
|
229 |
+
|
230 |
+
imgui.table_next_row()
|
231 |
+
imgui.table_next_column()
|
232 |
+
imgui.text("222")
|
233 |
+
|
234 |
+
imgui.table_next_column()
|
235 |
+
imgui.text("333")
|
236 |
+
imgui.end_table()
|
237 |
+
imgui.end()
|
238 |
+
|
239 |
+
|
240 |
+
def render_frame(impl, window, font):
|
241 |
+
glfw.poll_events()
|
242 |
+
impl.process_inputs()
|
243 |
+
imgui.new_frame()
|
244 |
+
|
245 |
+
gl.glClearColor(0.1, 0.1, 0.1, 1)
|
246 |
+
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
247 |
+
|
248 |
+
if font is not None:
|
249 |
+
imgui.push_font(font)
|
250 |
+
frame_commands()
|
251 |
+
if font is not None:
|
252 |
+
imgui.pop_font()
|
253 |
+
|
254 |
+
imgui.render()
|
255 |
+
impl.render(imgui.get_draw_data())
|
256 |
+
glfw.swap_buffers(window)
|
257 |
+
|
258 |
+
|
259 |
+
def impl_glfw_init():
|
260 |
+
width, height = 1600, 900
|
261 |
+
window_name = "minimal ImGui/GLFW3 example"
|
262 |
+
|
263 |
+
if not glfw.init():
|
264 |
+
print("Could not initialize OpenGL context")
|
265 |
+
sys.exit(1)
|
266 |
+
|
267 |
+
glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 3)
|
268 |
+
glfw.window_hint(glfw.CONTEXT_VERSION_MINOR, 3)
|
269 |
+
glfw.window_hint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE)
|
270 |
+
glfw.window_hint(glfw.OPENGL_FORWARD_COMPAT, gl.GL_TRUE)
|
271 |
+
|
272 |
+
window = glfw.create_window(int(width), int(height), window_name, None, None)
|
273 |
+
glfw.make_context_current(window)
|
274 |
+
|
275 |
+
if not window:
|
276 |
+
glfw.terminate()
|
277 |
+
print("Could not initialize Window")
|
278 |
+
sys.exit(1)
|
279 |
+
|
280 |
+
return window
|
281 |
+
|
282 |
+
|
283 |
+
def main():
|
284 |
+
imgui.create_context()
|
285 |
+
window = impl_glfw_init()
|
286 |
+
|
287 |
+
impl = GlfwRenderer(window)
|
288 |
+
|
289 |
+
io = imgui.get_io()
|
290 |
+
jb = io.fonts.add_font_from_file_ttf(path_to_font, 30) if path_to_font is not None else None
|
291 |
+
impl.refresh_font_texture()
|
292 |
+
|
293 |
+
while not glfw.window_should_close(window):
|
294 |
+
render_frame(impl, window, jb)
|
295 |
+
|
296 |
+
impl.shutdown()
|
297 |
+
glfw.terminate()
|
298 |
+
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
main()
|
Imgui/imgui.ini
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[Window][Debug##Default]
|
2 |
+
Pos=60,60
|
3 |
+
Size=400,400
|
4 |
+
Collapsed=0
|
5 |
+
|
6 |
+
[Window][Active examples]
|
7 |
+
Pos=21,83
|
8 |
+
Size=179,353
|
9 |
+
Collapsed=0
|
10 |
+
|
11 |
+
[Window][Hello, Imgui!]
|
12 |
+
Pos=60,60
|
13 |
+
Size=107,48
|
14 |
+
Collapsed=0
|
15 |
+
|
16 |
+
[Window][Example: table]
|
17 |
+
Pos=60,60
|
18 |
+
Size=66,103
|
19 |
+
Collapsed=0
|
20 |
+
|
21 |
+
[Window][Example: drag and drop]
|
22 |
+
Pos=60,60
|
23 |
+
Size=66,77
|
24 |
+
Collapsed=0
|
25 |
+
|
LDM/notebooks/_1_Main.ipynb
ADDED
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Imports"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 7,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"data": {
|
17 |
+
"text/plain": [
|
18 |
+
"device(type='cuda')"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
"execution_count": 7,
|
22 |
+
"metadata": {},
|
23 |
+
"output_type": "execute_result"
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"source": [
|
27 |
+
"import os\n",
|
28 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
29 |
+
"\n",
|
30 |
+
"import torch\n",
|
31 |
+
"import torch.nn as nn\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"from collections import namedtuple\n",
|
34 |
+
"\n",
|
35 |
+
"import pandas as pd\n",
|
36 |
+
"import torchvision as tv\n",
|
37 |
+
"from torchvision.transforms import v2\n",
|
38 |
+
"from tqdm.auto import tqdm, trange\n",
|
39 |
+
"\n",
|
40 |
+
"import yaml\n",
|
41 |
+
"from dotdict import DotDict\n",
|
42 |
+
"import random\n",
|
43 |
+
"import torch.hub\n",
|
44 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
45 |
+
"from torchvision.utils import make_grid\n",
|
46 |
+
"\n",
|
47 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
48 |
+
"device"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"metadata": {},
|
54 |
+
"source": [
|
55 |
+
"### *LPIPS*: Learned Perceptual Image Patch Similarity"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 8,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"class vgg16(nn.Module):\n",
|
65 |
+
" def __init__(self):\n",
|
66 |
+
" super(vgg16, self).__init__()\n",
|
67 |
+
" vgg_pretrained_features = tv.models.vgg16(\n",
|
68 |
+
" weights=tv.models.VGG16_Weights.IMAGENET1K_V1\n",
|
69 |
+
" ).features\n",
|
70 |
+
" self.slice1 = torch.nn.Sequential()\n",
|
71 |
+
" self.slice2 = torch.nn.Sequential()\n",
|
72 |
+
" self.slice3 = torch.nn.Sequential()\n",
|
73 |
+
" self.slice4 = torch.nn.Sequential()\n",
|
74 |
+
" self.slice5 = torch.nn.Sequential()\n",
|
75 |
+
" self.N_slices = 5\n",
|
76 |
+
" for x in range(4):\n",
|
77 |
+
" self.slice1.add_module(str(x), vgg_pretrained_features[x])\n",
|
78 |
+
" for x in range(4, 9):\n",
|
79 |
+
" self.slice2.add_module(str(x), vgg_pretrained_features[x])\n",
|
80 |
+
" for x in range(9, 16):\n",
|
81 |
+
" self.slice3.add_module(str(x), vgg_pretrained_features[x])\n",
|
82 |
+
" for x in range(16, 23):\n",
|
83 |
+
" self.slice4.add_module(str(x), vgg_pretrained_features[x])\n",
|
84 |
+
" for x in range(23, 30):\n",
|
85 |
+
" self.slice5.add_module(str(x), vgg_pretrained_features[x])\n",
|
86 |
+
" \n",
|
87 |
+
" self.eval()\n",
|
88 |
+
" for param in self.parameters():\n",
|
89 |
+
" param.requires_grad = False\n",
|
90 |
+
"\n",
|
91 |
+
" def forward(self, X):\n",
|
92 |
+
" h1 = self.slice1(X)\n",
|
93 |
+
" h2 = self.slice2(h1)\n",
|
94 |
+
" h3 = self.slice3(h2)\n",
|
95 |
+
" h4 = self.slice4(h3)\n",
|
96 |
+
" h5 = self.slice5(h4)\n",
|
97 |
+
" vgg_outputs = namedtuple(\"VggOutputs\", ['h1', 'h2', 'h3', 'h4', 'h5'])\n",
|
98 |
+
" out = vgg_outputs(h1, h2, h3, h4, h5)\n",
|
99 |
+
" return out\n",
|
100 |
+
"\n",
|
101 |
+
"\n",
|
102 |
+
"def _spatial_average(in_tens, keepdim=True):\n",
|
103 |
+
" return in_tens.mean([2, 3], keepdim=keepdim)\n",
|
104 |
+
"\n",
|
105 |
+
"\n",
|
106 |
+
"def _normalize_tensor(in_feat, eps= 1e-8):\n",
|
107 |
+
" norm_factor = torch.sqrt(eps + torch.sum(in_feat**2, dim=1, keepdim=True))\n",
|
108 |
+
" return in_feat / norm_factor\n",
|
109 |
+
"\n",
|
110 |
+
"\n",
|
111 |
+
"class ScalingLayer(nn.Module):\n",
|
112 |
+
" def __init__(self):\n",
|
113 |
+
" super(ScalingLayer, self).__init__()\n",
|
114 |
+
" # Imagnet normalization for (0-1)\n",
|
115 |
+
" # mean = [0.485, 0.456, 0.406]\n",
|
116 |
+
" # std = [0.229, 0.224, 0.225]\n",
|
117 |
+
"\n",
|
118 |
+
" self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])\n",
|
119 |
+
" self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])\n",
|
120 |
+
"\n",
|
121 |
+
" def forward(self, inp):\n",
|
122 |
+
" return (inp - self.shift) / self.scale\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"class NetLinLayer(nn.Module):\n",
|
126 |
+
" ''' A single linear layer which does a 1x1 conv '''\n",
|
127 |
+
" def __init__(self, chn_in, chn_out=1, use_dropout=False):\n",
|
128 |
+
" super(NetLinLayer, self).__init__()\n",
|
129 |
+
" layers = [nn.Dropout(), ] if (use_dropout) else []\n",
|
130 |
+
" layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]\n",
|
131 |
+
" self.model = nn.Sequential(*layers)\n",
|
132 |
+
"\n",
|
133 |
+
" def forward(self, x):\n",
|
134 |
+
" return self.model(x)\n",
|
135 |
+
"\n",
|
136 |
+
"\n",
|
137 |
+
"class LPIPS(nn.Module):\n",
|
138 |
+
" def __init__(self, net='vgg', version='0.1', use_dropout=True):\n",
|
139 |
+
" super(LPIPS, self).__init__()\n",
|
140 |
+
" self.version = version\n",
|
141 |
+
" self.scaling_layer = ScalingLayer()\n",
|
142 |
+
" self.chns = [64, 128, 256, 512, 512]\n",
|
143 |
+
" self.L = len(self.chns)\n",
|
144 |
+
" self.net = vgg16()\n",
|
145 |
+
" self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)\n",
|
146 |
+
" self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)\n",
|
147 |
+
" self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)\n",
|
148 |
+
" self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)\n",
|
149 |
+
" self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)\n",
|
150 |
+
" self.lins = nn.ModuleList([self.lin0, self.lin1, self.lin2, self.lin3, self.lin4])\n",
|
151 |
+
"\n",
|
152 |
+
" # --- Orignal url --------------------\n",
|
153 |
+
" # weights_url = f\"https://github.com/richzhang/PerceptualSimilarity/raw/master/lpips/weights/v{version}/{net}.pth\"\n",
|
154 |
+
" \n",
|
155 |
+
" # --- Orignal Forked url -------------\n",
|
156 |
+
" weights_url = f\"https://github.com/akuresonite/PerceptualSimilarity-Forked/raw/master/lpips/weights/v{version}/{net}.pth\"\n",
|
157 |
+
" \n",
|
158 |
+
" # --- Orignal torchmetric url --------\n",
|
159 |
+
" # weights_url = \"https://github.com/Lightning-AI/torchmetrics/raw/master/src/torchmetrics/functional/image/lpips_models/vgg.pth\"\n",
|
160 |
+
" \n",
|
161 |
+
" state_dict = torch.hub.load_state_dict_from_url(weights_url, map_location='cpu')\n",
|
162 |
+
" self.load_state_dict(state_dict, strict=False)\n",
|
163 |
+
" \n",
|
164 |
+
" self.eval()\n",
|
165 |
+
" for param in self.parameters():\n",
|
166 |
+
" param.requires_grad = False\n",
|
167 |
+
"\n",
|
168 |
+
" def forward(self, in0, in1, normalize=False):\n",
|
169 |
+
" # Scale the inputs to -1 to +1 range if input in [0,1]\n",
|
170 |
+
" if normalize:\n",
|
171 |
+
" in0 = 2 * in0 - 1\n",
|
172 |
+
" in1 = 2 * in1 - 1\n",
|
173 |
+
"\n",
|
174 |
+
" in0_input, in1_input = self.scaling_layer(in0), self.scaling_layer(in1)\n",
|
175 |
+
" # in0_input, in1_input = in0, in1\n",
|
176 |
+
" \n",
|
177 |
+
" outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)\n",
|
178 |
+
" \n",
|
179 |
+
" diffs = {}\n",
|
180 |
+
" for kk in range(self.L):\n",
|
181 |
+
" feats0 = _normalize_tensor(outs0[kk])\n",
|
182 |
+
" feats1 = _normalize_tensor(outs1[kk])\n",
|
183 |
+
" diffs[kk] = (feats0 - feats1) ** 2\n",
|
184 |
+
" \n",
|
185 |
+
" res = [_spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]\n",
|
186 |
+
" val = sum(res)\n",
|
187 |
+
" return val.reshape(-1)"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "markdown",
|
192 |
+
"metadata": {},
|
193 |
+
"source": [
|
194 |
+
"### Discriminator"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 9,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [],
|
202 |
+
"source": [
|
203 |
+
"class Discriminator(nn.Module):\n",
|
204 |
+
" r\"\"\"\n",
|
205 |
+
" PatchGAN Discriminator.\n",
|
206 |
+
" Rather than taking IMG_CHANNELSxIMG_HxIMG_W all the way to\n",
|
207 |
+
" 1 scalar value , we instead predict grid of values.\n",
|
208 |
+
" Where each grid is prediction of how likely\n",
|
209 |
+
" the discriminator thinks that the image patch corresponding\n",
|
210 |
+
" to the grid cell is real\n",
|
211 |
+
" \"\"\"\n",
|
212 |
+
"\n",
|
213 |
+
" def __init__(\n",
|
214 |
+
" self,\n",
|
215 |
+
" im_channels=3,\n",
|
216 |
+
" conv_channels=[64, 128, 256],\n",
|
217 |
+
" kernels=[4, 4, 4, 4],\n",
|
218 |
+
" strides=[2, 2, 2, 1],\n",
|
219 |
+
" paddings=[1, 1, 1, 1],\n",
|
220 |
+
" ):\n",
|
221 |
+
" super().__init__()\n",
|
222 |
+
" self.im_channels = im_channels\n",
|
223 |
+
" activation = nn.LeakyReLU(0.2)\n",
|
224 |
+
" layers_dim = [self.im_channels] + conv_channels + [1]\n",
|
225 |
+
" self.layers = nn.ModuleList(\n",
|
226 |
+
" [\n",
|
227 |
+
" nn.Sequential(\n",
|
228 |
+
" nn.Conv2d(\n",
|
229 |
+
" layers_dim[i],\n",
|
230 |
+
" layers_dim[i + 1],\n",
|
231 |
+
" kernel_size=kernels[i],\n",
|
232 |
+
" stride=strides[i],\n",
|
233 |
+
" padding=paddings[i],\n",
|
234 |
+
" bias=False if i != 0 else True,\n",
|
235 |
+
" ),\n",
|
236 |
+
" (\n",
|
237 |
+
" nn.BatchNorm2d(layers_dim[i + 1])\n",
|
238 |
+
" if i != len(layers_dim) - 2 and i != 0\n",
|
239 |
+
" else nn.Identity()\n",
|
240 |
+
" ),\n",
|
241 |
+
" activation if i != len(layers_dim) - 2 else nn.Identity(),\n",
|
242 |
+
" )\n",
|
243 |
+
" for i in range(len(layers_dim) - 1)\n",
|
244 |
+
" ]\n",
|
245 |
+
" )\n",
|
246 |
+
"\n",
|
247 |
+
" def forward(self, x):\n",
|
248 |
+
" out = x\n",
|
249 |
+
" for layer in self.layers:\n",
|
250 |
+
" out = layer(out)\n",
|
251 |
+
" return out"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "markdown",
|
256 |
+
"metadata": {},
|
257 |
+
"source": [
|
258 |
+
"### *VQVAE*"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": 10,
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"class DownBlock(nn.Module):\n",
|
268 |
+
" r\"\"\"\n",
|
269 |
+
" Down conv block with attention.\n",
|
270 |
+
" Sequence of following block\n",
|
271 |
+
" 1. Resnet block with time embedding\n",
|
272 |
+
" 2. Attention block\n",
|
273 |
+
" 3. Downsample\n",
|
274 |
+
" \"\"\"\n",
|
275 |
+
"\n",
|
276 |
+
" def __init__(\n",
|
277 |
+
" self,\n",
|
278 |
+
" in_channels,\n",
|
279 |
+
" out_channels,\n",
|
280 |
+
" t_emb_dim,\n",
|
281 |
+
" down_sample,\n",
|
282 |
+
" num_heads,\n",
|
283 |
+
" num_layers,\n",
|
284 |
+
" attn,\n",
|
285 |
+
" norm_channels,\n",
|
286 |
+
" cross_attn=False,\n",
|
287 |
+
" context_dim=None,\n",
|
288 |
+
" ):\n",
|
289 |
+
" super().__init__()\n",
|
290 |
+
" self.num_layers = num_layers\n",
|
291 |
+
" self.down_sample = down_sample\n",
|
292 |
+
" self.attn = attn\n",
|
293 |
+
" self.context_dim = context_dim\n",
|
294 |
+
" self.cross_attn = cross_attn\n",
|
295 |
+
" self.t_emb_dim = t_emb_dim\n",
|
296 |
+
" self.resnet_conv_first = nn.ModuleList(\n",
|
297 |
+
" [\n",
|
298 |
+
" nn.Sequential(\n",
|
299 |
+
" nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),\n",
|
300 |
+
" nn.SiLU(),\n",
|
301 |
+
" nn.Conv2d(\n",
|
302 |
+
" in_channels if i == 0 else out_channels,\n",
|
303 |
+
" out_channels,\n",
|
304 |
+
" kernel_size=3,\n",
|
305 |
+
" stride=1,\n",
|
306 |
+
" padding=1,\n",
|
307 |
+
" ),\n",
|
308 |
+
" )\n",
|
309 |
+
" for i in range(num_layers)\n",
|
310 |
+
" ]\n",
|
311 |
+
" )\n",
|
312 |
+
" if self.t_emb_dim is not None:\n",
|
313 |
+
" self.t_emb_layers = nn.ModuleList(\n",
|
314 |
+
" [\n",
|
315 |
+
" nn.Sequential(nn.SiLU(), nn.Linear(self.t_emb_dim, out_channels))\n",
|
316 |
+
" for _ in range(num_layers)\n",
|
317 |
+
" ]\n",
|
318 |
+
" )\n",
|
319 |
+
" self.resnet_conv_second = nn.ModuleList(\n",
|
320 |
+
" [\n",
|
321 |
+
" nn.Sequential(\n",
|
322 |
+
" nn.GroupNorm(norm_channels, out_channels),\n",
|
323 |
+
" nn.SiLU(),\n",
|
324 |
+
" nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),\n",
|
325 |
+
" )\n",
|
326 |
+
" for _ in range(num_layers)\n",
|
327 |
+
" ]\n",
|
328 |
+
" )\n",
|
329 |
+
"\n",
|
330 |
+
" if self.attn:\n",
|
331 |
+
" self.attention_norms = nn.ModuleList(\n",
|
332 |
+
" [nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]\n",
|
333 |
+
" )\n",
|
334 |
+
"\n",
|
335 |
+
" self.attentions = nn.ModuleList(\n",
|
336 |
+
" [\n",
|
337 |
+
" nn.MultiheadAttention(out_channels, num_heads, batch_first=True)\n",
|
338 |
+
" for _ in range(num_layers)\n",
|
339 |
+
" ]\n",
|
340 |
+
" )\n",
|
341 |
+
" if self.cross_attn:\n",
|
342 |
+
" assert context_dim is not None, \"Context Dimension must be passed for cross attention\"\n",
|
343 |
+
" self.cross_attention_norms = nn.ModuleList(\n",
|
344 |
+
" [nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]\n",
|
345 |
+
" )\n",
|
346 |
+
" self.cross_attentions = nn.ModuleList(\n",
|
347 |
+
" [\n",
|
348 |
+
" nn.MultiheadAttention(out_channels, num_heads, batch_first=True)\n",
|
349 |
+
" for _ in range(num_layers)\n",
|
350 |
+
" ]\n",
|
351 |
+
" )\n",
|
352 |
+
" self.context_proj = nn.ModuleList(\n",
|
353 |
+
" [nn.Linear(context_dim, out_channels) for _ in range(num_layers)]\n",
|
354 |
+
" )\n",
|
355 |
+
" self.residual_input_conv = nn.ModuleList(\n",
|
356 |
+
" [\n",
|
357 |
+
" nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)\n",
|
358 |
+
" for i in range(num_layers)\n",
|
359 |
+
" ]\n",
|
360 |
+
" )\n",
|
361 |
+
" self.down_sample_conv = (\n",
|
362 |
+
" nn.Conv2d(out_channels, out_channels, 4, 2, 1) if self.down_sample else nn.Identity()\n",
|
363 |
+
" )\n",
|
364 |
+
"\n",
|
365 |
+
" def forward(self, x, t_emb=None, context=None):\n",
|
366 |
+
" out = x\n",
|
367 |
+
" for i in range(self.num_layers):\n",
|
368 |
+
" # Resnet block of Unet\n",
|
369 |
+
"\n",
|
370 |
+
" resnet_input = out\n",
|
371 |
+
" out = self.resnet_conv_first[i](out)\n",
|
372 |
+
" if self.t_emb_dim is not None:\n",
|
373 |
+
" out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]\n",
|
374 |
+
" out = self.resnet_conv_second[i](out)\n",
|
375 |
+
" out = out + self.residual_input_conv[i](resnet_input)\n",
|
376 |
+
"\n",
|
377 |
+
" if self.attn:\n",
|
378 |
+
" # Attention block of Unet\n",
|
379 |
+
"\n",
|
380 |
+
" batch_size, channels, h, w = out.shape\n",
|
381 |
+
" in_attn = out.reshape(batch_size, channels, h * w)\n",
|
382 |
+
" in_attn = self.attention_norms[i](in_attn)\n",
|
383 |
+
" in_attn = in_attn.transpose(1, 2)\n",
|
384 |
+
" out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)\n",
|
385 |
+
" out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)\n",
|
386 |
+
" out = out + out_attn\n",
|
387 |
+
" if self.cross_attn:\n",
|
388 |
+
" assert (\n",
|
389 |
+
" context is not None\n",
|
390 |
+
" ), \"context cannot be None if cross attention layers are used\"\n",
|
391 |
+
" batch_size, channels, h, w = out.shape\n",
|
392 |
+
" in_attn = out.reshape(batch_size, channels, h * w)\n",
|
393 |
+
" in_attn = self.cross_attention_norms[i](in_attn)\n",
|
394 |
+
" in_attn = in_attn.transpose(1, 2)\n",
|
395 |
+
" assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim\n",
|
396 |
+
" context_proj = self.context_proj[i](context)\n",
|
397 |
+
" out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)\n",
|
398 |
+
" out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)\n",
|
399 |
+
" out = out + out_attn\n",
|
400 |
+
" # Downsample\n",
|
401 |
+
"\n",
|
402 |
+
" out = self.down_sample_conv(out)\n",
|
403 |
+
" return out\n",
|
404 |
+
"\n",
|
405 |
+
"\n",
|
406 |
+
"class MidBlock(nn.Module):\n",
|
407 |
+
" r\"\"\"\n",
|
408 |
+
" Mid conv block with attention.\n",
|
409 |
+
" Sequence of following blocks\n",
|
410 |
+
" 1. Resnet block with time embedding\n",
|
411 |
+
" 2. Attention block\n",
|
412 |
+
" 3. Resnet block with time embedding\n",
|
413 |
+
" \"\"\"\n",
|
414 |
+
"\n",
|
415 |
+
" def __init__(\n",
|
416 |
+
" self,\n",
|
417 |
+
" in_channels,\n",
|
418 |
+
" out_channels,\n",
|
419 |
+
" t_emb_dim,\n",
|
420 |
+
" num_heads,\n",
|
421 |
+
" num_layers,\n",
|
422 |
+
" norm_channels,\n",
|
423 |
+
" cross_attn=None,\n",
|
424 |
+
" context_dim=None,\n",
|
425 |
+
" ):\n",
|
426 |
+
" super().__init__()\n",
|
427 |
+
" self.num_layers = num_layers\n",
|
428 |
+
" self.t_emb_dim = t_emb_dim\n",
|
429 |
+
" self.context_dim = context_dim\n",
|
430 |
+
" self.cross_attn = cross_attn\n",
|
431 |
+
" self.resnet_conv_first = nn.ModuleList(\n",
|
432 |
+
" [\n",
|
433 |
+
" nn.Sequential(\n",
|
434 |
+
" nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),\n",
|
435 |
+
" nn.SiLU(),\n",
|
436 |
+
" nn.Conv2d(\n",
|
437 |
+
" in_channels if i == 0 else out_channels,\n",
|
438 |
+
" out_channels,\n",
|
439 |
+
" kernel_size=3,\n",
|
440 |
+
" stride=1,\n",
|
441 |
+
" padding=1,\n",
|
442 |
+
" ),\n",
|
443 |
+
" )\n",
|
444 |
+
" for i in range(num_layers + 1)\n",
|
445 |
+
" ]\n",
|
446 |
+
" )\n",
|
447 |
+
"\n",
|
448 |
+
" if self.t_emb_dim is not None:\n",
|
449 |
+
" self.t_emb_layers = nn.ModuleList(\n",
|
450 |
+
" [\n",
|
451 |
+
" nn.Sequential(nn.SiLU(), nn.Linear(t_emb_dim, out_channels))\n",
|
452 |
+
" for _ in range(num_layers + 1)\n",
|
453 |
+
" ]\n",
|
454 |
+
" )\n",
|
455 |
+
" self.resnet_conv_second = nn.ModuleList(\n",
|
456 |
+
" [\n",
|
457 |
+
" nn.Sequential(\n",
|
458 |
+
" nn.GroupNorm(norm_channels, out_channels),\n",
|
459 |
+
" nn.SiLU(),\n",
|
460 |
+
" nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),\n",
|
461 |
+
" )\n",
|
462 |
+
" for _ in range(num_layers + 1)\n",
|
463 |
+
" ]\n",
|
464 |
+
" )\n",
|
465 |
+
"\n",
|
466 |
+
" self.attention_norms = nn.ModuleList(\n",
|
467 |
+
" [nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]\n",
|
468 |
+
" )\n",
|
469 |
+
"\n",
|
470 |
+
" self.attentions = nn.ModuleList(\n",
|
471 |
+
" [\n",
|
472 |
+
" nn.MultiheadAttention(out_channels, num_heads, batch_first=True)\n",
|
473 |
+
" for _ in range(num_layers)\n",
|
474 |
+
" ]\n",
|
475 |
+
" )\n",
|
476 |
+
" if self.cross_attn:\n",
|
477 |
+
" assert context_dim is not None, \"Context Dimension must be passed for cross attention\"\n",
|
478 |
+
" self.cross_attention_norms = nn.ModuleList(\n",
|
479 |
+
" [nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]\n",
|
480 |
+
" )\n",
|
481 |
+
" self.cross_attentions = nn.ModuleList(\n",
|
482 |
+
" [\n",
|
483 |
+
" nn.MultiheadAttention(out_channels, num_heads, batch_first=True)\n",
|
484 |
+
" for _ in range(num_layers)\n",
|
485 |
+
" ]\n",
|
486 |
+
" )\n",
|
487 |
+
" self.context_proj = nn.ModuleList(\n",
|
488 |
+
" [nn.Linear(context_dim, out_channels) for _ in range(num_layers)]\n",
|
489 |
+
" )\n",
|
490 |
+
" self.residual_input_conv = nn.ModuleList(\n",
|
491 |
+
" [\n",
|
492 |
+
" nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)\n",
|
493 |
+
" for i in range(num_layers + 1)\n",
|
494 |
+
" ]\n",
|
495 |
+
" )\n",
|
496 |
+
"\n",
|
497 |
+
" def forward(self, x, t_emb=None, context=None):\n",
|
498 |
+
" out = x\n",
|
499 |
+
"\n",
|
500 |
+
" # First resnet block\n",
|
501 |
+
"\n",
|
502 |
+
" resnet_input = out\n",
|
503 |
+
" out = self.resnet_conv_first[0](out)\n",
|
504 |
+
" if self.t_emb_dim is not None:\n",
|
505 |
+
" out = out + self.t_emb_layers[0](t_emb)[:, :, None, None]\n",
|
506 |
+
" out = self.resnet_conv_second[0](out)\n",
|
507 |
+
" out = out + self.residual_input_conv[0](resnet_input)\n",
|
508 |
+
"\n",
|
509 |
+
" for i in range(self.num_layers):\n",
|
510 |
+
" # Attention Block\n",
|
511 |
+
"\n",
|
512 |
+
" batch_size, channels, h, w = out.shape\n",
|
513 |
+
" in_attn = out.reshape(batch_size, channels, h * w)\n",
|
514 |
+
" in_attn = self.attention_norms[i](in_attn)\n",
|
515 |
+
" in_attn = in_attn.transpose(1, 2)\n",
|
516 |
+
" out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)\n",
|
517 |
+
" out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)\n",
|
518 |
+
" out = out + out_attn\n",
|
519 |
+
"\n",
|
520 |
+
" if self.cross_attn:\n",
|
521 |
+
" assert (\n",
|
522 |
+
" context is not None\n",
|
523 |
+
" ), \"context cannot be None if cross attention layers are used\"\n",
|
524 |
+
" batch_size, channels, h, w = out.shape\n",
|
525 |
+
" in_attn = out.reshape(batch_size, channels, h * w)\n",
|
526 |
+
" in_attn = self.cross_attention_norms[i](in_attn)\n",
|
527 |
+
" in_attn = in_attn.transpose(1, 2)\n",
|
528 |
+
" assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim\n",
|
529 |
+
" context_proj = self.context_proj[i](context)\n",
|
530 |
+
" out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)\n",
|
531 |
+
" out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)\n",
|
532 |
+
" out = out + out_attn\n",
|
533 |
+
" # Resnet Block\n",
|
534 |
+
"\n",
|
535 |
+
" resnet_input = out\n",
|
536 |
+
" out = self.resnet_conv_first[i + 1](out)\n",
|
537 |
+
" if self.t_emb_dim is not None:\n",
|
538 |
+
" out = out + self.t_emb_layers[i + 1](t_emb)[:, :, None, None]\n",
|
539 |
+
" out = self.resnet_conv_second[i + 1](out)\n",
|
540 |
+
" out = out + self.residual_input_conv[i + 1](resnet_input)\n",
|
541 |
+
" return out\n",
|
542 |
+
"\n",
|
543 |
+
"\n",
|
544 |
+
"class UpBlock(nn.Module):\n",
|
545 |
+
" r\"\"\"\n",
|
546 |
+
" Up conv block with attention.\n",
|
547 |
+
" Sequence of following blocks\n",
|
548 |
+
" 1. Upsample\n",
|
549 |
+
" 1. Concatenate Down block output\n",
|
550 |
+
" 2. Resnet block with time embedding\n",
|
551 |
+
" 3. Attention Block\n",
|
552 |
+
" \"\"\"\n",
|
553 |
+
"\n",
|
554 |
+
" def __init__(\n",
|
555 |
+
" self,\n",
|
556 |
+
" in_channels,\n",
|
557 |
+
" out_channels,\n",
|
558 |
+
" t_emb_dim,\n",
|
559 |
+
" up_sample,\n",
|
560 |
+
" num_heads,\n",
|
561 |
+
" num_layers,\n",
|
562 |
+
" attn,\n",
|
563 |
+
" norm_channels,\n",
|
564 |
+
" ):\n",
|
565 |
+
" super().__init__()\n",
|
566 |
+
" self.num_layers = num_layers\n",
|
567 |
+
" self.up_sample = up_sample\n",
|
568 |
+
" self.t_emb_dim = t_emb_dim\n",
|
569 |
+
" self.attn = attn\n",
|
570 |
+
" self.resnet_conv_first = nn.ModuleList(\n",
|
571 |
+
" [\n",
|
572 |
+
" nn.Sequential(\n",
|
573 |
+
" nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),\n",
|
574 |
+
" nn.SiLU(),\n",
|
575 |
+
" nn.Conv2d(\n",
|
576 |
+
" in_channels if i == 0 else out_channels,\n",
|
577 |
+
" out_channels,\n",
|
578 |
+
" kernel_size=3,\n",
|
579 |
+
" stride=1,\n",
|
580 |
+
" padding=1,\n",
|
581 |
+
" ),\n",
|
582 |
+
" )\n",
|
583 |
+
" for i in range(num_layers)\n",
|
584 |
+
" ]\n",
|
585 |
+
" )\n",
|
586 |
+
"\n",
|
587 |
+
" if self.t_emb_dim is not None:\n",
|
588 |
+
" self.t_emb_layers = nn.ModuleList(\n",
|
589 |
+
" [\n",
|
590 |
+
" nn.Sequential(nn.SiLU(), nn.Linear(t_emb_dim, out_channels))\n",
|
591 |
+
" for _ in range(num_layers)\n",
|
592 |
+
" ]\n",
|
593 |
+
" )\n",
|
594 |
+
" self.resnet_conv_second = nn.ModuleList(\n",
|
595 |
+
" [\n",
|
596 |
+
" nn.Sequential(\n",
|
597 |
+
" nn.GroupNorm(norm_channels, out_channels),\n",
|
598 |
+
" nn.SiLU(),\n",
|
599 |
+
" nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),\n",
|
600 |
+
" )\n",
|
601 |
+
" for _ in range(num_layers)\n",
|
602 |
+
" ]\n",
|
603 |
+
" )\n",
|
604 |
+
" if self.attn:\n",
|
605 |
+
" self.attention_norms = nn.ModuleList(\n",
|
606 |
+
" [nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]\n",
|
607 |
+
" )\n",
|
608 |
+
"\n",
|
609 |
+
" self.attentions = nn.ModuleList(\n",
|
610 |
+
" [\n",
|
611 |
+
" nn.MultiheadAttention(out_channels, num_heads, batch_first=True)\n",
|
612 |
+
" for _ in range(num_layers)\n",
|
613 |
+
" ]\n",
|
614 |
+
" )\n",
|
615 |
+
" self.residual_input_conv = nn.ModuleList(\n",
|
616 |
+
" [\n",
|
617 |
+
" nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)\n",
|
618 |
+
" for i in range(num_layers)\n",
|
619 |
+
" ]\n",
|
620 |
+
" )\n",
|
621 |
+
" self.up_sample_conv = (\n",
|
622 |
+
" nn.ConvTranspose2d(in_channels, in_channels, 4, 2, 1)\n",
|
623 |
+
" if self.up_sample\n",
|
624 |
+
" else nn.Identity()\n",
|
625 |
+
" )\n",
|
626 |
+
"\n",
|
627 |
+
" def forward(self, x, out_down=None, t_emb=None):\n",
|
628 |
+
" # Upsample\n",
|
629 |
+
"\n",
|
630 |
+
" x = self.up_sample_conv(x)\n",
|
631 |
+
"\n",
|
632 |
+
" # Concat with Downblock output\n",
|
633 |
+
"\n",
|
634 |
+
" if out_down is not None:\n",
|
635 |
+
" x = torch.cat([x, out_down], dim=1)\n",
|
636 |
+
" out = x\n",
|
637 |
+
" for i in range(self.num_layers):\n",
|
638 |
+
" # Resnet Block\n",
|
639 |
+
"\n",
|
640 |
+
" resnet_input = out\n",
|
641 |
+
" out = self.resnet_conv_first[i](out)\n",
|
642 |
+
" if self.t_emb_dim is not None:\n",
|
643 |
+
" out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]\n",
|
644 |
+
" out = self.resnet_conv_second[i](out)\n",
|
645 |
+
" out = out + self.residual_input_conv[i](resnet_input)\n",
|
646 |
+
"\n",
|
647 |
+
" # Self Attention\n",
|
648 |
+
"\n",
|
649 |
+
" if self.attn:\n",
|
650 |
+
" batch_size, channels, h, w = out.shape\n",
|
651 |
+
" in_attn = out.reshape(batch_size, channels, h * w)\n",
|
652 |
+
" in_attn = self.attention_norms[i](in_attn)\n",
|
653 |
+
" in_attn = in_attn.transpose(1, 2)\n",
|
654 |
+
" out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)\n",
|
655 |
+
" out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)\n",
|
656 |
+
" out = out + out_attn\n",
|
657 |
+
" return out\n",
|
658 |
+
"\n",
|
659 |
+
"\n",
|
660 |
+
"class VQVAE(nn.Module):\n",
|
661 |
+
" def __init__(self, im_channels, model_config):\n",
|
662 |
+
" super().__init__()\n",
|
663 |
+
" self.down_channels = model_config.down_channels\n",
|
664 |
+
" self.mid_channels = model_config.mid_channels\n",
|
665 |
+
" self.down_sample = model_config.down_sample\n",
|
666 |
+
" self.num_down_layers = model_config.num_down_layers\n",
|
667 |
+
" self.num_mid_layers = model_config.num_mid_layers\n",
|
668 |
+
" self.num_up_layers = model_config.num_up_layers\n",
|
669 |
+
"\n",
|
670 |
+
" # To disable attention in Downblock of Encoder and Upblock of Decoder\n",
|
671 |
+
" self.attns = model_config.attn_down\n",
|
672 |
+
"\n",
|
673 |
+
" # Latent Dimension\n",
|
674 |
+
" self.z_channels = model_config.z_channels\n",
|
675 |
+
" self.codebook_size = model_config.codebook_size\n",
|
676 |
+
" self.norm_channels = model_config.norm_channels\n",
|
677 |
+
" self.num_heads = model_config.num_heads\n",
|
678 |
+
"\n",
|
679 |
+
" # Assertion to validate the channel information\n",
|
680 |
+
" assert self.mid_channels[0] == self.down_channels[-1]\n",
|
681 |
+
" assert self.mid_channels[-1] == self.down_channels[-1]\n",
|
682 |
+
" assert len(self.down_sample) == len(self.down_channels) - 1\n",
|
683 |
+
" assert len(self.attns) == len(self.down_channels) - 1\n",
|
684 |
+
"\n",
|
685 |
+
" # Wherever we use downsampling in encoder correspondingly use\n",
|
686 |
+
" # upsampling in decoder\n",
|
687 |
+
" self.up_sample = list(reversed(self.down_sample))\n",
|
688 |
+
"\n",
|
689 |
+
" ##################### Encoder ######################\n",
|
690 |
+
" self.encoder_conv_in = nn.Conv2d(\n",
|
691 |
+
" im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1)\n",
|
692 |
+
" )\n",
|
693 |
+
"\n",
|
694 |
+
" # Downblock + Midblock\n",
|
695 |
+
" self.encoder_layers = nn.ModuleList([])\n",
|
696 |
+
" for i in range(len(self.down_channels) - 1):\n",
|
697 |
+
" self.encoder_layers.append(\n",
|
698 |
+
" DownBlock(\n",
|
699 |
+
" self.down_channels[i],\n",
|
700 |
+
" self.down_channels[i + 1],\n",
|
701 |
+
" t_emb_dim=None,\n",
|
702 |
+
" down_sample=self.down_sample[i],\n",
|
703 |
+
" num_heads=self.num_heads,\n",
|
704 |
+
" num_layers=self.num_down_layers,\n",
|
705 |
+
" attn=self.attns[i],\n",
|
706 |
+
" norm_channels=self.norm_channels,\n",
|
707 |
+
" )\n",
|
708 |
+
" )\n",
|
709 |
+
" self.encoder_mids = nn.ModuleList([])\n",
|
710 |
+
" for i in range(len(self.mid_channels) - 1):\n",
|
711 |
+
" self.encoder_mids.append(\n",
|
712 |
+
" MidBlock(\n",
|
713 |
+
" self.mid_channels[i],\n",
|
714 |
+
" self.mid_channels[i + 1],\n",
|
715 |
+
" t_emb_dim=None,\n",
|
716 |
+
" num_heads=self.num_heads,\n",
|
717 |
+
" num_layers=self.num_mid_layers,\n",
|
718 |
+
" norm_channels=self.norm_channels,\n",
|
719 |
+
" )\n",
|
720 |
+
" )\n",
|
721 |
+
" self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])\n",
|
722 |
+
" self.encoder_conv_out = nn.Conv2d(\n",
|
723 |
+
" self.down_channels[-1], self.z_channels, kernel_size=3, padding=1\n",
|
724 |
+
" )\n",
|
725 |
+
"\n",
|
726 |
+
" # Pre Quantization Convolution\n",
|
727 |
+
" self.pre_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)\n",
|
728 |
+
"\n",
|
729 |
+
" # Codebook\n",
|
730 |
+
" self.embedding = nn.Embedding(self.codebook_size, self.z_channels)\n",
|
731 |
+
" ####################################################\n",
|
732 |
+
"\n",
|
733 |
+
" ##################### Decoder ######################\n",
|
734 |
+
"\n",
|
735 |
+
" # Post Quantization Convolution\n",
|
736 |
+
" self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)\n",
|
737 |
+
" self.decoder_conv_in = nn.Conv2d(\n",
|
738 |
+
" self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1)\n",
|
739 |
+
" )\n",
|
740 |
+
"\n",
|
741 |
+
" # Midblock + Upblock\n",
|
742 |
+
" self.decoder_mids = nn.ModuleList([])\n",
|
743 |
+
" for i in reversed(range(1, len(self.mid_channels))):\n",
|
744 |
+
" self.decoder_mids.append(\n",
|
745 |
+
" MidBlock(\n",
|
746 |
+
" self.mid_channels[i],\n",
|
747 |
+
" self.mid_channels[i - 1],\n",
|
748 |
+
" t_emb_dim=None,\n",
|
749 |
+
" num_heads=self.num_heads,\n",
|
750 |
+
" num_layers=self.num_mid_layers,\n",
|
751 |
+
" norm_channels=self.norm_channels,\n",
|
752 |
+
" )\n",
|
753 |
+
" )\n",
|
754 |
+
" self.decoder_layers = nn.ModuleList([])\n",
|
755 |
+
" for i in reversed(range(1, len(self.down_channels))):\n",
|
756 |
+
" self.decoder_layers.append(\n",
|
757 |
+
" UpBlock(\n",
|
758 |
+
" self.down_channels[i],\n",
|
759 |
+
" self.down_channels[i - 1],\n",
|
760 |
+
" t_emb_dim=None,\n",
|
761 |
+
" up_sample=self.down_sample[i - 1],\n",
|
762 |
+
" num_heads=self.num_heads,\n",
|
763 |
+
" num_layers=self.num_up_layers,\n",
|
764 |
+
" attn=self.attns[i - 1],\n",
|
765 |
+
" norm_channels=self.norm_channels,\n",
|
766 |
+
" )\n",
|
767 |
+
" )\n",
|
768 |
+
" self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])\n",
|
769 |
+
" self.decoder_conv_out = nn.Conv2d(\n",
|
770 |
+
" self.down_channels[0], im_channels, kernel_size=3, padding=1\n",
|
771 |
+
" )\n",
|
772 |
+
"\n",
|
773 |
+
" def quantize(self, x):\n",
|
774 |
+
" B, C, H, W = x.shape\n",
|
775 |
+
"\n",
|
776 |
+
" # B, C, H, W -> B, H, W, C\n",
|
777 |
+
" x = x.permute(0, 2, 3, 1)\n",
|
778 |
+
"\n",
|
779 |
+
" # B, H, W, C -> B, H*W, C\n",
|
780 |
+
" x = x.reshape(x.size(0), -1, x.size(-1))\n",
|
781 |
+
"\n",
|
782 |
+
" # Find nearest embedding/codebook vector\n",
|
783 |
+
" # dist between (B, H*W, C) and (B, K, C) -> (B, H*W, K)\n",
|
784 |
+
" dist = torch.cdist(x, self.embedding.weight[None, :].repeat((x.size(0), 1, 1)))\n",
|
785 |
+
" # (B, H*W)\n",
|
786 |
+
" min_encoding_indices = torch.argmin(dist, dim=-1)\n",
|
787 |
+
"\n",
|
788 |
+
" # Replace encoder output with nearest codebook\n",
|
789 |
+
" # quant_out -> B*H*W, C\n",
|
790 |
+
" quant_out = torch.index_select(self.embedding.weight, 0, min_encoding_indices.view(-1))\n",
|
791 |
+
"\n",
|
792 |
+
" # x -> B*H*W, C\n",
|
793 |
+
" x = x.reshape((-1, x.size(-1)))\n",
|
794 |
+
" commmitment_loss = torch.mean((quant_out.detach() - x) ** 2)\n",
|
795 |
+
" codebook_loss = torch.mean((quant_out - x.detach()) ** 2)\n",
|
796 |
+
" quantize_losses = {\"codebook_loss\": codebook_loss, \"commitment_loss\": commmitment_loss}\n",
|
797 |
+
" # Straight through estimation\n",
|
798 |
+
" quant_out = x + (quant_out - x).detach()\n",
|
799 |
+
"\n",
|
800 |
+
" # quant_out -> B, C, H, W\n",
|
801 |
+
" quant_out = quant_out.reshape((B, H, W, C)).permute(0, 3, 1, 2)\n",
|
802 |
+
" min_encoding_indices = min_encoding_indices.reshape(\n",
|
803 |
+
" (-1, quant_out.size(-2), quant_out.size(-1))\n",
|
804 |
+
" )\n",
|
805 |
+
" return quant_out, quantize_losses, min_encoding_indices\n",
|
806 |
+
"\n",
|
807 |
+
" def encode(self, x):\n",
|
808 |
+
" out = self.encoder_conv_in(x)\n",
|
809 |
+
" for idx, down in enumerate(self.encoder_layers):\n",
|
810 |
+
" out = down(out)\n",
|
811 |
+
" for mid in self.encoder_mids:\n",
|
812 |
+
" out = mid(out)\n",
|
813 |
+
" out = self.encoder_norm_out(out)\n",
|
814 |
+
" out = nn.SiLU()(out)\n",
|
815 |
+
" out = self.encoder_conv_out(out)\n",
|
816 |
+
" out = self.pre_quant_conv(out)\n",
|
817 |
+
" out, quant_losses, _ = self.quantize(out)\n",
|
818 |
+
" return out, quant_losses\n",
|
819 |
+
"\n",
|
820 |
+
" def decode(self, z):\n",
|
821 |
+
" out = z\n",
|
822 |
+
" out = self.post_quant_conv(out)\n",
|
823 |
+
" out = self.decoder_conv_in(out)\n",
|
824 |
+
" for mid in self.decoder_mids:\n",
|
825 |
+
" out = mid(out)\n",
|
826 |
+
" for idx, up in enumerate(self.decoder_layers):\n",
|
827 |
+
" out = up(out)\n",
|
828 |
+
" out = self.decoder_norm_out(out)\n",
|
829 |
+
" out = nn.SiLU()(out)\n",
|
830 |
+
" out = self.decoder_conv_out(out)\n",
|
831 |
+
" return out\n",
|
832 |
+
"\n",
|
833 |
+
" def forward(self, x):\n",
|
834 |
+
" z, quant_losses = self.encode(x)\n",
|
835 |
+
" out = self.decode(z)\n",
|
836 |
+
" return out, z, quant_losses"
|
837 |
+
]
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"cell_type": "markdown",
|
841 |
+
"metadata": {},
|
842 |
+
"source": [
|
843 |
+
"### Configuration"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": 12,
|
849 |
+
"metadata": {},
|
850 |
+
"outputs": [],
|
851 |
+
"source": [
|
852 |
+
"config_path = \"/home/23m1521/ashish/MTP/LDM/scripts/config.yaml\"\n",
|
853 |
+
"with open(config_path, 'r') as file:\n",
|
854 |
+
" Config = yaml.safe_load(file)\n",
|
855 |
+
"\n",
|
856 |
+
"Config = DotDict.from_dict(Config)\n",
|
857 |
+
"dataset_config = Config.dataset_params\n",
|
858 |
+
"diffusion_config = Config.diffusion_params\n",
|
859 |
+
"model_config = Config.model_params\n",
|
860 |
+
"train_config = Config.train_params"
|
861 |
+
]
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"cell_type": "markdown",
|
865 |
+
"metadata": {},
|
866 |
+
"source": [
|
867 |
+
"### MNIST Dataset"
|
868 |
+
]
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"cell_type": "code",
|
872 |
+
"execution_count": 13,
|
873 |
+
"metadata": {},
|
874 |
+
"outputs": [
|
875 |
+
{
|
876 |
+
"name": "stdout",
|
877 |
+
"output_type": "stream",
|
878 |
+
"text": [
|
879 |
+
"Files found: 70000\n"
|
880 |
+
]
|
881 |
+
}
|
882 |
+
],
|
883 |
+
"source": [
|
884 |
+
"datadir = r\"/home/23m1521/datasets/mnist_images/data\"\n",
|
885 |
+
"\n",
|
886 |
+
"def walkDIR(folder_path, include=None):\n",
|
887 |
+
" file_list = []\n",
|
888 |
+
" for root, _, files in os.walk(folder_path):\n",
|
889 |
+
" for file in files:\n",
|
890 |
+
" if include is None or any(file.endswith(ext) for ext in include):\n",
|
891 |
+
" file_list.append(os.path.join(root, file))\n",
|
892 |
+
" print(\"Files found:\", len(file_list))\n",
|
893 |
+
" return file_list\n",
|
894 |
+
"\n",
|
895 |
+
"files = walkDIR(datadir, include=['.png', '.jpeg', '.jpg'])\n",
|
896 |
+
"df = pd.DataFrame(files, columns=['image_path'])\n",
|
897 |
+
"df['id'] = df['image_path'].apply(lambda x: os.path.basename(x))\n",
|
898 |
+
"df['label'] = df['image_path'].apply(lambda x: os.path.dirname(x).split(\"/\")[-1])\n",
|
899 |
+
"df = df.sample(frac=1, random_state=42).reset_index(drop=True)\n",
|
900 |
+
"\n",
|
901 |
+
"\n",
|
902 |
+
"class MnistDataset(torch.utils.data.Dataset):\n",
|
903 |
+
" def __init__(\n",
|
904 |
+
" self,\n",
|
905 |
+
" data,\n",
|
906 |
+
" im_size\n",
|
907 |
+
" ):\n",
|
908 |
+
" if isinstance(data, str):\n",
|
909 |
+
" self.data = pd.read_csv(data)\n",
|
910 |
+
" elif isinstance(data, pd.DataFrame):\n",
|
911 |
+
" self.data = data\n",
|
912 |
+
" else:\n",
|
913 |
+
" raise ValueError(\"The `data` argument must be a string (CSV file path) or a Pandas DataFrame.\")\n",
|
914 |
+
" \n",
|
915 |
+
" self.im_size = im_size\n",
|
916 |
+
"\n",
|
917 |
+
" def __len__(self):\n",
|
918 |
+
" return len(self.data)\n",
|
919 |
+
"\n",
|
920 |
+
" def __getitem__(self, idx):\n",
|
921 |
+
" row = self.data.iloc[idx]\n",
|
922 |
+
" image_path = row['image_path']\n",
|
923 |
+
" label = int(row['label'])\n",
|
924 |
+
"\n",
|
925 |
+
" image = tv.io.decode_image(image_path, mode='RGB')\n",
|
926 |
+
" image = v2.Resize(self.im_size)(image)\n",
|
927 |
+
" image = v2.ToDtype(torch.float32, scale=True)(image)\n",
|
928 |
+
" image = 2*image - 1\n",
|
929 |
+
"\n",
|
930 |
+
" return image, label\n",
|
931 |
+
"\n",
|
932 |
+
"\n",
|
933 |
+
"dataset = MnistDataset(df, im_size=dataset_config.im_size)\n",
|
934 |
+
"dataloader = torch.utils.data.DataLoader(\n",
|
935 |
+
" dataset, \n",
|
936 |
+
" batch_size=train_config.autoencoder_batch_size, \n",
|
937 |
+
" shuffle=True, \n",
|
938 |
+
" num_workers=os.cpu_count(),\n",
|
939 |
+
" pin_memory=True,\n",
|
940 |
+
" drop_last=True,\n",
|
941 |
+
" persistent_workers=True\n",
|
942 |
+
")\n",
|
943 |
+
"\n",
|
944 |
+
"# for batch in tqdm(dataloader):\n",
|
945 |
+
"# images, labels = batch\n",
|
946 |
+
"\n",
|
947 |
+
"images, labels = next(iter(dataloader))\n",
|
948 |
+
"images, labels = images.to(device), labels.to(device)"
|
949 |
+
]
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"cell_type": "code",
|
953 |
+
"execution_count": 14,
|
954 |
+
"metadata": {},
|
955 |
+
"outputs": [
|
956 |
+
{
|
957 |
+
"data": {
|
958 |
+
"text/plain": [
|
959 |
+
"(torch.Size([32, 3, 28, 28]),\n",
|
960 |
+
" torch.Size([32, 3, 7, 7]),\n",
|
961 |
+
" {'codebook_loss': tensor(0.1057, device='cuda:0', grad_fn=<MeanBackward0>),\n",
|
962 |
+
" 'commitment_loss': tensor(0.1057, device='cuda:0', grad_fn=<MeanBackward0>)})"
|
963 |
+
]
|
964 |
+
},
|
965 |
+
"execution_count": 14,
|
966 |
+
"metadata": {},
|
967 |
+
"output_type": "execute_result"
|
968 |
+
}
|
969 |
+
],
|
970 |
+
"source": [
|
971 |
+
"dataset_config = Config.dataset_params\n",
|
972 |
+
"autoencoder_config = Config.autoencoder_params\n",
|
973 |
+
"train_config = Config.train_params\n",
|
974 |
+
"\n",
|
975 |
+
"model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)\n",
|
976 |
+
"\n",
|
977 |
+
"model_output = model(images)\n",
|
978 |
+
"model_output[0].shape, model_output[1].shape, model_output[2]"
|
979 |
+
]
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"cell_type": "markdown",
|
983 |
+
"metadata": {},
|
984 |
+
"source": [
|
985 |
+
"### VQVAE Training"
|
986 |
+
]
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"cell_type": "code",
|
990 |
+
"execution_count": 26,
|
991 |
+
"metadata": {},
|
992 |
+
"outputs": [],
|
993 |
+
"source": [
|
994 |
+
"def save_checkpoint(\n",
|
995 |
+
" total_steps, epoch, model, discriminator, optimizer_d, optimizer_g, metrics, checkpoint_path\n",
|
996 |
+
"):\n",
|
997 |
+
" checkpoint = {\n",
|
998 |
+
" \"total_steps\": total_steps,\n",
|
999 |
+
" \"epoch\": epoch,\n",
|
1000 |
+
" \"model_state_dict\": model.state_dict(),\n",
|
1001 |
+
" \"discriminator_state_dict\": discriminator.state_dict(),\n",
|
1002 |
+
" \"optimizer_d_state_dict\": optimizer_d.state_dict(),\n",
|
1003 |
+
" \"optimizer_g_state_dict\": optimizer_g.state_dict(),\n",
|
1004 |
+
" \"metrics\": metrics, # Save all metrics\n",
|
1005 |
+
" }\n",
|
1006 |
+
" torch.save(checkpoint, checkpoint_path)\n",
|
1007 |
+
" print(f\"Checkpoint saved after {total_steps} steps at epoch {epoch}\")\n",
|
1008 |
+
"\n",
|
1009 |
+
"\n",
|
1010 |
+
"def load_checkpoint(checkpoint_path, model, discriminator, optimizer_d, optimizer_g):\n",
|
1011 |
+
" if os.path.exists(checkpoint_path):\n",
|
1012 |
+
" checkpoint = torch.load(checkpoint_path, map_location=device)\n",
|
1013 |
+
" model.load_state_dict(checkpoint[\"model_state_dict\"])\n",
|
1014 |
+
" discriminator.load_state_dict(checkpoint[\"discriminator_state_dict\"])\n",
|
1015 |
+
" optimizer_d.load_state_dict(checkpoint[\"optimizer_d_state_dict\"])\n",
|
1016 |
+
" optimizer_g.load_state_dict(checkpoint[\"optimizer_g_state_dict\"])\n",
|
1017 |
+
" total_steps = checkpoint[\"total_steps\"]\n",
|
1018 |
+
" epoch = checkpoint[\"epoch\"]\n",
|
1019 |
+
" metrics = checkpoint[\"metrics\"]\n",
|
1020 |
+
" print(f\"Checkpoint loaded. Resuming from epoch {epoch + 1}, step {total_steps}\")\n",
|
1021 |
+
" return total_steps, epoch + 1, metrics\n",
|
1022 |
+
" else:\n",
|
1023 |
+
" print(\"No checkpoint found. Starting from scratch.\")\n",
|
1024 |
+
" return 0, 0, None\n",
|
1025 |
+
"\n",
|
1026 |
+
"\n",
|
1027 |
+
"def trainVAE(Config, dataloader):\n",
|
1028 |
+
"\n",
|
1029 |
+
" # --- Configurations ----------------------------------------------------\n",
|
1030 |
+
" dataset_config = Config.dataset_params\n",
|
1031 |
+
" autoencoder_config = Config.autoencoder_params\n",
|
1032 |
+
" train_config = Config.train_params\n",
|
1033 |
+
"\n",
|
1034 |
+
" seed = train_config.seed\n",
|
1035 |
+
" torch.manual_seed(seed)\n",
|
1036 |
+
" np.random.seed(seed)\n",
|
1037 |
+
" random.seed(seed)\n",
|
1038 |
+
" if device == \"cuda\":\n",
|
1039 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
1040 |
+
" \n",
|
1041 |
+
" \n",
|
1042 |
+
" # --- Model Initilization ------------------------------------------------\n",
|
1043 |
+
" model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)\n",
|
1044 |
+
" discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)\n",
|
1045 |
+
"\n",
|
1046 |
+
" \n",
|
1047 |
+
" # --- Optimizer Initilization ----------------------------------------------\n",
|
1048 |
+
" optimizer_d = torch.optim.AdamW(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))\n",
|
1049 |
+
" optimizer_g = torch.optim.AdamW(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))\n",
|
1050 |
+
" \n",
|
1051 |
+
" \n",
|
1052 |
+
" # --- Checkpoint Loading ------------------------------------------------\n",
|
1053 |
+
" checkpoint_path = os.path.join(train_config.task_name, \"checkpoint.pth\")\n",
|
1054 |
+
" total_steps, start_epoch, metrics = load_checkpoint(checkpoint_path, model, discriminator, optimizer_d, optimizer_g)\n",
|
1055 |
+
" if os.path.exists(\n",
|
1056 |
+
" os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name)\n",
|
1057 |
+
" ):\n",
|
1058 |
+
" print(\"Loaded vae checkpoint\")\n",
|
1059 |
+
" model.load_state_dict(\n",
|
1060 |
+
" torch.load(\n",
|
1061 |
+
" os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name),\n",
|
1062 |
+
" map_location=device,\n",
|
1063 |
+
" weights_only=True,\n",
|
1064 |
+
" )\n",
|
1065 |
+
" )\n",
|
1066 |
+
" \n",
|
1067 |
+
" if os.path.exists(\n",
|
1068 |
+
" os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name)\n",
|
1069 |
+
" ):\n",
|
1070 |
+
" print(\"Loaded discriminator checkpoint\")\n",
|
1071 |
+
" discriminator.load_state_dict(\n",
|
1072 |
+
" torch.load(\n",
|
1073 |
+
" os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name),\n",
|
1074 |
+
" map_location=device,\n",
|
1075 |
+
" weights_only=True,\n",
|
1076 |
+
" )\n",
|
1077 |
+
" )\n",
|
1078 |
+
" \n",
|
1079 |
+
" \n",
|
1080 |
+
" \n",
|
1081 |
+
" # --- Loss Function Initilization ----------------------------------------\n",
|
1082 |
+
" if not os.path.exists(train_config.task_name):\n",
|
1083 |
+
" os.mkdir(train_config.task_name)\n",
|
1084 |
+
" num_epochs = train_config.autoencoder_epochs\n",
|
1085 |
+
"\n",
|
1086 |
+
" # L1/L2 loss for Reconstruction\n",
|
1087 |
+
" recon_criterion = torch.nn.MSELoss()\n",
|
1088 |
+
" disc_criterion = torch.nn.MSELoss()\n",
|
1089 |
+
"\n",
|
1090 |
+
" # LPIPS loss for perceptual similarity\n",
|
1091 |
+
" lpips_model = LPIPS().eval().to(device)\n",
|
1092 |
+
"\n",
|
1093 |
+
" \n",
|
1094 |
+
" \n",
|
1095 |
+
"\n",
|
1096 |
+
" disc_step_start = train_config.disc_start\n",
|
1097 |
+
" step_count = 0\n",
|
1098 |
+
"\n",
|
1099 |
+
" # This is for accumulating gradients incase the images are huge\n",
|
1100 |
+
" # And one cant afford higher batch sizes\n",
|
1101 |
+
"\n",
|
1102 |
+
" acc_steps = train_config.autoencoder_acc_steps\n",
|
1103 |
+
" image_save_steps = train_config.autoencoder_img_save_steps\n",
|
1104 |
+
" img_save_count = 0\n",
|
1105 |
+
"\n",
|
1106 |
+
" for epoch_idx in trange(num_epochs, desc=\"Training VQVAE\"):\n",
|
1107 |
+
" recon_losses = []\n",
|
1108 |
+
" codebook_losses = []\n",
|
1109 |
+
" # commitment_losses = []\n",
|
1110 |
+
"\n",
|
1111 |
+
" perceptual_losses = []\n",
|
1112 |
+
" disc_losses = []\n",
|
1113 |
+
" gen_losses = []\n",
|
1114 |
+
" losses = []\n",
|
1115 |
+
"\n",
|
1116 |
+
" optimizer_g.zero_grad()\n",
|
1117 |
+
" optimizer_d.zero_grad()\n",
|
1118 |
+
"\n",
|
1119 |
+
" # for images in tqdm(dataloader):\n",
|
1120 |
+
" for images in dataloader:\n",
|
1121 |
+
" step_count += 1\n",
|
1122 |
+
" images = images.to(device)\n",
|
1123 |
+
"\n",
|
1124 |
+
" # Fetch autoencoders output(reconstructions)\n",
|
1125 |
+
" model_output = model(images)\n",
|
1126 |
+
" output, z, quantize_losses = model_output\n",
|
1127 |
+
"\n",
|
1128 |
+
" # Image Saving Logic\n",
|
1129 |
+
" if step_count % image_save_steps == 0 or step_count == 1:\n",
|
1130 |
+
" sample_size = min(8, images.shape[0])\n",
|
1131 |
+
" save_output = torch.clamp(output[:sample_size], -1.0, 1.0).detach().cpu()\n",
|
1132 |
+
" save_output = (save_output + 1) / 2\n",
|
1133 |
+
" save_input = ((images[:sample_size] + 1) / 2).detach().cpu()\n",
|
1134 |
+
"\n",
|
1135 |
+
" grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)\n",
|
1136 |
+
" img = tv.transforms.ToPILImage()(grid)\n",
|
1137 |
+
" if not os.path.exists(\n",
|
1138 |
+
" os.path.join(train_config.task_name, \"vqvae_autoencoder_samples\")\n",
|
1139 |
+
" ):\n",
|
1140 |
+
" os.mkdir(os.path.join(train_config.task_name, \"vqvae_autoencoder_samples\"))\n",
|
1141 |
+
" img.save(\n",
|
1142 |
+
" os.path.join(\n",
|
1143 |
+
" train_config.task_name,\n",
|
1144 |
+
" \"vqvae_autoencoder_samples\",\n",
|
1145 |
+
" \"current_autoencoder_sample_{}.png\".format(img_save_count),\n",
|
1146 |
+
" )\n",
|
1147 |
+
" )\n",
|
1148 |
+
" img_save_count += 1\n",
|
1149 |
+
" img.close()\n",
|
1150 |
+
" \n",
|
1151 |
+
" \n",
|
1152 |
+
" ######### Optimize Generator ##########\n",
|
1153 |
+
" # L2 Loss for Reconstruction\n",
|
1154 |
+
" recon_loss = recon_criterion(output, images)\n",
|
1155 |
+
" recon_losses.append(recon_loss.item())\n",
|
1156 |
+
" recon_loss = recon_loss / acc_steps\n",
|
1157 |
+
" \n",
|
1158 |
+
" # Generator Loss =\n",
|
1159 |
+
" g_loss = (\n",
|
1160 |
+
" recon_loss\n",
|
1161 |
+
" + (train_config.codebook_weight * quantize_losses[\"codebook_loss\"] / acc_steps)\n",
|
1162 |
+
" + (train_config.commitment_beta * quantize_losses[\"commitment_loss\"] / acc_steps)\n",
|
1163 |
+
" )\n",
|
1164 |
+
" \n",
|
1165 |
+
" codebook_losses.append(\n",
|
1166 |
+
" train_config.codebook_weight * quantize_losses[\"codebook_loss\"].item()\n",
|
1167 |
+
" )\n",
|
1168 |
+
" \n",
|
1169 |
+
"\n",
|
1170 |
+
" # Adversarial loss only if disc_step_start steps passed\n",
|
1171 |
+
" if step_count > disc_step_start:\n",
|
1172 |
+
" disc_fake_pred = discriminator(model_output[0])\n",
|
1173 |
+
" disc_fake_loss = disc_criterion(\n",
|
1174 |
+
" disc_fake_pred,\n",
|
1175 |
+
" torch.ones(disc_fake_pred.shape, device=disc_fake_pred.device),\n",
|
1176 |
+
" )\n",
|
1177 |
+
" gen_losses.append(train_config.disc_weight * disc_fake_loss.item())\n",
|
1178 |
+
" g_loss += train_config.disc_weight * disc_fake_loss / acc_steps\n",
|
1179 |
+
" lpips_loss = torch.mean(lpips_model(output, images)) / acc_steps\n",
|
1180 |
+
" perceptual_losses.append(train_config.perceptual_weight * lpips_loss.item())\n",
|
1181 |
+
" g_loss += train_config.perceptual_weight * lpips_loss / acc_steps\n",
|
1182 |
+
" losses.append(g_loss.item())\n",
|
1183 |
+
" g_loss.backward()\n",
|
1184 |
+
" #####################################\n",
|
1185 |
+
"\n",
|
1186 |
+
"\n",
|
1187 |
+
" ######### Optimize Discriminator #######\n",
|
1188 |
+
" if step_count > disc_step_start:\n",
|
1189 |
+
" fake = output\n",
|
1190 |
+
" disc_fake_pred = discriminator(fake.detach())\n",
|
1191 |
+
" disc_real_pred = discriminator(images)\n",
|
1192 |
+
" disc_fake_loss = disc_criterion(\n",
|
1193 |
+
" disc_fake_pred,\n",
|
1194 |
+
" torch.zeros(disc_fake_pred.shape, device=disc_fake_pred.device),\n",
|
1195 |
+
" )\n",
|
1196 |
+
" disc_real_loss = disc_criterion(\n",
|
1197 |
+
" disc_real_pred,\n",
|
1198 |
+
" torch.ones(disc_real_pred.shape, device=disc_real_pred.device),\n",
|
1199 |
+
" )\n",
|
1200 |
+
" disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2\n",
|
1201 |
+
" disc_losses.append(disc_loss.item())\n",
|
1202 |
+
" disc_loss = disc_loss / acc_steps\n",
|
1203 |
+
" disc_loss.backward()\n",
|
1204 |
+
" if step_count % acc_steps == 0:\n",
|
1205 |
+
" optimizer_d.step()\n",
|
1206 |
+
" optimizer_d.zero_grad()\n",
|
1207 |
+
" #####################################\n",
|
1208 |
+
"\n",
|
1209 |
+
" if step_count % acc_steps == 0:\n",
|
1210 |
+
" optimizer_g.step()\n",
|
1211 |
+
" optimizer_g.zero_grad()\n",
|
1212 |
+
" optimizer_d.step()\n",
|
1213 |
+
" optimizer_d.zero_grad()\n",
|
1214 |
+
" optimizer_g.step()\n",
|
1215 |
+
" optimizer_g.zero_grad()\n",
|
1216 |
+
" if len(disc_losses) > 0:\n",
|
1217 |
+
" print(\n",
|
1218 |
+
" \"Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | \"\n",
|
1219 |
+
" \"Codebook : {:.4f} | G Loss : {:.4f} | D Loss {:.4f}\".format(\n",
|
1220 |
+
" epoch_idx + 1,\n",
|
1221 |
+
" num_epochs,\n",
|
1222 |
+
" np.mean(recon_losses),\n",
|
1223 |
+
" np.mean(perceptual_losses),\n",
|
1224 |
+
" np.mean(codebook_losses),\n",
|
1225 |
+
" np.mean(gen_losses),\n",
|
1226 |
+
" np.mean(disc_losses),\n",
|
1227 |
+
" )\n",
|
1228 |
+
" )\n",
|
1229 |
+
" else:\n",
|
1230 |
+
" print(\n",
|
1231 |
+
" \"Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | Codebook : {:.4f}\".format(\n",
|
1232 |
+
" epoch_idx + 1,\n",
|
1233 |
+
" num_epochs,\n",
|
1234 |
+
" np.mean(recon_losses),\n",
|
1235 |
+
" np.mean(perceptual_losses),\n",
|
1236 |
+
" np.mean(codebook_losses),\n",
|
1237 |
+
" )\n",
|
1238 |
+
" )\n",
|
1239 |
+
" torch.save(\n",
|
1240 |
+
" model.state_dict(),\n",
|
1241 |
+
" os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name),\n",
|
1242 |
+
" )\n",
|
1243 |
+
" torch.save(\n",
|
1244 |
+
" discriminator.state_dict(),\n",
|
1245 |
+
" os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name),\n",
|
1246 |
+
" )\n",
|
1247 |
+
" print(\"Done Training...\")"
|
1248 |
+
]
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"cell_type": "code",
|
1252 |
+
"execution_count": 27,
|
1253 |
+
"metadata": {},
|
1254 |
+
"outputs": [],
|
1255 |
+
"source": [
|
1256 |
+
"# trainVAE(Config)"
|
1257 |
+
]
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"cell_type": "code",
|
1261 |
+
"execution_count": null,
|
1262 |
+
"metadata": {},
|
1263 |
+
"outputs": [],
|
1264 |
+
"source": [
|
1265 |
+
"def save_checkpoint(\n",
|
1266 |
+
" total_steps, epoch, model, discriminator, optimizer_d, optimizer_g, metrics, checkpoint_path\n",
|
1267 |
+
"):\n",
|
1268 |
+
" checkpoint = {\n",
|
1269 |
+
" \"total_steps\": total_steps,\n",
|
1270 |
+
" \"epoch\": epoch,\n",
|
1271 |
+
" \"model_state_dict\": model.state_dict(),\n",
|
1272 |
+
" \"discriminator_state_dict\": discriminator.state_dict(),\n",
|
1273 |
+
" \"optimizer_d_state_dict\": optimizer_d.state_dict(),\n",
|
1274 |
+
" \"optimizer_g_state_dict\": optimizer_g.state_dict(),\n",
|
1275 |
+
" \"metrics\": metrics, # Save all metrics\n",
|
1276 |
+
" }\n",
|
1277 |
+
" torch.save(checkpoint, checkpoint_path)\n",
|
1278 |
+
" print(f\"Checkpoint saved after {total_steps} steps at epoch {epoch}\")\n",
|
1279 |
+
"\n",
|
1280 |
+
"\n",
|
1281 |
+
"def load_checkpoint(checkpoint_path, model, discriminator, optimizer_d, optimizer_g):\n",
|
1282 |
+
" if os.path.exists(checkpoint_path):\n",
|
1283 |
+
" checkpoint = torch.load(checkpoint_path, map_location=device)\n",
|
1284 |
+
" model.load_state_dict(checkpoint[\"model_state_dict\"])\n",
|
1285 |
+
" discriminator.load_state_dict(checkpoint[\"discriminator_state_dict\"])\n",
|
1286 |
+
" optimizer_d.load_state_dict(checkpoint[\"optimizer_d_state_dict\"])\n",
|
1287 |
+
" optimizer_g.load_state_dict(checkpoint[\"optimizer_g_state_dict\"])\n",
|
1288 |
+
" total_steps = checkpoint[\"total_steps\"]\n",
|
1289 |
+
" epoch = checkpoint[\"epoch\"]\n",
|
1290 |
+
" metrics = checkpoint[\"metrics\"]\n",
|
1291 |
+
" print(f\"Checkpoint loaded. Resuming from epoch {epoch + 1}, step {total_steps}\")\n",
|
1292 |
+
" return total_steps, epoch + 1, metrics\n",
|
1293 |
+
" else:\n",
|
1294 |
+
" print(\"No checkpoint found. Starting from scratch.\")\n",
|
1295 |
+
" return 0, 0, None\n",
|
1296 |
+
"\n",
|
1297 |
+
"\n",
|
1298 |
+
"def trainVAE(Config, dataloader):\n",
|
1299 |
+
"\n",
|
1300 |
+
" # --- Configurations ----------------------------------------------------\n",
|
1301 |
+
" dataset_config = Config.dataset_params\n",
|
1302 |
+
" autoencoder_config = Config.autoencoder_params\n",
|
1303 |
+
" train_config = Config.train_params\n",
|
1304 |
+
"\n",
|
1305 |
+
" seed = train_config.seed\n",
|
1306 |
+
" torch.manual_seed(seed)\n",
|
1307 |
+
" np.random.seed(seed)\n",
|
1308 |
+
" random.seed(seed)\n",
|
1309 |
+
" if device == \"cuda\":\n",
|
1310 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
1311 |
+
" \n",
|
1312 |
+
" \n",
|
1313 |
+
" # --- Model Initilization ------------------------------------------------\n",
|
1314 |
+
" model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)\n",
|
1315 |
+
" discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)\n",
|
1316 |
+
"\n",
|
1317 |
+
" \n",
|
1318 |
+
" # --- Optimizer Initilization ----------------------------------------------\n",
|
1319 |
+
" optimizer_d = torch.optim.AdamW(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))\n",
|
1320 |
+
" optimizer_g = torch.optim.AdamW(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))\n",
|
1321 |
+
" \n",
|
1322 |
+
" \n",
|
1323 |
+
" # --- Loss Function Initialization --------------------------------------\n",
|
1324 |
+
" recon_criterion = torch.nn.MSELoss()\n",
|
1325 |
+
" # disc_criterion = torch.nn.MSELoss()\n",
|
1326 |
+
" disc_criterion = torch.nn.BCEWithLogits()\n",
|
1327 |
+
" lpips_model = LPIPS().eval().to(device)\n",
|
1328 |
+
"\n",
|
1329 |
+
" \n",
|
1330 |
+
" # --- Training Loop -----------------------------------------------------\n",
|
1331 |
+
" step_count = 0\n",
|
1332 |
+
" num_epochs = train_config.autoencoder_epochs\n",
|
1333 |
+
" disc_step_start = train_config.disc_start\n",
|
1334 |
+
" acc_steps = train_config.autoencoder_acc_steps\n",
|
1335 |
+
" image_save_steps = train_config.autoencoder_img_save_steps\n",
|
1336 |
+
" img_save_count = 0\n",
|
1337 |
+
" start_epoch = 0\n",
|
1338 |
+
"\n",
|
1339 |
+
" for epoch_idx in range(start_epoch, num_epochs):\n",
|
1340 |
+
" recon_losses = []\n",
|
1341 |
+
" codebook_losses = []\n",
|
1342 |
+
" perceptual_losses = []\n",
|
1343 |
+
" \n",
|
1344 |
+
" disc_losses = []\n",
|
1345 |
+
" gen_losses = []\n",
|
1346 |
+
" losses = []\n",
|
1347 |
+
"\n",
|
1348 |
+
" optimizer_g.zero_grad()\n",
|
1349 |
+
" optimizer_d.zero_grad()\n",
|
1350 |
+
"\n",
|
1351 |
+
" for images in dataloader:\n",
|
1352 |
+
" step_count += 1\n",
|
1353 |
+
" images = images.to(device)\n",
|
1354 |
+
"\n",
|
1355 |
+
" model_output = model(images)\n",
|
1356 |
+
" output, z, quantize_losses = model_output\n",
|
1357 |
+
" \n",
|
1358 |
+
" \n",
|
1359 |
+
" # --- Reconstruction Loss ---------------------------------------------------------\n",
|
1360 |
+
" recon_loss = recon_criterion(output, images)\n",
|
1361 |
+
" recon_losses.append(recon_loss.item())\n",
|
1362 |
+
" recon_loss = recon_loss / acc_steps\n",
|
1363 |
+
" \n",
|
1364 |
+
" # --- CodeBook Loss ---------------------------------------------------------------\n",
|
1365 |
+
" codebook_losses.append(train_config.codebook_weight * quantize_losses[\"codebook_loss\"].item())\n",
|
1366 |
+
" \n",
|
1367 |
+
" # --- Perceptual Loss -------------------------------------------------------------\n",
|
1368 |
+
" lpips_loss = torch.mean(lpips_model(output, images)) / acc_steps\n",
|
1369 |
+
" perceptual_losses.append(train_config.perceptual_weight * lpips_loss.item())\n",
|
1370 |
+
" \n",
|
1371 |
+
" \n",
|
1372 |
+
" g_loss = (\n",
|
1373 |
+
" recon_loss\n",
|
1374 |
+
" + (train_config.codebook_weight * quantize_losses[\"codebook_loss\"] / acc_steps)\n",
|
1375 |
+
" + (train_config.commitment_beta * quantize_losses[\"commitment_loss\"] / acc_steps)\n",
|
1376 |
+
" )\n",
|
1377 |
+
" \n",
|
1378 |
+
"\n",
|
1379 |
+
" # Adversarial loss only if disc_step_start steps passed\n",
|
1380 |
+
" if step_count > disc_step_start:\n",
|
1381 |
+
" disc_fake_pred = discriminator(model_output[0])\n",
|
1382 |
+
" disc_fake_loss = disc_criterion(\n",
|
1383 |
+
" disc_fake_pred,\n",
|
1384 |
+
" torch.ones(disc_fake_pred.shape, device=disc_fake_pred.device),\n",
|
1385 |
+
" )\n",
|
1386 |
+
" gen_losses.append(train_config.disc_weight * disc_fake_loss.item())\n",
|
1387 |
+
" g_loss += train_config.disc_weight * disc_fake_loss / acc_steps\n",
|
1388 |
+
" \n",
|
1389 |
+
" \n",
|
1390 |
+
" \n",
|
1391 |
+
" g_loss += train_config.perceptual_weight * lpips_loss / acc_steps\n",
|
1392 |
+
" losses.append(g_loss.item())\n",
|
1393 |
+
" g_loss.backward()\n",
|
1394 |
+
"\n",
|
1395 |
+
"\n",
|
1396 |
+
" ######### Optimize Discriminator #######\n",
|
1397 |
+
" if step_count > disc_step_start:\n",
|
1398 |
+
" fake = output\n",
|
1399 |
+
" disc_fake_pred = discriminator(fake.detach())\n",
|
1400 |
+
" disc_real_pred = discriminator(images)\n",
|
1401 |
+
" disc_fake_loss = disc_criterion(\n",
|
1402 |
+
" disc_fake_pred,\n",
|
1403 |
+
" torch.zeros(disc_fake_pred.shape, device=disc_fake_pred.device),\n",
|
1404 |
+
" )\n",
|
1405 |
+
" disc_real_loss = disc_criterion(\n",
|
1406 |
+
" disc_real_pred,\n",
|
1407 |
+
" torch.ones(disc_real_pred.shape, device=disc_real_pred.device),\n",
|
1408 |
+
" )\n",
|
1409 |
+
" disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2\n",
|
1410 |
+
" disc_losses.append(disc_loss.item())\n",
|
1411 |
+
" disc_loss = disc_loss / acc_steps\n",
|
1412 |
+
" disc_loss.backward()\n",
|
1413 |
+
" if step_count % acc_steps == 0:\n",
|
1414 |
+
" optimizer_d.step()\n",
|
1415 |
+
" optimizer_d.zero_grad()\n",
|
1416 |
+
" #####################################\n",
|
1417 |
+
"\n",
|
1418 |
+
" if step_count % acc_steps == 0:\n",
|
1419 |
+
" optimizer_g.step()\n",
|
1420 |
+
" optimizer_g.zero_grad()\n",
|
1421 |
+
" optimizer_d.step()\n",
|
1422 |
+
" optimizer_d.zero_grad()\n",
|
1423 |
+
" optimizer_g.step()\n",
|
1424 |
+
" optimizer_g.zero_grad()\n",
|
1425 |
+
" if len(disc_losses) > 0:\n",
|
1426 |
+
" print(\n",
|
1427 |
+
" \"Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | \"\n",
|
1428 |
+
" \"Codebook : {:.4f} | G Loss : {:.4f} | D Loss {:.4f}\".format(\n",
|
1429 |
+
" epoch_idx + 1,\n",
|
1430 |
+
" num_epochs,\n",
|
1431 |
+
" np.mean(recon_losses),\n",
|
1432 |
+
" np.mean(perceptual_losses),\n",
|
1433 |
+
" np.mean(codebook_losses),\n",
|
1434 |
+
" np.mean(gen_losses),\n",
|
1435 |
+
" np.mean(disc_losses),\n",
|
1436 |
+
" )\n",
|
1437 |
+
" )\n",
|
1438 |
+
" else:\n",
|
1439 |
+
" print(\n",
|
1440 |
+
" \"Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | Codebook : {:.4f}\".format(\n",
|
1441 |
+
" epoch_idx + 1,\n",
|
1442 |
+
" num_epochs,\n",
|
1443 |
+
" np.mean(recon_losses),\n",
|
1444 |
+
" np.mean(perceptual_losses),\n",
|
1445 |
+
" np.mean(codebook_losses),\n",
|
1446 |
+
" )\n",
|
1447 |
+
" )\n",
|
1448 |
+
" torch.save(\n",
|
1449 |
+
" model.state_dict(),\n",
|
1450 |
+
" os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name),\n",
|
1451 |
+
" )\n",
|
1452 |
+
" torch.save(\n",
|
1453 |
+
" discriminator.state_dict(),\n",
|
1454 |
+
" os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name),\n",
|
1455 |
+
" )\n",
|
1456 |
+
" print(\"Done Training...\")"
|
1457 |
+
]
|
1458 |
+
}
|
1459 |
+
],
|
1460 |
+
"metadata": {
|
1461 |
+
"kernelspec": {
|
1462 |
+
"display_name": "Python 3",
|
1463 |
+
"language": "python",
|
1464 |
+
"name": "python3"
|
1465 |
+
},
|
1466 |
+
"language_info": {
|
1467 |
+
"codemirror_mode": {
|
1468 |
+
"name": "ipython",
|
1469 |
+
"version": 3
|
1470 |
+
},
|
1471 |
+
"file_extension": ".py",
|
1472 |
+
"mimetype": "text/x-python",
|
1473 |
+
"name": "python",
|
1474 |
+
"nbconvert_exporter": "python",
|
1475 |
+
"pygments_lexer": "ipython3",
|
1476 |
+
"version": "3.12.5"
|
1477 |
+
}
|
1478 |
+
},
|
1479 |
+
"nbformat": 4,
|
1480 |
+
"nbformat_minor": 2
|
1481 |
+
}
|
LDM/notebooks/_2_Rough-LPIPS.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LDM/scripts/Main.py
ADDED
@@ -0,0 +1,2273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# L A T E N T D I F F U S I O N M O D E L
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : November 3, 2024
|
6 |
+
# Description: This script implements a Latent Diffusion Model using
|
7 |
+
# a cosine or linear noise scheduling approach for high-resolution
|
8 |
+
# image generation. The model leverages generative techniques to
|
9 |
+
# learn a latent representation and progressively reduce noise to
|
10 |
+
# generate clear, realistic images.
|
11 |
+
# ==================================================================
|
12 |
+
# I M P O R T S
|
13 |
+
# ==================================================================
|
14 |
+
|
15 |
+
import os
|
16 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
17 |
+
|
18 |
+
"""Lpips"""
|
19 |
+
|
20 |
+
# from __future__ import absolute_import
|
21 |
+
from collections import namedtuple
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.nn.init as init
|
25 |
+
from torch.autograd import Variable
|
26 |
+
import numpy as np
|
27 |
+
import torch.nn
|
28 |
+
import torchvision
|
29 |
+
|
30 |
+
# Taken from https://github.com/richzhang/PerceptualSimilarity/blob/master/lpips/lpips.py
|
31 |
+
|
32 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
+
|
34 |
+
|
35 |
+
def spatial_average(in_tens, keepdim=True):
|
36 |
+
return in_tens.mean([2, 3], keepdim=keepdim)
|
37 |
+
|
38 |
+
|
39 |
+
class vgg16(torch.nn.Module):
|
40 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
41 |
+
super(vgg16, self).__init__()
|
42 |
+
vgg_pretrained_features = torchvision.models.vgg16(
|
43 |
+
weights=torchvision.models.VGG16_Weights.IMAGENET1K_V1
|
44 |
+
).features
|
45 |
+
self.slice1 = torch.nn.Sequential()
|
46 |
+
self.slice2 = torch.nn.Sequential()
|
47 |
+
self.slice3 = torch.nn.Sequential()
|
48 |
+
self.slice4 = torch.nn.Sequential()
|
49 |
+
self.slice5 = torch.nn.Sequential()
|
50 |
+
self.N_slices = 5
|
51 |
+
for x in range(4):
|
52 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
53 |
+
for x in range(4, 9):
|
54 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
55 |
+
for x in range(9, 16):
|
56 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
57 |
+
for x in range(16, 23):
|
58 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
59 |
+
for x in range(23, 30):
|
60 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
61 |
+
|
62 |
+
# Freeze vgg model
|
63 |
+
if not requires_grad:
|
64 |
+
for param in self.parameters():
|
65 |
+
param.requires_grad = False
|
66 |
+
|
67 |
+
def forward(self, X):
|
68 |
+
# Return output of vgg features
|
69 |
+
h = self.slice1(X)
|
70 |
+
h_relu1_2 = h
|
71 |
+
h = self.slice2(h)
|
72 |
+
h_relu2_2 = h
|
73 |
+
h = self.slice3(h)
|
74 |
+
h_relu3_3 = h
|
75 |
+
h = self.slice4(h)
|
76 |
+
h_relu4_3 = h
|
77 |
+
h = self.slice5(h)
|
78 |
+
h_relu5_3 = h
|
79 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
80 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
81 |
+
return out
|
82 |
+
|
83 |
+
|
84 |
+
# Learned perceptual metric
|
85 |
+
class LPIPS(nn.Module):
|
86 |
+
def __init__(self, net='vgg', version='0.1', use_dropout=True):
|
87 |
+
super(LPIPS, self).__init__()
|
88 |
+
self.version = version
|
89 |
+
# Imagenet normalization
|
90 |
+
self.scaling_layer = ScalingLayer()
|
91 |
+
########################
|
92 |
+
|
93 |
+
# Instantiate vgg model
|
94 |
+
self.chns = [64, 128, 256, 512, 512]
|
95 |
+
self.L = len(self.chns)
|
96 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
97 |
+
|
98 |
+
# Add 1x1 convolutional Layers
|
99 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
100 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
101 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
102 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
103 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
104 |
+
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
105 |
+
self.lins = nn.ModuleList(self.lins)
|
106 |
+
########################
|
107 |
+
|
108 |
+
# Load the weights of trained LPIPS model
|
109 |
+
import inspect
|
110 |
+
import os
|
111 |
+
# /home/taruntejaneurips23/.cache/torch/hub/checkpoints/vgg16-397923af.pth
|
112 |
+
print(os.path.abspath(os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth' % (version, net))))
|
113 |
+
# model_path = os.path.abspath(
|
114 |
+
# os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth' % (version, net)))
|
115 |
+
|
116 |
+
# print('Loading model from: %s' % model_path)
|
117 |
+
# self.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
118 |
+
########################
|
119 |
+
|
120 |
+
# Freeze all parameters
|
121 |
+
self.eval()
|
122 |
+
for param in self.parameters():
|
123 |
+
param.requires_grad = False
|
124 |
+
########################
|
125 |
+
|
126 |
+
def forward(self, in0, in1, normalize=False):
|
127 |
+
# Scale the inputs to -1 to +1 range if needed
|
128 |
+
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
|
129 |
+
in0 = 2 * in0 - 1
|
130 |
+
in1 = 2 * in1 - 1
|
131 |
+
########################
|
132 |
+
|
133 |
+
# Normalize the inputs according to imagenet normalization
|
134 |
+
in0_input, in1_input = self.scaling_layer(in0), self.scaling_layer(in1)
|
135 |
+
########################
|
136 |
+
|
137 |
+
# Get VGG outputs for image0 and image1
|
138 |
+
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
|
139 |
+
feats0, feats1, diffs = {}, {}, {}
|
140 |
+
########################
|
141 |
+
|
142 |
+
# Compute Square of Difference for each layer output
|
143 |
+
for kk in range(self.L):
|
144 |
+
feats0[kk], feats1[kk] = torch.nn.functional.normalize(outs0[kk], dim=1), torch.nn.functional.normalize(
|
145 |
+
outs1[kk])
|
146 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
147 |
+
########################
|
148 |
+
|
149 |
+
# 1x1 convolution followed by spatial average on the square differences
|
150 |
+
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
|
151 |
+
val = 0
|
152 |
+
|
153 |
+
# Aggregate the results of each layer
|
154 |
+
for l in range(self.L):
|
155 |
+
val += res[l]
|
156 |
+
return val
|
157 |
+
|
158 |
+
|
159 |
+
class ScalingLayer(nn.Module):
|
160 |
+
def __init__(self):
|
161 |
+
super(ScalingLayer, self).__init__()
|
162 |
+
# Imagnet normalization for (0-1)
|
163 |
+
# mean = [0.485, 0.456, 0.406]
|
164 |
+
# std = [0.229, 0.224, 0.225]
|
165 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
166 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
167 |
+
|
168 |
+
def forward(self, inp):
|
169 |
+
return (inp - self.shift) / self.scale
|
170 |
+
|
171 |
+
|
172 |
+
class NetLinLayer(nn.Module):
|
173 |
+
''' A single linear layer which does a 1x1 conv '''
|
174 |
+
|
175 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
176 |
+
super(NetLinLayer, self).__init__()
|
177 |
+
|
178 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
179 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
180 |
+
self.model = nn.Sequential(*layers)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
out = self.model(x)
|
184 |
+
return out
|
185 |
+
|
186 |
+
"""Blocks"""
|
187 |
+
|
188 |
+
import torch
|
189 |
+
import numpy as np
|
190 |
+
|
191 |
+
|
192 |
+
class LinearNoiseScheduler:
|
193 |
+
r"""
|
194 |
+
Class for the linear noise scheduler that is used in DDPM.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, num_timesteps, beta_start, beta_end):
|
198 |
+
|
199 |
+
self.num_timesteps = num_timesteps
|
200 |
+
self.beta_start = beta_start
|
201 |
+
self.beta_end = beta_end
|
202 |
+
# Mimicking how compvis repo creates schedule
|
203 |
+
self.betas = (
|
204 |
+
torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_timesteps) ** 2
|
205 |
+
)
|
206 |
+
self.alphas = 1. - self.betas
|
207 |
+
self.alpha_cum_prod = torch.cumprod(self.alphas, dim=0)
|
208 |
+
self.sqrt_alpha_cum_prod = torch.sqrt(self.alpha_cum_prod)
|
209 |
+
self.sqrt_one_minus_alpha_cum_prod = torch.sqrt(1 - self.alpha_cum_prod)
|
210 |
+
|
211 |
+
def add_noise(self, original, noise, t):
|
212 |
+
r"""
|
213 |
+
Forward method for diffusion
|
214 |
+
:param original: Image on which noise is to be applied
|
215 |
+
:param noise: Random Noise Tensor (from normal dist)
|
216 |
+
:param t: timestep of the forward process of shape -> (B,)
|
217 |
+
:return:
|
218 |
+
"""
|
219 |
+
original_shape = original.shape
|
220 |
+
batch_size = original_shape[0]
|
221 |
+
|
222 |
+
sqrt_alpha_cum_prod = self.sqrt_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
223 |
+
sqrt_one_minus_alpha_cum_prod = self.sqrt_one_minus_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
224 |
+
|
225 |
+
# Reshape till (B,) becomes (B,1,1,1) if image is (B,C,H,W)
|
226 |
+
for _ in range(len(original_shape) - 1):
|
227 |
+
sqrt_alpha_cum_prod = sqrt_alpha_cum_prod.unsqueeze(-1)
|
228 |
+
for _ in range(len(original_shape) - 1):
|
229 |
+
sqrt_one_minus_alpha_cum_prod = sqrt_one_minus_alpha_cum_prod.unsqueeze(-1)
|
230 |
+
|
231 |
+
# Apply and Return Forward process equation
|
232 |
+
return (sqrt_alpha_cum_prod.to(original.device) * original
|
233 |
+
+ sqrt_one_minus_alpha_cum_prod.to(original.device) * noise)
|
234 |
+
|
235 |
+
def sample_prev_timestep(self, xt, noise_pred, t):
|
236 |
+
r"""
|
237 |
+
Use the noise prediction by model to get
|
238 |
+
xt-1 using xt and the nosie predicted
|
239 |
+
:param xt: current timestep sample
|
240 |
+
:param noise_pred: model noise prediction
|
241 |
+
:param t: current timestep we are at
|
242 |
+
:return:
|
243 |
+
"""
|
244 |
+
x0 = ((xt - (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t] * noise_pred)) /
|
245 |
+
torch.sqrt(self.alpha_cum_prod.to(xt.device)[t]))
|
246 |
+
x0 = torch.clamp(x0, -1., 1.)
|
247 |
+
|
248 |
+
mean = xt - ((self.betas.to(xt.device)[t]) * noise_pred) / (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t])
|
249 |
+
mean = mean / torch.sqrt(self.alphas.to(xt.device)[t])
|
250 |
+
|
251 |
+
if t == 0:
|
252 |
+
return mean, x0
|
253 |
+
else:
|
254 |
+
variance = (1 - self.alpha_cum_prod.to(xt.device)[t - 1]) / (1.0 - self.alpha_cum_prod.to(xt.device)[t])
|
255 |
+
variance = variance * self.betas.to(xt.device)[t]
|
256 |
+
sigma = variance ** 0.5
|
257 |
+
z = torch.randn(xt.shape).to(xt.device)
|
258 |
+
|
259 |
+
# OR
|
260 |
+
# variance = self.betas[t]
|
261 |
+
# sigma = variance ** 0.5
|
262 |
+
# z = torch.randn(xt.shape).to(xt.device)
|
263 |
+
return mean + sigma * z, x0
|
264 |
+
|
265 |
+
|
266 |
+
import torch
|
267 |
+
import math
|
268 |
+
|
269 |
+
class CosineNoiseScheduler:
|
270 |
+
r"""
|
271 |
+
Class for the cosine noise scheduler, often used in DDPM-based models.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, num_timesteps, s=0.008):
|
275 |
+
self.num_timesteps = num_timesteps
|
276 |
+
self.s = s
|
277 |
+
|
278 |
+
# Cosine schedule based on paper
|
279 |
+
def cosine_schedule(t):
|
280 |
+
return math.cos((t / self.num_timesteps + s) / (1 + s) * math.pi / 2) ** 2
|
281 |
+
|
282 |
+
# Compute alphas
|
283 |
+
self.alphas = torch.tensor([cosine_schedule(t) for t in range(num_timesteps)])
|
284 |
+
self.alpha_cum_prod = torch.cumprod(self.alphas, dim=0)
|
285 |
+
self.sqrt_alpha_cum_prod = torch.sqrt(self.alpha_cum_prod)
|
286 |
+
self.sqrt_one_minus_alpha_cum_prod = torch.sqrt(1 - self.alpha_cum_prod)
|
287 |
+
|
288 |
+
def add_noise(self, original, noise, t):
|
289 |
+
original_shape = original.shape
|
290 |
+
batch_size = original_shape[0]
|
291 |
+
|
292 |
+
sqrt_alpha_cum_prod = self.sqrt_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
293 |
+
sqrt_one_minus_alpha_cum_prod = self.sqrt_one_minus_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
294 |
+
|
295 |
+
for _ in range(len(original_shape) - 1):
|
296 |
+
sqrt_alpha_cum_prod = sqrt_alpha_cum_prod.unsqueeze(-1)
|
297 |
+
for _ in range(len(original_shape) - 1):
|
298 |
+
sqrt_one_minus_alpha_cum_prod = sqrt_one_minus_alpha_cum_prod.unsqueeze(-1)
|
299 |
+
|
300 |
+
return (sqrt_alpha_cum_prod * original + sqrt_one_minus_alpha_cum_prod * noise)
|
301 |
+
|
302 |
+
def sample_prev_timestep(self, xt, noise_pred, t):
|
303 |
+
x0 = ((xt - (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t] * noise_pred)) /
|
304 |
+
torch.sqrt(self.alpha_cum_prod.to(xt.device)[t]))
|
305 |
+
x0 = torch.clamp(x0, -1., 1.)
|
306 |
+
|
307 |
+
mean = xt - ((1 - self.alphas.to(xt.device)[t]) * noise_pred) / (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t])
|
308 |
+
mean = mean / torch.sqrt(self.alphas.to(xt.device)[t])
|
309 |
+
|
310 |
+
if t == 0:
|
311 |
+
return mean, x0
|
312 |
+
else:
|
313 |
+
variance = (1 - self.alpha_cum_prod.to(xt.device)[t - 1]) / (1.0 - self.alpha_cum_prod.to(xt.device)[t])
|
314 |
+
variance = variance * (1 - self.alphas.to(xt.device)[t])
|
315 |
+
sigma = variance ** 0.5
|
316 |
+
z = torch.randn(xt.shape).to(xt.device)
|
317 |
+
return mean + sigma * z, x0
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
import torch
|
323 |
+
import torch.nn as nn
|
324 |
+
|
325 |
+
|
326 |
+
def get_time_embedding(time_steps, temb_dim):
|
327 |
+
r"""
|
328 |
+
Convert time steps tensor into an embedding using the
|
329 |
+
sinusoidal time embedding formula
|
330 |
+
:param time_steps: 1D tensor of length batch size
|
331 |
+
:param temb_dim: Dimension of the embedding
|
332 |
+
:return: BxD embedding representation of B time steps
|
333 |
+
"""
|
334 |
+
assert temb_dim % 2 == 0, "time embedding dimension must be divisible by 2"
|
335 |
+
|
336 |
+
# factor = 10000^(2i/d_model)
|
337 |
+
factor = 10000 ** ((torch.arange(
|
338 |
+
start=0, end=temb_dim // 2, dtype=torch.float32, device=time_steps.device) / (temb_dim // 2))
|
339 |
+
)
|
340 |
+
|
341 |
+
# pos / factor
|
342 |
+
# timesteps B -> B, 1 -> B, temb_dim
|
343 |
+
t_emb = time_steps[:, None].repeat(1, temb_dim // 2) / factor
|
344 |
+
t_emb = torch.cat([torch.sin(t_emb), torch.cos(t_emb)], dim=-1)
|
345 |
+
return t_emb
|
346 |
+
|
347 |
+
|
348 |
+
class DownBlock(nn.Module):
|
349 |
+
r"""
|
350 |
+
Down conv block with attention.
|
351 |
+
Sequence of following block
|
352 |
+
1. Resnet block with time embedding
|
353 |
+
2. Attention block
|
354 |
+
3. Downsample
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(self, in_channels, out_channels, t_emb_dim,
|
358 |
+
down_sample, num_heads, num_layers, attn, norm_channels, cross_attn=False, context_dim=None):
|
359 |
+
super().__init__()
|
360 |
+
self.num_layers = num_layers
|
361 |
+
self.down_sample = down_sample
|
362 |
+
self.attn = attn
|
363 |
+
self.context_dim = context_dim
|
364 |
+
self.cross_attn = cross_attn
|
365 |
+
self.t_emb_dim = t_emb_dim
|
366 |
+
self.resnet_conv_first = nn.ModuleList(
|
367 |
+
[
|
368 |
+
nn.Sequential(
|
369 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
370 |
+
nn.SiLU(),
|
371 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels,
|
372 |
+
kernel_size=3, stride=1, padding=1),
|
373 |
+
)
|
374 |
+
for i in range(num_layers)
|
375 |
+
]
|
376 |
+
)
|
377 |
+
if self.t_emb_dim is not None:
|
378 |
+
self.t_emb_layers = nn.ModuleList([
|
379 |
+
nn.Sequential(
|
380 |
+
nn.SiLU(),
|
381 |
+
nn.Linear(self.t_emb_dim, out_channels)
|
382 |
+
)
|
383 |
+
for _ in range(num_layers)
|
384 |
+
])
|
385 |
+
self.resnet_conv_second = nn.ModuleList(
|
386 |
+
[
|
387 |
+
nn.Sequential(
|
388 |
+
nn.GroupNorm(norm_channels, out_channels),
|
389 |
+
nn.SiLU(),
|
390 |
+
nn.Conv2d(out_channels, out_channels,
|
391 |
+
kernel_size=3, stride=1, padding=1),
|
392 |
+
)
|
393 |
+
for _ in range(num_layers)
|
394 |
+
]
|
395 |
+
)
|
396 |
+
|
397 |
+
if self.attn:
|
398 |
+
self.attention_norms = nn.ModuleList(
|
399 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
400 |
+
for _ in range(num_layers)]
|
401 |
+
)
|
402 |
+
|
403 |
+
self.attentions = nn.ModuleList(
|
404 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
405 |
+
for _ in range(num_layers)]
|
406 |
+
)
|
407 |
+
|
408 |
+
if self.cross_attn:
|
409 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
410 |
+
self.cross_attention_norms = nn.ModuleList(
|
411 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
412 |
+
for _ in range(num_layers)]
|
413 |
+
)
|
414 |
+
self.cross_attentions = nn.ModuleList(
|
415 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
416 |
+
for _ in range(num_layers)]
|
417 |
+
)
|
418 |
+
self.context_proj = nn.ModuleList(
|
419 |
+
[nn.Linear(context_dim, out_channels)
|
420 |
+
for _ in range(num_layers)]
|
421 |
+
)
|
422 |
+
|
423 |
+
self.residual_input_conv = nn.ModuleList(
|
424 |
+
[
|
425 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
426 |
+
for i in range(num_layers)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
self.down_sample_conv = nn.Conv2d(out_channels, out_channels,
|
430 |
+
4, 2, 1) if self.down_sample else nn.Identity()
|
431 |
+
|
432 |
+
def forward(self, x, t_emb=None, context=None):
|
433 |
+
out = x
|
434 |
+
for i in range(self.num_layers):
|
435 |
+
# Resnet block of Unet
|
436 |
+
resnet_input = out
|
437 |
+
out = self.resnet_conv_first[i](out)
|
438 |
+
if self.t_emb_dim is not None:
|
439 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
440 |
+
out = self.resnet_conv_second[i](out)
|
441 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
442 |
+
|
443 |
+
if self.attn:
|
444 |
+
# Attention block of Unet
|
445 |
+
batch_size, channels, h, w = out.shape
|
446 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
447 |
+
in_attn = self.attention_norms[i](in_attn)
|
448 |
+
in_attn = in_attn.transpose(1, 2)
|
449 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
450 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
451 |
+
out = out + out_attn
|
452 |
+
|
453 |
+
if self.cross_attn:
|
454 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
455 |
+
batch_size, channels, h, w = out.shape
|
456 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
457 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
458 |
+
in_attn = in_attn.transpose(1, 2)
|
459 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
460 |
+
context_proj = self.context_proj[i](context)
|
461 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
462 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
463 |
+
out = out + out_attn
|
464 |
+
|
465 |
+
# Downsample
|
466 |
+
out = self.down_sample_conv(out)
|
467 |
+
return out
|
468 |
+
|
469 |
+
|
470 |
+
class MidBlock(nn.Module):
|
471 |
+
r"""
|
472 |
+
Mid conv block with attention.
|
473 |
+
Sequence of following blocks
|
474 |
+
1. Resnet block with time embedding
|
475 |
+
2. Attention block
|
476 |
+
3. Resnet block with time embedding
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(self, in_channels, out_channels, t_emb_dim, num_heads, num_layers, norm_channels, cross_attn=None, context_dim=None):
|
480 |
+
super().__init__()
|
481 |
+
self.num_layers = num_layers
|
482 |
+
self.t_emb_dim = t_emb_dim
|
483 |
+
self.context_dim = context_dim
|
484 |
+
self.cross_attn = cross_attn
|
485 |
+
self.resnet_conv_first = nn.ModuleList(
|
486 |
+
[
|
487 |
+
nn.Sequential(
|
488 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
489 |
+
nn.SiLU(),
|
490 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
491 |
+
padding=1),
|
492 |
+
)
|
493 |
+
for i in range(num_layers + 1)
|
494 |
+
]
|
495 |
+
)
|
496 |
+
|
497 |
+
if self.t_emb_dim is not None:
|
498 |
+
self.t_emb_layers = nn.ModuleList([
|
499 |
+
nn.Sequential(
|
500 |
+
nn.SiLU(),
|
501 |
+
nn.Linear(t_emb_dim, out_channels)
|
502 |
+
)
|
503 |
+
for _ in range(num_layers + 1)
|
504 |
+
])
|
505 |
+
self.resnet_conv_second = nn.ModuleList(
|
506 |
+
[
|
507 |
+
nn.Sequential(
|
508 |
+
nn.GroupNorm(norm_channels, out_channels),
|
509 |
+
nn.SiLU(),
|
510 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
511 |
+
)
|
512 |
+
for _ in range(num_layers + 1)
|
513 |
+
]
|
514 |
+
)
|
515 |
+
|
516 |
+
self.attention_norms = nn.ModuleList(
|
517 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
518 |
+
for _ in range(num_layers)]
|
519 |
+
)
|
520 |
+
|
521 |
+
self.attentions = nn.ModuleList(
|
522 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
523 |
+
for _ in range(num_layers)]
|
524 |
+
)
|
525 |
+
if self.cross_attn:
|
526 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
527 |
+
self.cross_attention_norms = nn.ModuleList(
|
528 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
529 |
+
for _ in range(num_layers)]
|
530 |
+
)
|
531 |
+
self.cross_attentions = nn.ModuleList(
|
532 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
533 |
+
for _ in range(num_layers)]
|
534 |
+
)
|
535 |
+
self.context_proj = nn.ModuleList(
|
536 |
+
[nn.Linear(context_dim, out_channels)
|
537 |
+
for _ in range(num_layers)]
|
538 |
+
)
|
539 |
+
self.residual_input_conv = nn.ModuleList(
|
540 |
+
[
|
541 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
542 |
+
for i in range(num_layers + 1)
|
543 |
+
]
|
544 |
+
)
|
545 |
+
|
546 |
+
def forward(self, x, t_emb=None, context=None):
|
547 |
+
out = x
|
548 |
+
|
549 |
+
# First resnet block
|
550 |
+
resnet_input = out
|
551 |
+
out = self.resnet_conv_first[0](out)
|
552 |
+
if self.t_emb_dim is not None:
|
553 |
+
out = out + self.t_emb_layers[0](t_emb)[:, :, None, None]
|
554 |
+
out = self.resnet_conv_second[0](out)
|
555 |
+
out = out + self.residual_input_conv[0](resnet_input)
|
556 |
+
|
557 |
+
for i in range(self.num_layers):
|
558 |
+
# Attention Block
|
559 |
+
batch_size, channels, h, w = out.shape
|
560 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
561 |
+
in_attn = self.attention_norms[i](in_attn)
|
562 |
+
in_attn = in_attn.transpose(1, 2)
|
563 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
564 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
565 |
+
out = out + out_attn
|
566 |
+
|
567 |
+
if self.cross_attn:
|
568 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
569 |
+
batch_size, channels, h, w = out.shape
|
570 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
571 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
572 |
+
in_attn = in_attn.transpose(1, 2)
|
573 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
574 |
+
context_proj = self.context_proj[i](context)
|
575 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
576 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
577 |
+
out = out + out_attn
|
578 |
+
|
579 |
+
|
580 |
+
# Resnet Block
|
581 |
+
resnet_input = out
|
582 |
+
out = self.resnet_conv_first[i + 1](out)
|
583 |
+
if self.t_emb_dim is not None:
|
584 |
+
out = out + self.t_emb_layers[i + 1](t_emb)[:, :, None, None]
|
585 |
+
out = self.resnet_conv_second[i + 1](out)
|
586 |
+
out = out + self.residual_input_conv[i + 1](resnet_input)
|
587 |
+
|
588 |
+
return out
|
589 |
+
|
590 |
+
|
591 |
+
class UpBlock(nn.Module):
|
592 |
+
r"""
|
593 |
+
Up conv block with attention.
|
594 |
+
Sequence of following blocks
|
595 |
+
1. Upsample
|
596 |
+
1. Concatenate Down block output
|
597 |
+
2. Resnet block with time embedding
|
598 |
+
3. Attention Block
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __init__(self, in_channels, out_channels, t_emb_dim,
|
602 |
+
up_sample, num_heads, num_layers, attn, norm_channels):
|
603 |
+
super().__init__()
|
604 |
+
self.num_layers = num_layers
|
605 |
+
self.up_sample = up_sample
|
606 |
+
self.t_emb_dim = t_emb_dim
|
607 |
+
self.attn = attn
|
608 |
+
self.resnet_conv_first = nn.ModuleList(
|
609 |
+
[
|
610 |
+
nn.Sequential(
|
611 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
612 |
+
nn.SiLU(),
|
613 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
614 |
+
padding=1),
|
615 |
+
)
|
616 |
+
for i in range(num_layers)
|
617 |
+
]
|
618 |
+
)
|
619 |
+
|
620 |
+
if self.t_emb_dim is not None:
|
621 |
+
self.t_emb_layers = nn.ModuleList([
|
622 |
+
nn.Sequential(
|
623 |
+
nn.SiLU(),
|
624 |
+
nn.Linear(t_emb_dim, out_channels)
|
625 |
+
)
|
626 |
+
for _ in range(num_layers)
|
627 |
+
])
|
628 |
+
|
629 |
+
self.resnet_conv_second = nn.ModuleList(
|
630 |
+
[
|
631 |
+
nn.Sequential(
|
632 |
+
nn.GroupNorm(norm_channels, out_channels),
|
633 |
+
nn.SiLU(),
|
634 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
635 |
+
)
|
636 |
+
for _ in range(num_layers)
|
637 |
+
]
|
638 |
+
)
|
639 |
+
if self.attn:
|
640 |
+
self.attention_norms = nn.ModuleList(
|
641 |
+
[
|
642 |
+
nn.GroupNorm(norm_channels, out_channels)
|
643 |
+
for _ in range(num_layers)
|
644 |
+
]
|
645 |
+
)
|
646 |
+
|
647 |
+
self.attentions = nn.ModuleList(
|
648 |
+
[
|
649 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
650 |
+
for _ in range(num_layers)
|
651 |
+
]
|
652 |
+
)
|
653 |
+
|
654 |
+
self.residual_input_conv = nn.ModuleList(
|
655 |
+
[
|
656 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
657 |
+
for i in range(num_layers)
|
658 |
+
]
|
659 |
+
)
|
660 |
+
self.up_sample_conv = nn.ConvTranspose2d(in_channels, in_channels,
|
661 |
+
4, 2, 1) \
|
662 |
+
if self.up_sample else nn.Identity()
|
663 |
+
|
664 |
+
def forward(self, x, out_down=None, t_emb=None):
|
665 |
+
# Upsample
|
666 |
+
x = self.up_sample_conv(x)
|
667 |
+
|
668 |
+
# Concat with Downblock output
|
669 |
+
if out_down is not None:
|
670 |
+
x = torch.cat([x, out_down], dim=1)
|
671 |
+
|
672 |
+
out = x
|
673 |
+
for i in range(self.num_layers):
|
674 |
+
# Resnet Block
|
675 |
+
resnet_input = out
|
676 |
+
out = self.resnet_conv_first[i](out)
|
677 |
+
if self.t_emb_dim is not None:
|
678 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
679 |
+
out = self.resnet_conv_second[i](out)
|
680 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
681 |
+
|
682 |
+
# Self Attention
|
683 |
+
if self.attn:
|
684 |
+
batch_size, channels, h, w = out.shape
|
685 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
686 |
+
in_attn = self.attention_norms[i](in_attn)
|
687 |
+
in_attn = in_attn.transpose(1, 2)
|
688 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
689 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
690 |
+
out = out + out_attn
|
691 |
+
return out
|
692 |
+
|
693 |
+
|
694 |
+
class UpBlockUnet(nn.Module):
|
695 |
+
r"""
|
696 |
+
Up conv block with attention.
|
697 |
+
Sequence of following blocks
|
698 |
+
1. Upsample
|
699 |
+
1. Concatenate Down block output
|
700 |
+
2. Resnet block with time embedding
|
701 |
+
3. Attention Block
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, in_channels, out_channels, t_emb_dim, up_sample,
|
705 |
+
num_heads, num_layers, norm_channels, cross_attn=False, context_dim=None):
|
706 |
+
super().__init__()
|
707 |
+
self.num_layers = num_layers
|
708 |
+
self.up_sample = up_sample
|
709 |
+
self.t_emb_dim = t_emb_dim
|
710 |
+
self.cross_attn = cross_attn
|
711 |
+
self.context_dim = context_dim
|
712 |
+
self.resnet_conv_first = nn.ModuleList(
|
713 |
+
[
|
714 |
+
nn.Sequential(
|
715 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
716 |
+
nn.SiLU(),
|
717 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
718 |
+
padding=1),
|
719 |
+
)
|
720 |
+
for i in range(num_layers)
|
721 |
+
]
|
722 |
+
)
|
723 |
+
|
724 |
+
if self.t_emb_dim is not None:
|
725 |
+
self.t_emb_layers = nn.ModuleList([
|
726 |
+
nn.Sequential(
|
727 |
+
nn.SiLU(),
|
728 |
+
nn.Linear(t_emb_dim, out_channels)
|
729 |
+
)
|
730 |
+
for _ in range(num_layers)
|
731 |
+
])
|
732 |
+
|
733 |
+
self.resnet_conv_second = nn.ModuleList(
|
734 |
+
[
|
735 |
+
nn.Sequential(
|
736 |
+
nn.GroupNorm(norm_channels, out_channels),
|
737 |
+
nn.SiLU(),
|
738 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
739 |
+
)
|
740 |
+
for _ in range(num_layers)
|
741 |
+
]
|
742 |
+
)
|
743 |
+
|
744 |
+
self.attention_norms = nn.ModuleList(
|
745 |
+
[
|
746 |
+
nn.GroupNorm(norm_channels, out_channels)
|
747 |
+
for _ in range(num_layers)
|
748 |
+
]
|
749 |
+
)
|
750 |
+
|
751 |
+
self.attentions = nn.ModuleList(
|
752 |
+
[
|
753 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
754 |
+
for _ in range(num_layers)
|
755 |
+
]
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.cross_attn:
|
759 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
760 |
+
self.cross_attention_norms = nn.ModuleList(
|
761 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
762 |
+
for _ in range(num_layers)]
|
763 |
+
)
|
764 |
+
self.cross_attentions = nn.ModuleList(
|
765 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
766 |
+
for _ in range(num_layers)]
|
767 |
+
)
|
768 |
+
self.context_proj = nn.ModuleList(
|
769 |
+
[nn.Linear(context_dim, out_channels)
|
770 |
+
for _ in range(num_layers)]
|
771 |
+
)
|
772 |
+
self.residual_input_conv = nn.ModuleList(
|
773 |
+
[
|
774 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
775 |
+
for i in range(num_layers)
|
776 |
+
]
|
777 |
+
)
|
778 |
+
self.up_sample_conv = nn.ConvTranspose2d(in_channels // 2, in_channels // 2,
|
779 |
+
4, 2, 1) \
|
780 |
+
if self.up_sample else nn.Identity()
|
781 |
+
|
782 |
+
def forward(self, x, out_down=None, t_emb=None, context=None):
|
783 |
+
x = self.up_sample_conv(x)
|
784 |
+
if out_down is not None:
|
785 |
+
x = torch.cat([x, out_down], dim=1)
|
786 |
+
|
787 |
+
out = x
|
788 |
+
for i in range(self.num_layers):
|
789 |
+
# Resnet
|
790 |
+
resnet_input = out
|
791 |
+
out = self.resnet_conv_first[i](out)
|
792 |
+
if self.t_emb_dim is not None:
|
793 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
794 |
+
out = self.resnet_conv_second[i](out)
|
795 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
796 |
+
# Self Attention
|
797 |
+
batch_size, channels, h, w = out.shape
|
798 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
799 |
+
in_attn = self.attention_norms[i](in_attn)
|
800 |
+
in_attn = in_attn.transpose(1, 2)
|
801 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
802 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
803 |
+
out = out + out_attn
|
804 |
+
# Cross Attention
|
805 |
+
if self.cross_attn:
|
806 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
807 |
+
batch_size, channels, h, w = out.shape
|
808 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
809 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
810 |
+
in_attn = in_attn.transpose(1, 2)
|
811 |
+
assert len(context.shape) == 3, \
|
812 |
+
"Context shape does not match B,_,CONTEXT_DIM"
|
813 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim,\
|
814 |
+
"Context shape does not match B,_,CONTEXT_DIM"
|
815 |
+
context_proj = self.context_proj[i](context)
|
816 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
817 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
818 |
+
out = out + out_attn
|
819 |
+
|
820 |
+
return out
|
821 |
+
|
822 |
+
"""Vqvae"""
|
823 |
+
|
824 |
+
import torch
|
825 |
+
import torch.nn as nn
|
826 |
+
|
827 |
+
|
828 |
+
class VQVAE(nn.Module):
|
829 |
+
def __init__(self, im_channels, model_config):
|
830 |
+
super().__init__()
|
831 |
+
self.down_channels = model_config.down_channels
|
832 |
+
self.mid_channels = model_config.mid_channels
|
833 |
+
self.down_sample = model_config.down_sample
|
834 |
+
self.num_down_layers = model_config.num_down_layers
|
835 |
+
self.num_mid_layers = model_config.num_mid_layers
|
836 |
+
self.num_up_layers = model_config.num_up_layers
|
837 |
+
|
838 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
839 |
+
self.attns = model_config.attn_down
|
840 |
+
|
841 |
+
# Latent Dimension
|
842 |
+
self.z_channels = model_config.z_channels
|
843 |
+
self.codebook_size = model_config.codebook_size
|
844 |
+
self.norm_channels = model_config.norm_channels
|
845 |
+
self.num_heads = model_config.num_heads
|
846 |
+
|
847 |
+
# Assertion to validate the channel information
|
848 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
849 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
850 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
851 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
852 |
+
|
853 |
+
# Wherever we use downsampling in encoder correspondingly use
|
854 |
+
# upsampling in decoder
|
855 |
+
self.up_sample = list(reversed(self.down_sample))
|
856 |
+
|
857 |
+
##################### Encoder ######################
|
858 |
+
self.encoder_conv_in = nn.Conv2d(im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1))
|
859 |
+
|
860 |
+
# Downblock + Midblock
|
861 |
+
self.encoder_layers = nn.ModuleList([])
|
862 |
+
for i in range(len(self.down_channels) - 1):
|
863 |
+
self.encoder_layers.append(DownBlock(self.down_channels[i], self.down_channels[i + 1],
|
864 |
+
t_emb_dim=None, down_sample=self.down_sample[i],
|
865 |
+
num_heads=self.num_heads,
|
866 |
+
num_layers=self.num_down_layers,
|
867 |
+
attn=self.attns[i],
|
868 |
+
norm_channels=self.norm_channels))
|
869 |
+
|
870 |
+
self.encoder_mids = nn.ModuleList([])
|
871 |
+
for i in range(len(self.mid_channels) - 1):
|
872 |
+
self.encoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i + 1],
|
873 |
+
t_emb_dim=None,
|
874 |
+
num_heads=self.num_heads,
|
875 |
+
num_layers=self.num_mid_layers,
|
876 |
+
norm_channels=self.norm_channels))
|
877 |
+
|
878 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
879 |
+
self.encoder_conv_out = nn.Conv2d(self.down_channels[-1], self.z_channels, kernel_size=3, padding=1)
|
880 |
+
|
881 |
+
# Pre Quantization Convolution
|
882 |
+
self.pre_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
883 |
+
|
884 |
+
# Codebook
|
885 |
+
self.embedding = nn.Embedding(self.codebook_size, self.z_channels)
|
886 |
+
####################################################
|
887 |
+
|
888 |
+
##################### Decoder ######################
|
889 |
+
|
890 |
+
# Post Quantization Convolution
|
891 |
+
self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
892 |
+
self.decoder_conv_in = nn.Conv2d(self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1))
|
893 |
+
|
894 |
+
# Midblock + Upblock
|
895 |
+
self.decoder_mids = nn.ModuleList([])
|
896 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
897 |
+
self.decoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i - 1],
|
898 |
+
t_emb_dim=None,
|
899 |
+
num_heads=self.num_heads,
|
900 |
+
num_layers=self.num_mid_layers,
|
901 |
+
norm_channels=self.norm_channels))
|
902 |
+
|
903 |
+
self.decoder_layers = nn.ModuleList([])
|
904 |
+
for i in reversed(range(1, len(self.down_channels))):
|
905 |
+
self.decoder_layers.append(UpBlock(self.down_channels[i], self.down_channels[i - 1],
|
906 |
+
t_emb_dim=None, up_sample=self.down_sample[i - 1],
|
907 |
+
num_heads=self.num_heads,
|
908 |
+
num_layers=self.num_up_layers,
|
909 |
+
attn=self.attns[i-1],
|
910 |
+
norm_channels=self.norm_channels))
|
911 |
+
|
912 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
913 |
+
self.decoder_conv_out = nn.Conv2d(self.down_channels[0], im_channels, kernel_size=3, padding=1)
|
914 |
+
|
915 |
+
def quantize(self, x):
|
916 |
+
B, C, H, W = x.shape
|
917 |
+
|
918 |
+
# B, C, H, W -> B, H, W, C
|
919 |
+
x = x.permute(0, 2, 3, 1)
|
920 |
+
|
921 |
+
# B, H, W, C -> B, H*W, C
|
922 |
+
x = x.reshape(x.size(0), -1, x.size(-1))
|
923 |
+
|
924 |
+
# Find nearest embedding/codebook vector
|
925 |
+
# dist between (B, H*W, C) and (B, K, C) -> (B, H*W, K)
|
926 |
+
dist = torch.cdist(x, self.embedding.weight[None, :].repeat((x.size(0), 1, 1)))
|
927 |
+
# (B, H*W)
|
928 |
+
min_encoding_indices = torch.argmin(dist, dim=-1)
|
929 |
+
|
930 |
+
# Replace encoder output with nearest codebook
|
931 |
+
# quant_out -> B*H*W, C
|
932 |
+
quant_out = torch.index_select(self.embedding.weight, 0, min_encoding_indices.view(-1))
|
933 |
+
|
934 |
+
# x -> B*H*W, C
|
935 |
+
x = x.reshape((-1, x.size(-1)))
|
936 |
+
commmitment_loss = torch.mean((quant_out.detach() - x) ** 2)
|
937 |
+
codebook_loss = torch.mean((quant_out - x.detach()) ** 2)
|
938 |
+
quantize_losses = {
|
939 |
+
'codebook_loss': codebook_loss,
|
940 |
+
'commitment_loss': commmitment_loss
|
941 |
+
}
|
942 |
+
# Straight through estimation
|
943 |
+
quant_out = x + (quant_out - x).detach()
|
944 |
+
|
945 |
+
# quant_out -> B, C, H, W
|
946 |
+
quant_out = quant_out.reshape((B, H, W, C)).permute(0, 3, 1, 2)
|
947 |
+
min_encoding_indices = min_encoding_indices.reshape((-1, quant_out.size(-2), quant_out.size(-1)))
|
948 |
+
return quant_out, quantize_losses, min_encoding_indices
|
949 |
+
|
950 |
+
def encode(self, x):
|
951 |
+
out = self.encoder_conv_in(x)
|
952 |
+
for idx, down in enumerate(self.encoder_layers):
|
953 |
+
out = down(out)
|
954 |
+
for mid in self.encoder_mids:
|
955 |
+
out = mid(out)
|
956 |
+
out = self.encoder_norm_out(out)
|
957 |
+
out = nn.SiLU()(out)
|
958 |
+
out = self.encoder_conv_out(out)
|
959 |
+
out = self.pre_quant_conv(out)
|
960 |
+
out, quant_losses, _ = self.quantize(out)
|
961 |
+
return out, quant_losses
|
962 |
+
|
963 |
+
def decode(self, z):
|
964 |
+
out = z
|
965 |
+
out = self.post_quant_conv(out)
|
966 |
+
out = self.decoder_conv_in(out)
|
967 |
+
for mid in self.decoder_mids:
|
968 |
+
out = mid(out)
|
969 |
+
for idx, up in enumerate(self.decoder_layers):
|
970 |
+
out = up(out)
|
971 |
+
|
972 |
+
out = self.decoder_norm_out(out)
|
973 |
+
out = nn.SiLU()(out)
|
974 |
+
out = self.decoder_conv_out(out)
|
975 |
+
return out
|
976 |
+
|
977 |
+
def forward(self, x):
|
978 |
+
z, quant_losses = self.encode(x)
|
979 |
+
out = self.decode(z)
|
980 |
+
return out, z, quant_losses
|
981 |
+
|
982 |
+
"""Vae"""
|
983 |
+
|
984 |
+
import torch
|
985 |
+
import torch.nn as nn
|
986 |
+
|
987 |
+
|
988 |
+
class VAE(nn.Module):
|
989 |
+
def __init__(self, im_channels, model_config):
|
990 |
+
super().__init__()
|
991 |
+
self.down_channels = model_config['down_channels']
|
992 |
+
self.mid_channels = model_config['mid_channels']
|
993 |
+
self.down_sample = model_config['down_sample']
|
994 |
+
self.num_down_layers = model_config['num_down_layers']
|
995 |
+
self.num_mid_layers = model_config['num_mid_layers']
|
996 |
+
self.num_up_layers = model_config['num_up_layers']
|
997 |
+
|
998 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
999 |
+
self.attns = model_config['attn_down']
|
1000 |
+
|
1001 |
+
# Latent Dimension
|
1002 |
+
self.z_channels = model_config['z_channels']
|
1003 |
+
self.norm_channels = model_config['norm_channels']
|
1004 |
+
self.num_heads = model_config['num_heads']
|
1005 |
+
|
1006 |
+
# Assertion to validate the channel information
|
1007 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
1008 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
1009 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
1010 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
1011 |
+
|
1012 |
+
# Wherever we use downsampling in encoder correspondingly use
|
1013 |
+
# upsampling in decoder
|
1014 |
+
self.up_sample = list(reversed(self.down_sample))
|
1015 |
+
|
1016 |
+
##################### Encoder ######################
|
1017 |
+
self.encoder_conv_in = nn.Conv2d(im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1))
|
1018 |
+
|
1019 |
+
# Downblock + Midblock
|
1020 |
+
self.encoder_layers = nn.ModuleList([])
|
1021 |
+
for i in range(len(self.down_channels) - 1):
|
1022 |
+
self.encoder_layers.append(DownBlock(self.down_channels[i], self.down_channels[i + 1],
|
1023 |
+
t_emb_dim=None, down_sample=self.down_sample[i],
|
1024 |
+
num_heads=self.num_heads,
|
1025 |
+
num_layers=self.num_down_layers,
|
1026 |
+
attn=self.attns[i],
|
1027 |
+
norm_channels=self.norm_channels))
|
1028 |
+
|
1029 |
+
self.encoder_mids = nn.ModuleList([])
|
1030 |
+
for i in range(len(self.mid_channels) - 1):
|
1031 |
+
self.encoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i + 1],
|
1032 |
+
t_emb_dim=None,
|
1033 |
+
num_heads=self.num_heads,
|
1034 |
+
num_layers=self.num_mid_layers,
|
1035 |
+
norm_channels=self.norm_channels))
|
1036 |
+
|
1037 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
1038 |
+
self.encoder_conv_out = nn.Conv2d(self.down_channels[-1], 2*self.z_channels, kernel_size=3, padding=1)
|
1039 |
+
|
1040 |
+
# Latent Dimension is 2*Latent because we are predicting mean & variance
|
1041 |
+
self.pre_quant_conv = nn.Conv2d(2*self.z_channels, 2*self.z_channels, kernel_size=1)
|
1042 |
+
####################################################
|
1043 |
+
|
1044 |
+
|
1045 |
+
##################### Decoder ######################
|
1046 |
+
self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
1047 |
+
self.decoder_conv_in = nn.Conv2d(self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1))
|
1048 |
+
|
1049 |
+
# Midblock + Upblock
|
1050 |
+
self.decoder_mids = nn.ModuleList([])
|
1051 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
1052 |
+
self.decoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i - 1],
|
1053 |
+
t_emb_dim=None,
|
1054 |
+
num_heads=self.num_heads,
|
1055 |
+
num_layers=self.num_mid_layers,
|
1056 |
+
norm_channels=self.norm_channels))
|
1057 |
+
|
1058 |
+
self.decoder_layers = nn.ModuleList([])
|
1059 |
+
for i in reversed(range(1, len(self.down_channels))):
|
1060 |
+
self.decoder_layers.append(UpBlock(self.down_channels[i], self.down_channels[i - 1],
|
1061 |
+
t_emb_dim=None, up_sample=self.down_sample[i - 1],
|
1062 |
+
num_heads=self.num_heads,
|
1063 |
+
num_layers=self.num_up_layers,
|
1064 |
+
attn=self.attns[i - 1],
|
1065 |
+
norm_channels=self.norm_channels))
|
1066 |
+
|
1067 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
1068 |
+
self.decoder_conv_out = nn.Conv2d(self.down_channels[0], im_channels, kernel_size=3, padding=1)
|
1069 |
+
|
1070 |
+
def encode(self, x):
|
1071 |
+
out = self.encoder_conv_in(x)
|
1072 |
+
for idx, down in enumerate(self.encoder_layers):
|
1073 |
+
out = down(out)
|
1074 |
+
for mid in self.encoder_mids:
|
1075 |
+
out = mid(out)
|
1076 |
+
out = self.encoder_norm_out(out)
|
1077 |
+
out = nn.SiLU()(out)
|
1078 |
+
out = self.encoder_conv_out(out)
|
1079 |
+
out = self.pre_quant_conv(out)
|
1080 |
+
mean, logvar = torch.chunk(out, 2, dim=1)
|
1081 |
+
std = torch.exp(0.5 * logvar)
|
1082 |
+
sample = mean + std * torch.randn(mean.shape).to(device=x.device)
|
1083 |
+
return sample, out
|
1084 |
+
|
1085 |
+
def decode(self, z):
|
1086 |
+
out = z
|
1087 |
+
out = self.post_quant_conv(out)
|
1088 |
+
out = self.decoder_conv_in(out)
|
1089 |
+
for mid in self.decoder_mids:
|
1090 |
+
out = mid(out)
|
1091 |
+
for idx, up in enumerate(self.decoder_layers):
|
1092 |
+
out = up(out)
|
1093 |
+
|
1094 |
+
out = self.decoder_norm_out(out)
|
1095 |
+
out = nn.SiLU()(out)
|
1096 |
+
out = self.decoder_conv_out(out)
|
1097 |
+
return out
|
1098 |
+
|
1099 |
+
def forward(self, x):
|
1100 |
+
z, encoder_output = self.encode(x)
|
1101 |
+
out = self.decode(z)
|
1102 |
+
return out, encoder_output
|
1103 |
+
|
1104 |
+
"""Discriminator"""
|
1105 |
+
|
1106 |
+
import torch
|
1107 |
+
import torch.nn as nn
|
1108 |
+
|
1109 |
+
|
1110 |
+
class Discriminator(nn.Module):
|
1111 |
+
r"""
|
1112 |
+
PatchGAN Discriminator.
|
1113 |
+
Rather than taking IMG_CHANNELSxIMG_HxIMG_W all the way to
|
1114 |
+
1 scalar value , we instead predict grid of values.
|
1115 |
+
Where each grid is prediction of how likely
|
1116 |
+
the discriminator thinks that the image patch corresponding
|
1117 |
+
to the grid cell is real
|
1118 |
+
"""
|
1119 |
+
|
1120 |
+
def __init__(self, im_channels=3,
|
1121 |
+
conv_channels=[64, 128, 256],
|
1122 |
+
kernels=[4,4,4,4],
|
1123 |
+
strides=[2,2,2,1],
|
1124 |
+
paddings=[1,1,1,1]):
|
1125 |
+
super().__init__()
|
1126 |
+
self.im_channels = im_channels
|
1127 |
+
activation = nn.LeakyReLU(0.2)
|
1128 |
+
layers_dim = [self.im_channels] + conv_channels + [1]
|
1129 |
+
self.layers = nn.ModuleList([
|
1130 |
+
nn.Sequential(
|
1131 |
+
nn.Conv2d(layers_dim[i], layers_dim[i + 1],
|
1132 |
+
kernel_size=kernels[i],
|
1133 |
+
stride=strides[i],
|
1134 |
+
padding=paddings[i],
|
1135 |
+
bias=False if i !=0 else True),
|
1136 |
+
nn.BatchNorm2d(layers_dim[i + 1]) if i != len(layers_dim) - 2 and i != 0 else nn.Identity(),
|
1137 |
+
activation if i != len(layers_dim) - 2 else nn.Identity()
|
1138 |
+
)
|
1139 |
+
for i in range(len(layers_dim) - 1)
|
1140 |
+
])
|
1141 |
+
|
1142 |
+
def forward(self, x):
|
1143 |
+
out = x
|
1144 |
+
for layer in self.layers:
|
1145 |
+
out = layer(out)
|
1146 |
+
return out
|
1147 |
+
|
1148 |
+
|
1149 |
+
# if __name__ == '__main__':
|
1150 |
+
# x = torch.randn((2,3, 256, 256))
|
1151 |
+
# prob = Discriminator(im_channels=3)(x)
|
1152 |
+
# print(prob.shape)
|
1153 |
+
|
1154 |
+
# import os
|
1155 |
+
|
1156 |
+
# image_paths = [os.path.join("/home/taruntejaneurips23/Ashish/datasets/animefacedata/images", f)
|
1157 |
+
# for f in os.listdir("/home/taruntejaneurips23/Ashish/datasets/animefacedata/images")]
|
1158 |
+
# image_paths
|
1159 |
+
|
1160 |
+
import glob
|
1161 |
+
import os
|
1162 |
+
import torchvision
|
1163 |
+
from PIL import Image
|
1164 |
+
from tqdm import tqdm, trange
|
1165 |
+
# from utils.diffusion_utils import load_latents
|
1166 |
+
from torch.utils.data.dataset import Dataset
|
1167 |
+
|
1168 |
+
import pickle
|
1169 |
+
import glob
|
1170 |
+
import os
|
1171 |
+
import torch
|
1172 |
+
|
1173 |
+
|
1174 |
+
def load_latents(latent_path):
|
1175 |
+
r"""
|
1176 |
+
Simple utility to save latents to speed up ldm training
|
1177 |
+
:param latent_path:
|
1178 |
+
:return:
|
1179 |
+
"""
|
1180 |
+
latent_maps = {}
|
1181 |
+
for fname in glob.glob(os.path.join(latent_path, '*.pkl')):
|
1182 |
+
s = pickle.load(open(fname, 'rb'))
|
1183 |
+
for k, v in s.items():
|
1184 |
+
latent_maps[k] = v[0]
|
1185 |
+
return latent_maps
|
1186 |
+
|
1187 |
+
|
1188 |
+
def drop_text_condition(text_embed, im, empty_text_embed, text_drop_prob):
|
1189 |
+
if text_drop_prob > 0:
|
1190 |
+
text_drop_mask = torch.zeros((im.shape[0]), device=im.device).float().uniform_(0,
|
1191 |
+
1) < text_drop_prob
|
1192 |
+
assert empty_text_embed is not None, ("Text Conditioning required as well as"
|
1193 |
+
" text dropping but empty text representation not created")
|
1194 |
+
text_embed[text_drop_mask, :, :] = empty_text_embed[0]
|
1195 |
+
return text_embed
|
1196 |
+
|
1197 |
+
|
1198 |
+
def drop_image_condition(image_condition, im, im_drop_prob):
|
1199 |
+
if im_drop_prob > 0:
|
1200 |
+
im_drop_mask = torch.zeros((im.shape[0], 1, 1, 1), device=im.device).float().uniform_(0,
|
1201 |
+
1) > im_drop_prob
|
1202 |
+
return image_condition * im_drop_mask
|
1203 |
+
else:
|
1204 |
+
return image_condition
|
1205 |
+
|
1206 |
+
|
1207 |
+
def drop_class_condition(class_condition, class_drop_prob, im):
|
1208 |
+
if class_drop_prob > 0:
|
1209 |
+
class_drop_mask = torch.zeros((im.shape[0], 1), device=im.device).float().uniform_(0,
|
1210 |
+
1) > class_drop_prob
|
1211 |
+
return class_condition * class_drop_mask
|
1212 |
+
else:
|
1213 |
+
return class_condition
|
1214 |
+
|
1215 |
+
|
1216 |
+
class MnistDataset(Dataset):
|
1217 |
+
r"""
|
1218 |
+
Nothing special here. Just a simple dataset class for mnist images.
|
1219 |
+
Created a dataset class rather using torchvision to allow
|
1220 |
+
replacement with any other image dataset
|
1221 |
+
"""
|
1222 |
+
|
1223 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1224 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1225 |
+
r"""
|
1226 |
+
Init method for initializing the dataset properties
|
1227 |
+
:param split: train/test to locate the image files
|
1228 |
+
:param im_path: root folder of images
|
1229 |
+
:param im_ext: image extension. assumes all
|
1230 |
+
images would be this type.
|
1231 |
+
"""
|
1232 |
+
self.split = split
|
1233 |
+
self.im_size = im_size
|
1234 |
+
self.im_channels = im_channels
|
1235 |
+
|
1236 |
+
# Should we use latents or not
|
1237 |
+
self.latent_maps = None
|
1238 |
+
self.use_latents = False
|
1239 |
+
|
1240 |
+
# Conditioning for the dataset
|
1241 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1242 |
+
|
1243 |
+
self.images, self.labels = self.load_images(im_path)
|
1244 |
+
|
1245 |
+
# Whether to load images and call vae or to load latents
|
1246 |
+
if use_latents and latent_path is not None:
|
1247 |
+
latent_maps = load_latents(latent_path)
|
1248 |
+
if len(latent_maps) == len(self.images):
|
1249 |
+
self.use_latents = True
|
1250 |
+
self.latent_maps = latent_maps
|
1251 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1252 |
+
else:
|
1253 |
+
print('Latents not found')
|
1254 |
+
|
1255 |
+
def load_images(self, im_path):
|
1256 |
+
r"""
|
1257 |
+
Gets all images from the path specified
|
1258 |
+
and stacks them all up
|
1259 |
+
:param im_path:
|
1260 |
+
:return:
|
1261 |
+
"""
|
1262 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1263 |
+
ims = []
|
1264 |
+
labels = []
|
1265 |
+
for d_name in tqdm(os.listdir(im_path)):
|
1266 |
+
fnames = glob.glob(os.path.join(im_path, d_name, '*.{}'.format('png')))
|
1267 |
+
fnames += glob.glob(os.path.join(im_path, d_name, '*.{}'.format('jpg')))
|
1268 |
+
fnames += glob.glob(os.path.join(im_path, d_name, '*.{}'.format('jpeg')))
|
1269 |
+
for fname in fnames:
|
1270 |
+
ims.append(fname)
|
1271 |
+
if 'class' in self.condition_types:
|
1272 |
+
labels.append(int(d_name))
|
1273 |
+
print('Found {} images for split {}'.format(len(ims), self.split))
|
1274 |
+
return ims, labels
|
1275 |
+
|
1276 |
+
def __len__(self):
|
1277 |
+
return len(self.images)
|
1278 |
+
|
1279 |
+
def __getitem__(self, index):
|
1280 |
+
######## Set Conditioning Info ########
|
1281 |
+
cond_inputs = {}
|
1282 |
+
if 'class' in self.condition_types:
|
1283 |
+
cond_inputs['class'] = self.labels[index]
|
1284 |
+
#######################################
|
1285 |
+
|
1286 |
+
if self.use_latents:
|
1287 |
+
latent = self.latent_maps[self.images[index]]
|
1288 |
+
if len(self.condition_types) == 0:
|
1289 |
+
return latent
|
1290 |
+
else:
|
1291 |
+
return latent, cond_inputs
|
1292 |
+
else:
|
1293 |
+
im = Image.open(self.images[index])
|
1294 |
+
im_tensor = torchvision.transforms.ToTensor()(im)
|
1295 |
+
|
1296 |
+
# Convert input to -1 to 1 range.
|
1297 |
+
im_tensor = (2 * im_tensor) - 1
|
1298 |
+
if len(self.condition_types) == 0:
|
1299 |
+
return im_tensor
|
1300 |
+
else:
|
1301 |
+
return im_tensor, cond_inputs
|
1302 |
+
|
1303 |
+
|
1304 |
+
class AnimeFaceDataset(Dataset):
|
1305 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1306 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1307 |
+
|
1308 |
+
self.split = split
|
1309 |
+
self.im_size = im_size
|
1310 |
+
self.im_channels = im_channels
|
1311 |
+
|
1312 |
+
# Should we use latents or not
|
1313 |
+
self.latent_maps = None
|
1314 |
+
self.use_latents = False
|
1315 |
+
|
1316 |
+
# Conditioning for the dataset
|
1317 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1318 |
+
|
1319 |
+
self.images = self.load_images(im_path)
|
1320 |
+
|
1321 |
+
# Whether to load images and call vae or to load latents
|
1322 |
+
if use_latents and latent_path is not None:
|
1323 |
+
latent_maps = load_latents(latent_path)
|
1324 |
+
if len(latent_maps) == len(self.images):
|
1325 |
+
self.use_latents = True
|
1326 |
+
self.latent_maps = latent_maps
|
1327 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1328 |
+
else:
|
1329 |
+
print('Latents not found')
|
1330 |
+
|
1331 |
+
def load_images(self, im_path):
|
1332 |
+
r"""
|
1333 |
+
Gets all images from the path specified
|
1334 |
+
and stacks them all up
|
1335 |
+
:param im_path:
|
1336 |
+
:return:
|
1337 |
+
"""
|
1338 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1339 |
+
# ims = []
|
1340 |
+
# labels = []
|
1341 |
+
ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1342 |
+
return ims
|
1343 |
+
|
1344 |
+
def __len__(self):
|
1345 |
+
return len(self.images)
|
1346 |
+
|
1347 |
+
def __getitem__(self, index):
|
1348 |
+
######## Set Conditioning Info ########
|
1349 |
+
# cond_inputs = {}
|
1350 |
+
# if 'class' in self.condition_types:
|
1351 |
+
# cond_inputs['class'] = self.labels[index]
|
1352 |
+
#######################################
|
1353 |
+
|
1354 |
+
if self.use_latents:
|
1355 |
+
latent = self.latent_maps[self.images[index]]
|
1356 |
+
if len(self.condition_types) == 0:
|
1357 |
+
return latent
|
1358 |
+
# else:
|
1359 |
+
# return latent, cond_inputs
|
1360 |
+
else:
|
1361 |
+
im = Image.open(self.images[index])
|
1362 |
+
im_tensor = torchvision.transforms.Compose([
|
1363 |
+
torchvision.transforms.Resize(self.im_size),
|
1364 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1365 |
+
torchvision.transforms.ToTensor(),
|
1366 |
+
])(im)
|
1367 |
+
im.close()
|
1368 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1369 |
+
|
1370 |
+
# Convert input to -1 to 1 range.
|
1371 |
+
im_tensor = (2 * im_tensor) - 1
|
1372 |
+
if len(self.condition_types) == 0:
|
1373 |
+
return im_tensor
|
1374 |
+
# else:
|
1375 |
+
# return im_tensor, cond_inputs
|
1376 |
+
|
1377 |
+
|
1378 |
+
import glob
|
1379 |
+
import os
|
1380 |
+
import random
|
1381 |
+
import torch
|
1382 |
+
import torchvision
|
1383 |
+
import numpy as np
|
1384 |
+
from PIL import Image
|
1385 |
+
from tqdm import tqdm
|
1386 |
+
from torch.utils.data.dataset import Dataset
|
1387 |
+
|
1388 |
+
|
1389 |
+
class CelebDataset(Dataset):
|
1390 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1391 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1392 |
+
|
1393 |
+
self.split = split
|
1394 |
+
self.im_size = im_size
|
1395 |
+
self.im_channels = im_channels
|
1396 |
+
|
1397 |
+
# Should we use latents or not
|
1398 |
+
self.latent_maps = None
|
1399 |
+
self.use_latents = False
|
1400 |
+
|
1401 |
+
# Conditioning for the dataset
|
1402 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1403 |
+
|
1404 |
+
self.images = self.load_images(im_path)
|
1405 |
+
|
1406 |
+
# Whether to load images and call vae or to load latents
|
1407 |
+
if use_latents and latent_path is not None:
|
1408 |
+
latent_maps = load_latents(latent_path)
|
1409 |
+
if len(latent_maps) == len(self.images):
|
1410 |
+
self.use_latents = True
|
1411 |
+
self.latent_maps = latent_maps
|
1412 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1413 |
+
else:
|
1414 |
+
print('Latents not found')
|
1415 |
+
|
1416 |
+
def load_images(self, im_path):
|
1417 |
+
r"""
|
1418 |
+
Gets all images from the path specified
|
1419 |
+
and stacks them all up
|
1420 |
+
:param im_path:
|
1421 |
+
:return:
|
1422 |
+
"""
|
1423 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1424 |
+
# ims = []
|
1425 |
+
# labels = []
|
1426 |
+
ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1427 |
+
return ims
|
1428 |
+
|
1429 |
+
def __len__(self):
|
1430 |
+
return len(self.images)
|
1431 |
+
|
1432 |
+
def __getitem__(self, index):
|
1433 |
+
######## Set Conditioning Info ########
|
1434 |
+
# cond_inputs = {}
|
1435 |
+
# if 'class' in self.condition_types:
|
1436 |
+
# cond_inputs['class'] = self.labels[index]
|
1437 |
+
#######################################
|
1438 |
+
|
1439 |
+
if self.use_latents:
|
1440 |
+
latent = self.latent_maps[self.images[index]]
|
1441 |
+
if len(self.condition_types) == 0:
|
1442 |
+
return latent
|
1443 |
+
# else:
|
1444 |
+
# return latent, cond_inputs
|
1445 |
+
else:
|
1446 |
+
im = Image.open(self.images[index])
|
1447 |
+
im_tensor = torchvision.transforms.Compose([
|
1448 |
+
# torchvision.transforms.Resize(self.im_size),
|
1449 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1450 |
+
torchvision.transforms.ToTensor(),
|
1451 |
+
])(im)
|
1452 |
+
im.close()
|
1453 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1454 |
+
|
1455 |
+
# Convert input to -1 to 1 range.
|
1456 |
+
im_tensor = (2 * im_tensor) - 1
|
1457 |
+
if len(self.condition_types) == 0:
|
1458 |
+
return im_tensor
|
1459 |
+
# else:
|
1460 |
+
# return im_tensor, cond_inputs
|
1461 |
+
import pandas as pd
|
1462 |
+
class CelebHairDataset(Dataset):
|
1463 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1464 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1465 |
+
|
1466 |
+
self.df = pd.read_csv("/home/taruntejaneurips23/Ashish/DDPM/hair_df_100.csv")
|
1467 |
+
self.split = split
|
1468 |
+
self.im_size = im_size
|
1469 |
+
self.im_channels = im_channels
|
1470 |
+
|
1471 |
+
# Should we use latents or not
|
1472 |
+
self.latent_maps = None
|
1473 |
+
self.use_latents = False
|
1474 |
+
|
1475 |
+
# Conditioning for the dataset
|
1476 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1477 |
+
|
1478 |
+
self.images = self.load_images(im_path, self.df)
|
1479 |
+
|
1480 |
+
# Whether to load images and call vae or to load latents
|
1481 |
+
if use_latents and latent_path is not None:
|
1482 |
+
latent_maps = load_latents(latent_path)
|
1483 |
+
if len(latent_maps) == len(self.images):
|
1484 |
+
self.use_latents = True
|
1485 |
+
self.latent_maps = latent_maps
|
1486 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1487 |
+
else:
|
1488 |
+
print('Latents not found')
|
1489 |
+
|
1490 |
+
def load_images(self, im_path, df):
|
1491 |
+
r"""
|
1492 |
+
Gets all images from the path specified
|
1493 |
+
and stacks them all up
|
1494 |
+
:param im_path:
|
1495 |
+
:return:
|
1496 |
+
"""
|
1497 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1498 |
+
# ims = []
|
1499 |
+
# labels = []
|
1500 |
+
# ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1501 |
+
ims = [os.path.join(im_path, i) for i in df.image_id.values]
|
1502 |
+
return ims
|
1503 |
+
|
1504 |
+
def __len__(self):
|
1505 |
+
return len(self.images)
|
1506 |
+
|
1507 |
+
def __getitem__(self, index):
|
1508 |
+
######## Set Conditioning Info ########
|
1509 |
+
# cond_inputs = {}
|
1510 |
+
# if 'class' in self.condition_types:
|
1511 |
+
# cond_inputs['class'] = self.labels[index]
|
1512 |
+
#######################################
|
1513 |
+
|
1514 |
+
if self.use_latents:
|
1515 |
+
latent = self.latent_maps[self.images[index]]
|
1516 |
+
if len(self.condition_types) == 0:
|
1517 |
+
return latent
|
1518 |
+
# else:
|
1519 |
+
# return latent, cond_inputs
|
1520 |
+
else:
|
1521 |
+
im = Image.open(self.images[index])
|
1522 |
+
im_tensor = torchvision.transforms.Compose([
|
1523 |
+
# torchvision.transforms.Resize(self.im_size),
|
1524 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1525 |
+
torchvision.transforms.ToTensor(),
|
1526 |
+
])(im)
|
1527 |
+
im.close()
|
1528 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1529 |
+
|
1530 |
+
# Convert input to -1 to 1 range.
|
1531 |
+
im_tensor = (2 * im_tensor) - 1
|
1532 |
+
if len(self.condition_types) == 0:
|
1533 |
+
return im_tensor
|
1534 |
+
# else:
|
1535 |
+
# return im_tensor, cond_inputs
|
1536 |
+
|
1537 |
+
#"""Train VQVAE"""...............................................................................................................................................
|
1538 |
+
|
1539 |
+
# Commented out IPython magic to ensure Python compatibility.
|
1540 |
+
import torch
|
1541 |
+
import torch.nn as nn
|
1542 |
+
import yaml
|
1543 |
+
from dotdict import DotDict
|
1544 |
+
|
1545 |
+
config_path = "/home/taruntejaneurips23/Ashish/DDPM/_5_ldm_celeba.yaml"
|
1546 |
+
with open(config_path, 'r') as file:
|
1547 |
+
Config = yaml.safe_load(file)
|
1548 |
+
|
1549 |
+
|
1550 |
+
Config = DotDict.from_dict(Config)
|
1551 |
+
dataset_config = Config.dataset_params
|
1552 |
+
diffusion_config = Config.diffusion_params
|
1553 |
+
model_config = Config.model_params
|
1554 |
+
train_config = Config.train_params
|
1555 |
+
|
1556 |
+
import torch
|
1557 |
+
import os
|
1558 |
+
import random
|
1559 |
+
import numpy as np
|
1560 |
+
import matplotlib.pyplot as plt
|
1561 |
+
from tqdm import tqdm
|
1562 |
+
from torch.optim import Adam
|
1563 |
+
from torch.utils.data import Dataset, TensorDataset, DataLoader
|
1564 |
+
# device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
|
1565 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
1566 |
+
|
1567 |
+
|
1568 |
+
|
1569 |
+
from torchvision.utils import make_grid
|
1570 |
+
|
1571 |
+
def trainVAE(Config):
|
1572 |
+
|
1573 |
+
dataset_config = Config.dataset_params
|
1574 |
+
autoencoder_config = Config.autoencoder_params
|
1575 |
+
train_config = Config.train_params
|
1576 |
+
|
1577 |
+
# Set the desired seed value #
|
1578 |
+
seed = train_config.seed
|
1579 |
+
torch.manual_seed(seed)
|
1580 |
+
np.random.seed(seed)
|
1581 |
+
random.seed(seed)
|
1582 |
+
if device == 'cuda':
|
1583 |
+
torch.cuda.manual_seed_all(seed)
|
1584 |
+
#############################
|
1585 |
+
|
1586 |
+
# Create the model and dataset #
|
1587 |
+
model = VQVAE(im_channels=dataset_config.im_channels,
|
1588 |
+
model_config=autoencoder_config).to(device)
|
1589 |
+
# model.load_state_dict(torch.load("/home/taruntejaneurips23/Ashish/DDPM/celebAhair_ldm/vqvae_autoencoder_ckpt.pth", map_location=device))
|
1590 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name)):
|
1591 |
+
print('Loaded vae checkpoint')
|
1592 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name),
|
1593 |
+
map_location=device, weights_only=True))
|
1594 |
+
|
1595 |
+
# Create the dataset
|
1596 |
+
im_dataset_cls = {
|
1597 |
+
'mnist': MnistDataset,
|
1598 |
+
'celebA': CelebDataset,
|
1599 |
+
'animeface': AnimeFaceDataset,
|
1600 |
+
'celebAhair': CelebHairDataset
|
1601 |
+
}.get(dataset_config.name)
|
1602 |
+
|
1603 |
+
im_dataset = im_dataset_cls(split='train',
|
1604 |
+
im_path=dataset_config.im_path,
|
1605 |
+
im_size=dataset_config.im_size,
|
1606 |
+
im_channels=dataset_config.im_channels)
|
1607 |
+
|
1608 |
+
data_loader = DataLoader(im_dataset,
|
1609 |
+
batch_size=train_config.autoencoder_batch_size,
|
1610 |
+
shuffle=True,
|
1611 |
+
num_workers=os.cpu_count(),
|
1612 |
+
pin_memory=True,
|
1613 |
+
drop_last=True,
|
1614 |
+
persistent_workers=True, pin_memory_device=device)
|
1615 |
+
|
1616 |
+
# Create output directories
|
1617 |
+
if not os.path.exists(train_config.task_name):
|
1618 |
+
os.mkdir(train_config.task_name)
|
1619 |
+
|
1620 |
+
num_epochs = train_config.autoencoder_epochs
|
1621 |
+
|
1622 |
+
# L1/L2 loss for Reconstruction
|
1623 |
+
recon_criterion = torch.nn.MSELoss()
|
1624 |
+
# Disc Loss can even be BCEWithLogits
|
1625 |
+
disc_criterion = torch.nn.MSELoss()
|
1626 |
+
|
1627 |
+
# No need to freeze lpips as lpips.py takes care of that
|
1628 |
+
lpips_model = LPIPS().eval().to(device)
|
1629 |
+
discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)
|
1630 |
+
# discriminator.load_state_dict(torch.load("/home/taruntejaneurips23/Ashish/DDPM/celebAhair_ldm/vqvae_discriminator_ckpt.pth", map_location=device))
|
1631 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name)):
|
1632 |
+
print('Loaded discriminator checkpoint')
|
1633 |
+
discriminator.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name),
|
1634 |
+
map_location=device, weights_only=True))
|
1635 |
+
|
1636 |
+
optimizer_d = Adam(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1637 |
+
optimizer_g = Adam(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1638 |
+
|
1639 |
+
disc_step_start = train_config.disc_start
|
1640 |
+
step_count = 0
|
1641 |
+
|
1642 |
+
# This is for accumulating gradients incase the images are huge
|
1643 |
+
# And one cant afford higher batch sizes
|
1644 |
+
acc_steps = train_config.autoencoder_acc_steps
|
1645 |
+
image_save_steps = train_config.autoencoder_img_save_steps
|
1646 |
+
img_save_count = 0
|
1647 |
+
|
1648 |
+
for epoch_idx in trange(num_epochs, desc='Training VQVAE'):
|
1649 |
+
recon_losses = []
|
1650 |
+
codebook_losses = []
|
1651 |
+
#commitment_losses = []
|
1652 |
+
perceptual_losses = []
|
1653 |
+
disc_losses = []
|
1654 |
+
gen_losses = []
|
1655 |
+
losses = []
|
1656 |
+
|
1657 |
+
optimizer_g.zero_grad()
|
1658 |
+
optimizer_d.zero_grad()
|
1659 |
+
|
1660 |
+
# for im in tqdm(data_loader):
|
1661 |
+
for im in data_loader:
|
1662 |
+
step_count += 1
|
1663 |
+
im = im.float().to(device)
|
1664 |
+
|
1665 |
+
# Fetch autoencoders output(reconstructions)
|
1666 |
+
model_output = model(im)
|
1667 |
+
output, z, quantize_losses = model_output
|
1668 |
+
|
1669 |
+
# Image Saving Logic
|
1670 |
+
if step_count % image_save_steps == 0 or step_count == 1:
|
1671 |
+
sample_size = min(8, im.shape[0])
|
1672 |
+
save_output = torch.clamp(output[:sample_size], -1., 1.).detach().cpu()
|
1673 |
+
save_output = ((save_output + 1) / 2)
|
1674 |
+
save_input = ((im[:sample_size] + 1) / 2).detach().cpu()
|
1675 |
+
|
1676 |
+
grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)
|
1677 |
+
img = torchvision.transforms.ToPILImage()(grid)
|
1678 |
+
if not os.path.exists(os.path.join(train_config.task_name,'vqvae_autoencoder_samples')):
|
1679 |
+
os.mkdir(os.path.join(train_config.task_name, 'vqvae_autoencoder_samples'))
|
1680 |
+
img.save(os.path.join(train_config.task_name,'vqvae_autoencoder_samples',
|
1681 |
+
'current_autoencoder_sample_{}.png'.format(img_save_count)))
|
1682 |
+
img_save_count += 1
|
1683 |
+
img.close()
|
1684 |
+
|
1685 |
+
######### Optimize Generator ##########
|
1686 |
+
# L2 Loss
|
1687 |
+
recon_loss = recon_criterion(output, im)
|
1688 |
+
recon_losses.append(recon_loss.item())
|
1689 |
+
recon_loss = recon_loss / acc_steps
|
1690 |
+
g_loss = (recon_loss +
|
1691 |
+
(train_config.codebook_weight * quantize_losses['codebook_loss'] / acc_steps) +
|
1692 |
+
(train_config.commitment_beta * quantize_losses['commitment_loss'] / acc_steps))
|
1693 |
+
codebook_losses.append(train_config.codebook_weight * quantize_losses['codebook_loss'].item())
|
1694 |
+
# Adversarial loss only if disc_step_start steps passed
|
1695 |
+
if step_count > disc_step_start:
|
1696 |
+
disc_fake_pred = discriminator(model_output[0])
|
1697 |
+
disc_fake_loss = disc_criterion(disc_fake_pred,
|
1698 |
+
torch.ones(disc_fake_pred.shape,
|
1699 |
+
device=disc_fake_pred.device))
|
1700 |
+
gen_losses.append(train_config.disc_weight * disc_fake_loss.item())
|
1701 |
+
g_loss += train_config.disc_weight * disc_fake_loss / acc_steps
|
1702 |
+
lpips_loss = torch.mean(lpips_model(output, im)) / acc_steps
|
1703 |
+
perceptual_losses.append(train_config.perceptual_weight * lpips_loss.item())
|
1704 |
+
g_loss += train_config.perceptual_weight*lpips_loss / acc_steps
|
1705 |
+
losses.append(g_loss.item())
|
1706 |
+
g_loss.backward()
|
1707 |
+
#####################################
|
1708 |
+
|
1709 |
+
######### Optimize Discriminator #######
|
1710 |
+
if step_count > disc_step_start:
|
1711 |
+
fake = output
|
1712 |
+
disc_fake_pred = discriminator(fake.detach())
|
1713 |
+
disc_real_pred = discriminator(im)
|
1714 |
+
disc_fake_loss = disc_criterion(disc_fake_pred,
|
1715 |
+
torch.zeros(disc_fake_pred.shape,
|
1716 |
+
device=disc_fake_pred.device))
|
1717 |
+
disc_real_loss = disc_criterion(disc_real_pred,
|
1718 |
+
torch.ones(disc_real_pred.shape,
|
1719 |
+
device=disc_real_pred.device))
|
1720 |
+
disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2
|
1721 |
+
disc_losses.append(disc_loss.item())
|
1722 |
+
disc_loss = disc_loss / acc_steps
|
1723 |
+
disc_loss.backward()
|
1724 |
+
if step_count % acc_steps == 0:
|
1725 |
+
optimizer_d.step()
|
1726 |
+
optimizer_d.zero_grad()
|
1727 |
+
#####################################
|
1728 |
+
|
1729 |
+
if step_count % acc_steps == 0:
|
1730 |
+
optimizer_g.step()
|
1731 |
+
optimizer_g.zero_grad()
|
1732 |
+
optimizer_d.step()
|
1733 |
+
optimizer_d.zero_grad()
|
1734 |
+
optimizer_g.step()
|
1735 |
+
optimizer_g.zero_grad()
|
1736 |
+
if len(disc_losses) > 0:
|
1737 |
+
print(
|
1738 |
+
'Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | '
|
1739 |
+
'Codebook : {:.4f} | G Loss : {:.4f} | D Loss {:.4f}'.
|
1740 |
+
format(epoch_idx + 1,
|
1741 |
+
num_epochs,
|
1742 |
+
np.mean(recon_losses),
|
1743 |
+
np.mean(perceptual_losses),
|
1744 |
+
np.mean(codebook_losses),
|
1745 |
+
np.mean(gen_losses),
|
1746 |
+
np.mean(disc_losses)))
|
1747 |
+
else:
|
1748 |
+
print('Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | Codebook : {:.4f}'.
|
1749 |
+
format(epoch_idx + 1,
|
1750 |
+
num_epochs,
|
1751 |
+
np.mean(recon_losses),
|
1752 |
+
np.mean(perceptual_losses),
|
1753 |
+
np.mean(codebook_losses)))
|
1754 |
+
|
1755 |
+
torch.save(model.state_dict(), os.path.join(train_config.task_name,
|
1756 |
+
train_config.vqvae_autoencoder_ckpt_name))
|
1757 |
+
torch.save(discriminator.state_dict(), os.path.join(train_config.task_name,
|
1758 |
+
train_config.vqvae_discriminator_ckpt_name))
|
1759 |
+
print('Done Training...')
|
1760 |
+
|
1761 |
+
|
1762 |
+
# trainVAE(Config)
|
1763 |
+
|
1764 |
+
import torch
|
1765 |
+
import torch.nn as nn
|
1766 |
+
|
1767 |
+
|
1768 |
+
class Unet(nn.Module):
|
1769 |
+
r"""
|
1770 |
+
Unet model comprising
|
1771 |
+
Down blocks, Midblocks and Uplocks
|
1772 |
+
"""
|
1773 |
+
|
1774 |
+
def __init__(self, im_channels, model_config):
|
1775 |
+
super().__init__()
|
1776 |
+
self.down_channels = model_config.down_channels
|
1777 |
+
self.mid_channels = model_config.mid_channels
|
1778 |
+
self.t_emb_dim = model_config.time_emb_dim
|
1779 |
+
self.down_sample = model_config.down_sample
|
1780 |
+
self.num_down_layers = model_config.num_down_layers
|
1781 |
+
self.num_mid_layers = model_config.num_mid_layers
|
1782 |
+
self.num_up_layers = model_config.num_up_layers
|
1783 |
+
self.attns = model_config.attn_down
|
1784 |
+
self.norm_channels = model_config.norm_channels
|
1785 |
+
self.num_heads = model_config.num_heads
|
1786 |
+
self.conv_out_channels = model_config.conv_out_channels
|
1787 |
+
|
1788 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
1789 |
+
assert self.mid_channels[-1] == self.down_channels[-2]
|
1790 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
1791 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
1792 |
+
|
1793 |
+
# Initial projection from sinusoidal time embedding
|
1794 |
+
self.t_proj = nn.Sequential(
|
1795 |
+
nn.Linear(self.t_emb_dim, self.t_emb_dim),
|
1796 |
+
nn.SiLU(),
|
1797 |
+
nn.Linear(self.t_emb_dim, self.t_emb_dim)
|
1798 |
+
)
|
1799 |
+
|
1800 |
+
self.up_sample = list(reversed(self.down_sample))
|
1801 |
+
self.conv_in = nn.Conv2d(im_channels, self.down_channels[0], kernel_size=3, padding=1)
|
1802 |
+
|
1803 |
+
self.downs = nn.ModuleList([])
|
1804 |
+
for i in range(len(self.down_channels) - 1):
|
1805 |
+
self.downs.append(DownBlock(self.down_channels[i], self.down_channels[i + 1], self.t_emb_dim,
|
1806 |
+
down_sample=self.down_sample[i],
|
1807 |
+
num_heads=self.num_heads,
|
1808 |
+
num_layers=self.num_down_layers,
|
1809 |
+
attn=self.attns[i], norm_channels=self.norm_channels))
|
1810 |
+
|
1811 |
+
self.mids = nn.ModuleList([])
|
1812 |
+
for i in range(len(self.mid_channels) - 1):
|
1813 |
+
self.mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i + 1], self.t_emb_dim,
|
1814 |
+
num_heads=self.num_heads,
|
1815 |
+
num_layers=self.num_mid_layers,
|
1816 |
+
norm_channels=self.norm_channels))
|
1817 |
+
|
1818 |
+
self.ups = nn.ModuleList([])
|
1819 |
+
for i in reversed(range(len(self.down_channels) - 1)):
|
1820 |
+
self.ups.append(UpBlockUnet(self.down_channels[i] * 2, self.down_channels[i - 1] if i != 0 else self.conv_out_channels,
|
1821 |
+
self.t_emb_dim, up_sample=self.down_sample[i],
|
1822 |
+
num_heads=self.num_heads,
|
1823 |
+
num_layers=self.num_up_layers,
|
1824 |
+
norm_channels=self.norm_channels))
|
1825 |
+
|
1826 |
+
self.norm_out = nn.GroupNorm(self.norm_channels, self.conv_out_channels)
|
1827 |
+
self.conv_out = nn.Conv2d(self.conv_out_channels, im_channels, kernel_size=3, padding=1)
|
1828 |
+
|
1829 |
+
def forward(self, x, t):
|
1830 |
+
# Shapes assuming downblocks are [C1, C2, C3, C4]
|
1831 |
+
# Shapes assuming midblocks are [C4, C4, C3]
|
1832 |
+
# Shapes assuming downsamples are [True, True, False]
|
1833 |
+
# B x C x H x W
|
1834 |
+
out = self.conv_in(x)
|
1835 |
+
# B x C1 x H x W
|
1836 |
+
|
1837 |
+
# t_emb -> B x t_emb_dim
|
1838 |
+
t_emb = get_time_embedding(torch.as_tensor(t).long(), self.t_emb_dim)
|
1839 |
+
t_emb = self.t_proj(t_emb)
|
1840 |
+
|
1841 |
+
down_outs = []
|
1842 |
+
|
1843 |
+
for idx, down in enumerate(self.downs):
|
1844 |
+
down_outs.append(out)
|
1845 |
+
out = down(out, t_emb)
|
1846 |
+
# down_outs [B x C1 x H x W, B x C2 x H/2 x W/2, B x C3 x H/4 x W/4]
|
1847 |
+
# out B x C4 x H/4 x W/4
|
1848 |
+
|
1849 |
+
for mid in self.mids:
|
1850 |
+
out = mid(out, t_emb)
|
1851 |
+
# out B x C3 x H/4 x W/4
|
1852 |
+
|
1853 |
+
for up in self.ups:
|
1854 |
+
down_out = down_outs.pop()
|
1855 |
+
out = up(out, down_out, t_emb)
|
1856 |
+
# out [B x C2 x H/4 x W/4, B x C1 x H/2 x W/2, B x 16 x H x W]
|
1857 |
+
out = self.norm_out(out)
|
1858 |
+
out = nn.SiLU()(out)
|
1859 |
+
out = self.conv_out(out)
|
1860 |
+
# out B x C x H x W
|
1861 |
+
return out
|
1862 |
+
|
1863 |
+
def trainLDM(Config):
|
1864 |
+
|
1865 |
+
diffusion_config = Config.diffusion_params
|
1866 |
+
dataset_config = Config.dataset_params
|
1867 |
+
diffusion_model_config = Config.ldm_params
|
1868 |
+
autoencoder_model_config = Config.autoencoder_params
|
1869 |
+
train_config = Config.train_params
|
1870 |
+
|
1871 |
+
# Create the noise scheduler
|
1872 |
+
scheduler = LinearNoiseScheduler(num_timesteps=diffusion_config.num_timesteps,
|
1873 |
+
beta_start=diffusion_config.beta_start,
|
1874 |
+
beta_end=diffusion_config.beta_end)
|
1875 |
+
# scheduler = CosineNoiseScheduler(diffusion_config.num_timesteps)
|
1876 |
+
|
1877 |
+
im_dataset_cls = {
|
1878 |
+
'mnist': MnistDataset,
|
1879 |
+
'celebA': CelebDataset,
|
1880 |
+
'animeface': AnimeFaceDataset,
|
1881 |
+
'celebAhair': CelebHairDataset
|
1882 |
+
}.get(dataset_config.name)
|
1883 |
+
|
1884 |
+
im_dataset = im_dataset_cls(split='train',
|
1885 |
+
im_path=dataset_config.im_path,
|
1886 |
+
im_size=dataset_config.im_size,
|
1887 |
+
im_channels=dataset_config.im_channels,
|
1888 |
+
use_latents=True,
|
1889 |
+
latent_path=os.path.join(train_config.task_name,
|
1890 |
+
train_config.vqvae_latent_dir_name)
|
1891 |
+
)
|
1892 |
+
|
1893 |
+
data_loader = DataLoader(im_dataset,
|
1894 |
+
batch_size=train_config.ldm_batch_size,
|
1895 |
+
shuffle=True,
|
1896 |
+
num_workers=os.cpu_count(),
|
1897 |
+
pin_memory=True,
|
1898 |
+
drop_last=False,
|
1899 |
+
persistent_workers=True, pin_memory_device=device)
|
1900 |
+
|
1901 |
+
# Instantiate the model
|
1902 |
+
model = Unet(im_channels=autoencoder_model_config.z_channels,
|
1903 |
+
model_config=diffusion_model_config).to(device)
|
1904 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.ldm_ckpt_name)):
|
1905 |
+
print('Loaded ldm checkpoint')
|
1906 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.ldm_ckpt_name), map_location=device, weights_only=True))
|
1907 |
+
model.train()
|
1908 |
+
|
1909 |
+
# Load VAE ONLY if latents are not to be used or are missing
|
1910 |
+
if not im_dataset.use_latents:
|
1911 |
+
print('Loading vqvae model as latents not present')
|
1912 |
+
vae = VQVAE(im_channels=dataset_config.im_channels,
|
1913 |
+
model_config=autoencoder_model_config).to(device)
|
1914 |
+
vae.eval()
|
1915 |
+
# Load vae if found
|
1916 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
1917 |
+
train_config.vqvae_autoencoder_ckpt_name)):
|
1918 |
+
print('Loaded vae checkpoint')
|
1919 |
+
vae.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
1920 |
+
train_config.vqvae_autoencoder_ckpt_name),
|
1921 |
+
map_location=device))
|
1922 |
+
# Specify training parameters
|
1923 |
+
num_epochs = train_config.ldm_epochs
|
1924 |
+
optimizer = Adam(model.parameters(), lr=train_config.ldm_lr)
|
1925 |
+
criterion = torch.nn.MSELoss()
|
1926 |
+
|
1927 |
+
# Run training
|
1928 |
+
if not im_dataset.use_latents:
|
1929 |
+
for param in vae.parameters():
|
1930 |
+
param.requires_grad = False
|
1931 |
+
|
1932 |
+
for epoch_idx in range(num_epochs):
|
1933 |
+
losses = []
|
1934 |
+
for im in tqdm(data_loader):
|
1935 |
+
optimizer.zero_grad()
|
1936 |
+
im = im.float().to(device)
|
1937 |
+
if not im_dataset.use_latents:
|
1938 |
+
with torch.no_grad():
|
1939 |
+
im, _ = vae.encode(im)
|
1940 |
+
|
1941 |
+
# Sample random noise
|
1942 |
+
noise = torch.randn_like(im).to(device)
|
1943 |
+
|
1944 |
+
# Sample timestep
|
1945 |
+
t = torch.randint(0, diffusion_config.num_timesteps, (im.shape[0],)).to(device)
|
1946 |
+
|
1947 |
+
# Add noise to images according to timestep
|
1948 |
+
noisy_im = scheduler.add_noise(im, noise, t)
|
1949 |
+
noise_pred = model(noisy_im, t)
|
1950 |
+
|
1951 |
+
loss = criterion(noise_pred, noise)
|
1952 |
+
losses.append(loss.item())
|
1953 |
+
loss.backward()
|
1954 |
+
optimizer.step()
|
1955 |
+
print(f'Finished epoch:{epoch_idx + 1}/{num_epochs} | Loss : {np.mean(losses):.4f}')
|
1956 |
+
|
1957 |
+
torch.save(model.state_dict(), os.path.join(train_config.task_name,
|
1958 |
+
train_config.ldm_ckpt_name))
|
1959 |
+
|
1960 |
+
# Doing Inference
|
1961 |
+
infer(Config)
|
1962 |
+
|
1963 |
+
# Checking to conntinue training
|
1964 |
+
train_continue = yaml.safe_load(open("/home/taruntejaneurips23/Ashish/DDPM/_5_ldm_celeba.yaml", 'r'))
|
1965 |
+
train_continue = DotDict.from_dict(train_continue)
|
1966 |
+
if train_continue.training._continue_ == False:
|
1967 |
+
print('Training Stoped ...')
|
1968 |
+
break
|
1969 |
+
|
1970 |
+
print('Done Training ...')
|
1971 |
+
|
1972 |
+
# trainLDM(Config)
|
1973 |
+
|
1974 |
+
# import subprocess
|
1975 |
+
# subprocess.run(f'kill {os.getpid()}', shell=True, check=True)
|
1976 |
+
|
1977 |
+
def sample(model, scheduler, train_config, diffusion_model_config,
|
1978 |
+
autoencoder_model_config, diffusion_config, dataset_config, vae):
|
1979 |
+
r"""
|
1980 |
+
Sample stepwise by going backward one timestep at a time.
|
1981 |
+
We save the x0 predictions
|
1982 |
+
"""
|
1983 |
+
im_size = dataset_config.im_size // 2**sum(autoencoder_model_config.down_sample)
|
1984 |
+
xt = torch.randn((train_config.num_samples,
|
1985 |
+
autoencoder_model_config.z_channels,
|
1986 |
+
im_size,
|
1987 |
+
im_size)).to(device)
|
1988 |
+
|
1989 |
+
save_count = 0
|
1990 |
+
for i in tqdm(reversed(range(diffusion_config.num_timesteps)), total=diffusion_config.num_timesteps):
|
1991 |
+
# Get prediction of noise
|
1992 |
+
noise_pred = model(xt, torch.as_tensor(i).unsqueeze(0).to(device))
|
1993 |
+
|
1994 |
+
# Use scheduler to get x0 and xt-1
|
1995 |
+
xt, x0_pred = scheduler.sample_prev_timestep(xt, noise_pred, torch.as_tensor(i).to(device))
|
1996 |
+
|
1997 |
+
# Save x0
|
1998 |
+
#ims = torch.clamp(xt, -1., 1.).detach().cpu()
|
1999 |
+
if i == 0:
|
2000 |
+
# Decode ONLY the final iamge to save time
|
2001 |
+
ims = vae.decode(xt)
|
2002 |
+
else:
|
2003 |
+
ims = xt
|
2004 |
+
|
2005 |
+
ims = torch.clamp(ims, -1., 1.).detach().cpu()
|
2006 |
+
ims = (ims + 1) / 2
|
2007 |
+
grid = make_grid(ims, nrow=train_config.num_grid_rows)
|
2008 |
+
img = torchvision.transforms.ToPILImage()(grid)
|
2009 |
+
|
2010 |
+
if not os.path.exists(os.path.join(train_config.task_name, 'samples')):
|
2011 |
+
os.mkdir(os.path.join(train_config.task_name, 'samples'))
|
2012 |
+
img.save(os.path.join(train_config.task_name, 'samples', 'x0_{}.png'.format(i)))
|
2013 |
+
img.close()
|
2014 |
+
|
2015 |
+
|
2016 |
+
def infer(Config):
|
2017 |
+
|
2018 |
+
diffusion_config = Config.diffusion_params
|
2019 |
+
dataset_config = Config.dataset_params
|
2020 |
+
diffusion_model_config = Config.ldm_params
|
2021 |
+
autoencoder_model_config = Config.autoencoder_params
|
2022 |
+
train_config = Config.train_params
|
2023 |
+
|
2024 |
+
# Create the noise scheduler
|
2025 |
+
scheduler = LinearNoiseScheduler(num_timesteps=diffusion_config.num_timesteps,
|
2026 |
+
beta_start=diffusion_config.beta_start,
|
2027 |
+
beta_end=diffusion_config.beta_end)
|
2028 |
+
# scheduler = CosineNoiseScheduler(diffusion_config.num_timesteps)
|
2029 |
+
|
2030 |
+
model = Unet(im_channels=autoencoder_model_config.z_channels,
|
2031 |
+
model_config=diffusion_model_config).to(device)
|
2032 |
+
model.eval()
|
2033 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
2034 |
+
train_config.ldm_ckpt_name)):
|
2035 |
+
print('Loaded unet checkpoint')
|
2036 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
2037 |
+
train_config.ldm_ckpt_name),
|
2038 |
+
map_location=device))
|
2039 |
+
# Create output directories
|
2040 |
+
if not os.path.exists(train_config.task_name):
|
2041 |
+
os.mkdir(train_config.task_name)
|
2042 |
+
|
2043 |
+
vae = VQVAE(im_channels=dataset_config.im_channels,
|
2044 |
+
model_config=autoencoder_model_config).to(device)
|
2045 |
+
vae.eval()
|
2046 |
+
|
2047 |
+
# Load vae if found
|
2048 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
2049 |
+
train_config.vqvae_autoencoder_ckpt_name)):
|
2050 |
+
print('Loaded vae checkpoint')
|
2051 |
+
vae.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
2052 |
+
train_config.vqvae_autoencoder_ckpt_name),
|
2053 |
+
map_location=device), strict=True)
|
2054 |
+
with torch.no_grad():
|
2055 |
+
sample(model, scheduler, train_config, diffusion_model_config,
|
2056 |
+
autoencoder_model_config, diffusion_config, dataset_config, vae)
|
2057 |
+
|
2058 |
+
|
2059 |
+
|
2060 |
+
import argparse
|
2061 |
+
|
2062 |
+
def get_args():
|
2063 |
+
parser = argparse.ArgumentParser(description="Choose between train VAE, train LDM, or infer mode.")
|
2064 |
+
parser.add_argument('--mode', choices=['train_vae', 'train_ldm', 'infer'], default='infer',
|
2065 |
+
help="Mode to run: train_vae, train_ldm, or infer")
|
2066 |
+
return parser.parse_args()
|
2067 |
+
|
2068 |
+
args = get_args()
|
2069 |
+
|
2070 |
+
if args.mode == 'train_vae':
|
2071 |
+
trainVAE(Config)
|
2072 |
+
elif args.mode == 'train_ldm':
|
2073 |
+
trainLDM(Config)
|
2074 |
+
else:
|
2075 |
+
infer(Config)
|
2076 |
+
|
2077 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode train_vae
|
2078 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode train_ldm
|
2079 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode infer
|
2080 |
+
|
2081 |
+
|
2082 |
+
|
2083 |
+
|
2084 |
+
# import matplotlib.pyplot as plt
|
2085 |
+
# from PIL import Image
|
2086 |
+
# # plt.style.use('dark_background')
|
2087 |
+
# # %matplotlib inline
|
2088 |
+
|
2089 |
+
# plt.imshow(Image.open('/home/taruntejaneurips23/Ashish/DDPM/mnist_ldm/samples/x0_0.png'), cmap='gray')
|
2090 |
+
|
2091 |
+
# import matplotlib.pyplot as plt
|
2092 |
+
# import matplotlib.image as mpimg
|
2093 |
+
|
2094 |
+
# dataset_name = 'animeface_ldm'
|
2095 |
+
|
2096 |
+
# image_paths = [f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_0.png',
|
2097 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_1.png',
|
2098 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_5.png',
|
2099 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_100.png',
|
2100 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_200.png'
|
2101 |
+
# ]
|
2102 |
+
|
2103 |
+
# fig, axes = plt.subplots(1, len(image_paths), figsize=(15, 5))
|
2104 |
+
|
2105 |
+
# for i, path in enumerate(image_paths):
|
2106 |
+
# img = mpimg.imread(path)
|
2107 |
+
# axes[i].imshow(img)
|
2108 |
+
# axes[i].axis('off') # Hide axes
|
2109 |
+
# axes[i].set_title(f't = {path.split("/")[-1].split(".")[0].split("_")[-1]}')
|
2110 |
+
|
2111 |
+
# plt.tight_layout()
|
2112 |
+
# plt.show()
|
2113 |
+
|
2114 |
+
# ---------------------------------------------------------
|
2115 |
+
# ---------- T H E - E N D -------------------------------
|
2116 |
+
# ---------------------------------------------------------
|
2117 |
+
|
2118 |
+
|
2119 |
+
|
2120 |
+
def save_checkpoint(
|
2121 |
+
total_steps, epoch, model, discriminator,
|
2122 |
+
optimizer_d, optimizer_g, loss, checkpoint_path
|
2123 |
+
):
|
2124 |
+
checkpoint = {
|
2125 |
+
"total_steps": total_steps,
|
2126 |
+
"epoch": epoch,
|
2127 |
+
"model_state_dict": model.state_dict(),
|
2128 |
+
"discriminator_state_dict": discriminator.state_dict(),
|
2129 |
+
"optimizer_d_state_dict": optimizer_d.state_dict(),
|
2130 |
+
"optimizer_g_state_dict": optimizer_g.state_dict(),
|
2131 |
+
"loss": loss,
|
2132 |
+
}
|
2133 |
+
torch.save(checkpoint, checkpoint_path)
|
2134 |
+
print(f"Checkpoint saved after {total_steps} steps at epoch {epoch}")
|
2135 |
+
|
2136 |
+
|
2137 |
+
def load_checkpoint(
|
2138 |
+
checkpoint_path, model, discriminator, optimizer_d, optimizer_g
|
2139 |
+
):
|
2140 |
+
if os.path.exists(checkpoint_path):
|
2141 |
+
checkpoint = torch.load(checkpoint_path)
|
2142 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
2143 |
+
discriminator.load_state_dict(checkpoint["discriminator_state_dict"])
|
2144 |
+
optimizer_d.load_state_dict(checkpoint["optimizer_d_state_dict"])
|
2145 |
+
optimizer_g.load_state_dict(checkpoint["optimizer_g_state_dict"])
|
2146 |
+
total_steps = checkpoint["total_steps"]
|
2147 |
+
start_epoch = checkpoint["epoch"] + 1
|
2148 |
+
loss = checkpoint["loss"]
|
2149 |
+
print(f"Checkpoint loaded. Resuming from epoch {start_epoch}")
|
2150 |
+
return total_steps, start_epoch, loss
|
2151 |
+
else:
|
2152 |
+
print("No checkpoint found. Starting from scratch.")
|
2153 |
+
return 0, 0, None
|
2154 |
+
|
2155 |
+
|
2156 |
+
def trainVAE(Config, dataloader):
|
2157 |
+
"""
|
2158 |
+
Trains a VQVAE model using the provided configuration and data loader.
|
2159 |
+
"""
|
2160 |
+
# --- Configurations ----------------------------------------------------
|
2161 |
+
dataset_config = Config.dataset_params
|
2162 |
+
autoencoder_config = Config.autoencoder_params
|
2163 |
+
train_config = Config.train_params
|
2164 |
+
|
2165 |
+
seed = train_config.seed
|
2166 |
+
torch.manual_seed(seed)
|
2167 |
+
np.random.seed(seed)
|
2168 |
+
random.seed(seed)
|
2169 |
+
if device == "cuda":
|
2170 |
+
torch.cuda.manual_seed_all(seed)
|
2171 |
+
|
2172 |
+
# --- Model Initialization ----------------------------------------------
|
2173 |
+
model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)
|
2174 |
+
discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)
|
2175 |
+
|
2176 |
+
# --- Load Checkpoints --------------------------------------------------
|
2177 |
+
checkpoint_path = os.path.join(train_config.task_name, "vqvae_checkpoint.pth")
|
2178 |
+
total_steps, start_epoch, _ = load_checkpoint(checkpoint_path, model, discriminator, None, None)
|
2179 |
+
|
2180 |
+
# --- Loss Function Initialization --------------------------------------
|
2181 |
+
recon_criterion = torch.nn.MSELoss()
|
2182 |
+
lpips_model = LPIPS().eval().to(device)
|
2183 |
+
disc_criterion = torch.nn.MSELoss()
|
2184 |
+
|
2185 |
+
# --- Optimizer Initialization ------------------------------------------
|
2186 |
+
optimizer_d = torch.optim.AdamW(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
2187 |
+
optimizer_g = torch.optim.AdamW(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
2188 |
+
|
2189 |
+
num_epochs = train_config.autoencoder_epochs
|
2190 |
+
acc_steps = train_config.autoencoder_acc_steps
|
2191 |
+
image_save_steps = train_config.autoencoder_img_save_steps
|
2192 |
+
img_save_count = 0
|
2193 |
+
|
2194 |
+
# Create necessary directories
|
2195 |
+
os.makedirs(os.path.join(train_config.task_name, "vqvae_autoencoder_samples"), exist_ok=True)
|
2196 |
+
|
2197 |
+
# --- Training Loop -----------------------------------------------------
|
2198 |
+
for epoch_idx in range(start_epoch, num_epochs):
|
2199 |
+
recon_losses, codebook_losses, perceptual_losses, disc_losses, gen_losses = [], [], [], [], []
|
2200 |
+
|
2201 |
+
for images in dataloader:
|
2202 |
+
total_steps += 1
|
2203 |
+
images = images.to(device)
|
2204 |
+
|
2205 |
+
# Forward pass
|
2206 |
+
model_output = model(images)
|
2207 |
+
output, z, quantize_losses = model_output
|
2208 |
+
|
2209 |
+
# Save generated images periodically
|
2210 |
+
if total_steps % image_save_steps == 0 or total_steps == 1:
|
2211 |
+
sample_size = min(8, images.shape[0])
|
2212 |
+
save_output = torch.clamp(output[:sample_size], -1.0, 1.0).detach().cpu()
|
2213 |
+
save_output = (save_output + 1) / 2
|
2214 |
+
save_input = ((images[:sample_size] + 1) / 2).detach().cpu()
|
2215 |
+
|
2216 |
+
grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)
|
2217 |
+
img = tv.transforms.ToPILImage()(grid)
|
2218 |
+
img.save(
|
2219 |
+
os.path.join(
|
2220 |
+
train_config.task_name,
|
2221 |
+
"vqvae_autoencoder_samples",
|
2222 |
+
f"current_autoencoder_sample_{img_save_count}.png",
|
2223 |
+
)
|
2224 |
+
)
|
2225 |
+
img_save_count += 1
|
2226 |
+
img.close()
|
2227 |
+
|
2228 |
+
# Reconstruction Loss
|
2229 |
+
recon_loss = recon_criterion(output, images) / acc_steps
|
2230 |
+
recon_losses.append(recon_loss.item())
|
2231 |
+
|
2232 |
+
# Generator Loss
|
2233 |
+
codebook_loss = train_config.codebook_weight * quantize_losses["codebook_loss"] / acc_steps
|
2234 |
+
perceptual_loss = train_config.perceptual_weight * lpips_model(output, images).mean() / acc_steps
|
2235 |
+
g_loss = recon_loss + codebook_loss + perceptual_loss
|
2236 |
+
|
2237 |
+
if total_steps > train_config.disc_start:
|
2238 |
+
disc_fake_pred = discriminator(output)
|
2239 |
+
gen_loss = train_config.disc_weight * disc_criterion(
|
2240 |
+
disc_fake_pred, torch.ones_like(disc_fake_pred)
|
2241 |
+
) / acc_steps
|
2242 |
+
g_loss += gen_loss
|
2243 |
+
gen_losses.append(gen_loss.item())
|
2244 |
+
|
2245 |
+
g_loss.backward()
|
2246 |
+
optimizer_g.step()
|
2247 |
+
optimizer_g.zero_grad()
|
2248 |
+
|
2249 |
+
# Discriminator Loss
|
2250 |
+
if total_steps > train_config.disc_start:
|
2251 |
+
disc_fake_pred = discriminator(output.detach())
|
2252 |
+
disc_real_pred = discriminator(images)
|
2253 |
+
disc_fake_loss = disc_criterion(
|
2254 |
+
disc_fake_pred, torch.zeros_like(disc_fake_pred)
|
2255 |
+
) / acc_steps
|
2256 |
+
disc_real_loss = disc_criterion(
|
2257 |
+
disc_real_pred, torch.ones_like(disc_real_pred)
|
2258 |
+
) / acc_steps
|
2259 |
+
disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2
|
2260 |
+
disc_loss.backward()
|
2261 |
+
optimizer_d.step()
|
2262 |
+
optimizer_d.zero_grad()
|
2263 |
+
disc_losses.append(disc_loss.item())
|
2264 |
+
|
2265 |
+
# Save checkpoint after each epoch
|
2266 |
+
save_checkpoint(total_steps, epoch_idx, model, discriminator, optimizer_d, optimizer_g, recon_losses, checkpoint_path)
|
2267 |
+
|
2268 |
+
# Print epoch summary
|
2269 |
+
print(
|
2270 |
+
f"Epoch {epoch_idx + 1}/{num_epochs} | Recon Loss: {np.mean(recon_losses):.4f} | "
|
2271 |
+
f"Perceptual Loss: {np.mean(perceptual_losses):.4f} | Codebook Loss: {np.mean(codebook_losses):.4f} | "
|
2272 |
+
f"G Loss: {np.mean(gen_losses):.4f} | D Loss: {np.mean(disc_losses):.4f}"
|
2273 |
+
)
|
LDM/scripts/_1_Lpips.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY ( L P I P S )
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : January 18, 2025
|
6 |
+
# Description: LPIPS essentially computes the similarity between the
|
7 |
+
# activations of two image patches for some pre-defined network.
|
8 |
+
# This measure has been shown to match human perception well.
|
9 |
+
# A low LPIPS score means that image patches are perceptual similar.
|
10 |
+
# ==================================================================
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class vgg16(torch.nn.Module):
|
15 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
16 |
+
super(vgg16, self).__init__()
|
17 |
+
vgg_pretrained_features = torchvision.models.vgg16(
|
18 |
+
weights=torchvision.models.VGG16_Weights.IMAGENET1K_V1
|
19 |
+
).features
|
20 |
+
self.slice1 = torch.nn.Sequential()
|
21 |
+
self.slice2 = torch.nn.Sequential()
|
22 |
+
self.slice3 = torch.nn.Sequential()
|
23 |
+
self.slice4 = torch.nn.Sequential()
|
24 |
+
self.slice5 = torch.nn.Sequential()
|
25 |
+
self.N_slices = 5
|
26 |
+
for x in range(4):
|
27 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
28 |
+
for x in range(4, 9):
|
29 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
30 |
+
for x in range(9, 16):
|
31 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
32 |
+
for x in range(16, 23):
|
33 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
34 |
+
for x in range(23, 30):
|
35 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
36 |
+
|
37 |
+
# Freeze vgg model
|
38 |
+
if not requires_grad:
|
39 |
+
for param in self.parameters():
|
40 |
+
param.requires_grad = False
|
41 |
+
|
42 |
+
def forward(self, X):
|
43 |
+
# Return output of vgg features
|
44 |
+
h = self.slice1(X)
|
45 |
+
h_relu1_2 = h
|
46 |
+
h = self.slice2(h)
|
47 |
+
h_relu2_2 = h
|
48 |
+
h = self.slice3(h)
|
49 |
+
h_relu3_3 = h
|
50 |
+
h = self.slice4(h)
|
51 |
+
h_relu4_3 = h
|
52 |
+
h = self.slice5(h)
|
53 |
+
h_relu5_3 = h
|
54 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
55 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
56 |
+
return out
|
LDM/scripts/config.yaml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_params:
|
2 |
+
im_path: "/home/taruntejaneurips23/Ashish/datasets/CelebA/img_align_celeba/img_align_celeba"
|
3 |
+
im_channels: 3
|
4 |
+
im_size: 28
|
5 |
+
|
6 |
+
diffusion_params:
|
7 |
+
num_timesteps: 1000
|
8 |
+
beta_start: 0.0015
|
9 |
+
beta_end: 0.0195
|
10 |
+
|
11 |
+
ldm_params:
|
12 |
+
down_channels: [128, 256, 256, 256]
|
13 |
+
mid_channels: [256, 256]
|
14 |
+
down_sample: [False, False, False]
|
15 |
+
attn_down: [True, True, True]
|
16 |
+
time_emb_dim: 256
|
17 |
+
norm_channels: 32
|
18 |
+
num_heads: 16
|
19 |
+
conv_out_channels: 128
|
20 |
+
num_down_layers: 2
|
21 |
+
num_mid_layers: 2
|
22 |
+
num_up_layers: 2
|
23 |
+
|
24 |
+
autoencoder_params:
|
25 |
+
z_channels: 3
|
26 |
+
codebook_size: 20
|
27 |
+
down_channels: [32, 64, 128]
|
28 |
+
mid_channels: [128, 128]
|
29 |
+
down_sample: [True, True]
|
30 |
+
attn_down: [False, False]
|
31 |
+
norm_channels: 32
|
32 |
+
num_heads: 16
|
33 |
+
num_down_layers: 2
|
34 |
+
num_mid_layers: 2
|
35 |
+
num_up_layers: 2
|
36 |
+
|
37 |
+
train_params:
|
38 |
+
seed: 4242
|
39 |
+
task_name: 'MnistLDM'
|
40 |
+
ldm_batch_size: 9
|
41 |
+
autoencoder_batch_size: 32
|
42 |
+
disc_start: 1000
|
43 |
+
disc_weight: 0.5
|
44 |
+
codebook_weight: 1
|
45 |
+
commitment_beta: 0.2
|
46 |
+
perceptual_weight: 1
|
47 |
+
kl_weight: 0.000005
|
48 |
+
ldm_epochs: 10
|
49 |
+
autoencoder_epochs: 10
|
50 |
+
num_samples: 9
|
51 |
+
num_grid_rows: 3
|
52 |
+
ldm_lr: 0.00001
|
53 |
+
autoencoder_lr: 0.0001
|
54 |
+
autoencoder_acc_steps: 1
|
55 |
+
autoencoder_img_save_steps: 8
|
56 |
+
save_latents: True
|
57 |
+
vqvae_latent_dir_name: 'vqvae_latents'
|
58 |
+
ldm_ckpt_name: 'ddpm_ckpt.pth'
|
59 |
+
vqvae_autoencoder_ckpt_name: 'vqvae_autoencoder_ckpt.pth'
|
60 |
+
vqvae_discriminator_ckpt_name: 'vqvae_discriminator_ckpt.pth'
|
61 |
+
checkpoint_dir: './'
|
62 |
+
|
63 |
+
training:
|
64 |
+
_continue_: True
|
65 |
+
|
Vaani/39448.err
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
+ '[' -z '' ']'
|
2 |
+
+ case "$-" in
|
3 |
+
+ __lmod_vx=x
|
4 |
+
+ '[' -n x ']'
|
5 |
+
+ set +x
|
6 |
+
Shell debugging temporarily silenced: export LMOD_SH_DBG_ON=1 for this output (/usr/share/lmod/lmod/init/bash)
|
7 |
+
Shell debugging restarted
|
8 |
+
+ unset __lmod_vx
|
9 |
+
+ cd
|
10 |
+
+ module purge
|
11 |
+
+ '[' -z '' ']'
|
12 |
+
+ case "$-" in
|
13 |
+
+ __lmod_sh_dbg=x
|
14 |
+
+ '[' -n x ']'
|
15 |
+
+ set +x
|
16 |
+
Shell debugging temporarily silenced: export LMOD_SH_DBG_ON=1 for Lmod's output
|
17 |
+
Shell debugging restarted
|
18 |
+
+ unset __lmod_sh_dbg
|
19 |
+
+ return 0
|
20 |
+
+ module load miniconda
|
21 |
+
+ '[' -z '' ']'
|
22 |
+
+ case "$-" in
|
23 |
+
+ __lmod_sh_dbg=x
|
24 |
+
+ '[' -n x ']'
|
25 |
+
+ set +x
|
26 |
+
Shell debugging temporarily silenced: export LMOD_SH_DBG_ON=1 for Lmod's output
|
27 |
+
Shell debugging restarted
|
28 |
+
+ unset __lmod_sh_dbg
|
29 |
+
+ return 0
|
30 |
+
+ source /home/apps/miniconda3/etc/profile.d/conda.sh
|
31 |
+
++ export CONDA_EXE=/home/apps/miniconda3/bin/conda
|
32 |
+
++ CONDA_EXE=/home/apps/miniconda3/bin/conda
|
33 |
+
++ export _CE_M=
|
34 |
+
++ _CE_M=
|
35 |
+
++ export _CE_CONDA=
|
36 |
+
++ _CE_CONDA=
|
37 |
+
++ export CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
38 |
+
++ CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
39 |
+
++ '[' -z x ']'
|
40 |
+
+ conda env list
|
41 |
+
+ local cmd=env
|
42 |
+
+ case "$cmd" in
|
43 |
+
+ __conda_exe env list
|
44 |
+
+ '[' -n '' ']'
|
45 |
+
+ /home/apps/miniconda3/bin/conda env list
|
46 |
+
+ conda activate aku_env
|
47 |
+
+ local cmd=activate
|
48 |
+
+ case "$cmd" in
|
49 |
+
+ __conda_activate activate aku_env
|
50 |
+
+ '[' -n '' ']'
|
51 |
+
+ local ask_conda
|
52 |
+
++ PS1=
|
53 |
+
++ __conda_exe shell.posix activate aku_env
|
54 |
+
++ '[' -n '' ']'
|
55 |
+
++ /home/apps/miniconda3/bin/conda shell.posix activate aku_env
|
56 |
+
+ ask_conda='unset _CE_M
|
57 |
+
unset _CE_CONDA
|
58 |
+
PS1='\''(aku_env) '\''
|
59 |
+
export PATH='\''/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand'\''
|
60 |
+
export CONDA_PREFIX='\''/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env'\''
|
61 |
+
export CONDA_SHLVL='\''2'\''
|
62 |
+
export CONDA_DEFAULT_ENV='\''aku_env'\''
|
63 |
+
export CONDA_PROMPT_MODIFIER='\''(aku_env) '\''
|
64 |
+
export CONDA_PREFIX_1='\''/home/apps/miniconda3'\''
|
65 |
+
export CONDA_EXE='\''/home/apps/miniconda3/bin/conda'\''
|
66 |
+
export CONDA_PYTHON_EXE='\''/home/apps/miniconda3/bin/python'\''
|
67 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/gdal-activate.sh"
|
68 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/geotiff-activate.sh"
|
69 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libarrow_activate.sh"
|
70 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libglib_activate.sh"
|
71 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libpdal-core_activate.sh"
|
72 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libxml2_activate.sh"
|
73 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/pdal-python-activate.sh"
|
74 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/proj4-activate.sh"'
|
75 |
+
+ eval 'unset _CE_M
|
76 |
+
unset _CE_CONDA
|
77 |
+
PS1='\''(aku_env) '\''
|
78 |
+
export PATH='\''/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand'\''
|
79 |
+
export CONDA_PREFIX='\''/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env'\''
|
80 |
+
export CONDA_SHLVL='\''2'\''
|
81 |
+
export CONDA_DEFAULT_ENV='\''aku_env'\''
|
82 |
+
export CONDA_PROMPT_MODIFIER='\''(aku_env) '\''
|
83 |
+
export CONDA_PREFIX_1='\''/home/apps/miniconda3'\''
|
84 |
+
export CONDA_EXE='\''/home/apps/miniconda3/bin/conda'\''
|
85 |
+
export CONDA_PYTHON_EXE='\''/home/apps/miniconda3/bin/python'\''
|
86 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/gdal-activate.sh"
|
87 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/geotiff-activate.sh"
|
88 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libarrow_activate.sh"
|
89 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libglib_activate.sh"
|
90 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libpdal-core_activate.sh"
|
91 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libxml2_activate.sh"
|
92 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/pdal-python-activate.sh"
|
93 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/proj4-activate.sh"'
|
94 |
+
++ unset _CE_M
|
95 |
+
++ unset _CE_CONDA
|
96 |
+
++ PS1='(aku_env) '
|
97 |
+
++ export PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand
|
98 |
+
++ PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand
|
99 |
+
++ export CONDA_PREFIX=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
100 |
+
++ CONDA_PREFIX=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
101 |
+
++ export CONDA_SHLVL=2
|
102 |
+
++ CONDA_SHLVL=2
|
103 |
+
++ export CONDA_DEFAULT_ENV=aku_env
|
104 |
+
++ CONDA_DEFAULT_ENV=aku_env
|
105 |
+
++ export 'CONDA_PROMPT_MODIFIER=(aku_env) '
|
106 |
+
++ CONDA_PROMPT_MODIFIER='(aku_env) '
|
107 |
+
++ export CONDA_PREFIX_1=/home/apps/miniconda3
|
108 |
+
++ CONDA_PREFIX_1=/home/apps/miniconda3
|
109 |
+
++ export CONDA_EXE=/home/apps/miniconda3/bin/conda
|
110 |
+
++ CONDA_EXE=/home/apps/miniconda3/bin/conda
|
111 |
+
++ export CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
112 |
+
++ CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
113 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/gdal-activate.sh
|
114 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal ']'
|
115 |
+
+++ export _CONDA_SET_GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
116 |
+
+++ _CONDA_SET_GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
117 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins ']'
|
118 |
+
+++ export _CONDA_SET_GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
119 |
+
+++ _CONDA_SET_GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
120 |
+
+++ '[' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal ']'
|
121 |
+
+++ export GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
122 |
+
+++ GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
123 |
+
+++ export GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
124 |
+
+++ GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
125 |
+
+++ '[' '!' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins ']'
|
126 |
+
+++ export CPL_ZIP_ENCODING=UTF-8
|
127 |
+
+++ CPL_ZIP_ENCODING=UTF-8
|
128 |
+
+++ '[' -n '4.4.20(1)-release' ']'
|
129 |
+
+++ '[' -f /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/bash-completion/completions/gdalinfo ']'
|
130 |
+
+++ source /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/bash-completion/completions/gdalinfo
|
131 |
+
++++ function_exists _get_comp_words_by_ref
|
132 |
+
++++ declare -f -F _get_comp_words_by_ref
|
133 |
+
++++ return 1
|
134 |
+
++++ return 0
|
135 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/geotiff-activate.sh
|
136 |
+
+++ '[' -n '' ']'
|
137 |
+
+++ '[' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/epsg_csv ']'
|
138 |
+
+++ '[' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/Library/share/epsg_csv ']'
|
139 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libarrow_activate.sh
|
140 |
+
+++ '[' -n '' ']'
|
141 |
+
+++ _la_log 'Beginning libarrow activation.'
|
142 |
+
+++ '[' '' = 1 ']'
|
143 |
+
+++ _la_gdb_prefix=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load
|
144 |
+
+++ '[' '!' -w /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load ']'
|
145 |
+
+++ _la_placeholder=replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX
|
146 |
+
+++ _la_symlink_dir=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
147 |
+
+++ _la_orig_install_dir=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib
|
148 |
+
+++ _la_log ' _la_gdb_prefix: /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load'
|
149 |
+
+++ '[' '' = 1 ']'
|
150 |
+
+++ _la_log ' _la_placeholder: replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX'
|
151 |
+
+++ '[' '' = 1 ']'
|
152 |
+
+++ _la_log ' _la_symlink_dir: /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib'
|
153 |
+
+++ '[' '' = 1 ']'
|
154 |
+
+++ _la_log ' _la_orig_install_dir: /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib'
|
155 |
+
+++ '[' '' = 1 ']'
|
156 |
+
+++ _la_log ' content of that folder:'
|
157 |
+
+++ '[' '' = 1 ']'
|
158 |
+
++++ ls -al /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib
|
159 |
+
++++ sed 's/^/ /'
|
160 |
+
+++ _la_log ' total 12
|
161 |
+
drwxr-sr-x 2 23m1521 ai-at-ieor 4096 Mar 23 19:37 .
|
162 |
+
drwxr-sr-x 3 23m1521 ai-at-ieor 4096 Mar 22 19:59 ..
|
163 |
+
-rw-r--r-- 1 23m1521 ai-at-ieor 992 Mar 23 19:36 libarrow.so.1900.1.0-gdb.py'
|
164 |
+
+++ '[' '' = 1 ']'
|
165 |
+
+++ for _la_target in "$_la_orig_install_dir/"*.py
|
166 |
+
+++ '[' '!' -e /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib/libarrow.so.1900.1.0-gdb.py ']'
|
167 |
+
++++ basename /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib/libarrow.so.1900.1.0-gdb.py
|
168 |
+
+++ _la_symlink=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/libarrow.so.1900.1.0-gdb.py
|
169 |
+
+++ _la_log ' _la_target: /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib/libarrow.so.1900.1.0-gdb.py'
|
170 |
+
+++ '[' '' = 1 ']'
|
171 |
+
+++ _la_log ' _la_symlink: /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/libarrow.so.1900.1.0-gdb.py'
|
172 |
+
+++ '[' '' = 1 ']'
|
173 |
+
+++ '[' -L /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/libarrow.so.1900.1.0-gdb.py ']'
|
174 |
+
++++ readlink /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load//home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/libarrow.so.1900.1.0-gdb.py
|
175 |
+
+++ '[' /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib/libarrow.so.1900.1.0-gdb.py = /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdb/auto-load/replace_this_section_with_absolute_slashed_path_to_CONDA_PREFIX/lib/libarrow.so.1900.1.0-gdb.py ']'
|
176 |
+
+++ _la_log 'symlink $_la_symlink already exists and points to $_la_target, skipping.'
|
177 |
+
+++ '[' '' = 1 ']'
|
178 |
+
+++ continue
|
179 |
+
+++ _la_log 'Libarrow activation complete.'
|
180 |
+
+++ '[' '' = 1 ']'
|
181 |
+
+++ unset _la_gdb_prefix
|
182 |
+
+++ unset _la_log
|
183 |
+
+++ unset _la_orig_install_dir
|
184 |
+
+++ unset _la_placeholder
|
185 |
+
+++ unset _la_symlink
|
186 |
+
+++ unset _la_symlink_dir
|
187 |
+
+++ unset _la_target
|
188 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libglib_activate.sh
|
189 |
+
+++ export GSETTINGS_SCHEMA_DIR_CONDA_BACKUP=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
190 |
+
+++ GSETTINGS_SCHEMA_DIR_CONDA_BACKUP=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
191 |
+
+++ export GSETTINGS_SCHEMA_DIR=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
192 |
+
+++ GSETTINGS_SCHEMA_DIR=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
193 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libpdal-core_activate.sh
|
194 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal ']'
|
195 |
+
+++ export _CONDA_SET_PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
196 |
+
+++ _CONDA_SET_PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
197 |
+
+++ export PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
198 |
+
+++ PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
199 |
+
+++ '[' '!' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib ']'
|
200 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/libxml2_activate.sh
|
201 |
+
+++ test -n 'file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
202 |
+
+++ xml_catalog_files_libxml2='file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
203 |
+
+++ XML_CATALOG_FILES='file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog '
|
204 |
+
+++ conda_catalog_files=
|
205 |
+
+++ ifs_libxml2='
|
206 |
+
'
|
207 |
+
+++ IFS=' '
|
208 |
+
+++ rem=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
209 |
+
+++ for pre in ${rem}
|
210 |
+
+++ test '' = /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
211 |
+
+++ conda_catalog_files=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
212 |
+
+++ rem=
|
213 |
+
+++ IFS='
|
214 |
+
'
|
215 |
+
+++ conda_catalog_files='file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
216 |
+
+++ export 'XML_CATALOG_FILES=file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
217 |
+
+++ XML_CATALOG_FILES='file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
218 |
+
+++ unset conda_catalog_files ifs_libxml2 rem
|
219 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/pdal-python-activate.sh
|
220 |
+
+++ [[ -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib ]]
|
221 |
+
+++ export _CONDA_SET_PDAL_PYTHON_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
222 |
+
+++ _CONDA_SET_PDAL_PYTHON_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
223 |
+
+++ export PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
224 |
+
+++ PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
225 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/activate.d/proj4-activate.sh
|
226 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj ']'
|
227 |
+
+++ export _CONDA_SET_PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
228 |
+
+++ _CONDA_SET_PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
229 |
+
+++ '[' -d /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj ']'
|
230 |
+
+++ export PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
231 |
+
+++ PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
232 |
+
+++ '[' -f /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj/copyright_and_licenses.csv ']'
|
233 |
+
+++ export PROJ_NETWORK=ON
|
234 |
+
+++ PROJ_NETWORK=ON
|
235 |
+
+ __conda_hashr
|
236 |
+
+ '[' -n '' ']'
|
237 |
+
+ '[' -n '' ']'
|
238 |
+
+ hash -r
|
239 |
+
+ python /home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/image_data_metadata.py
|
240 |
+
|
241 |
+
+ conda deactivate
|
242 |
+
+ local cmd=deactivate
|
243 |
+
+ case "$cmd" in
|
244 |
+
+ __conda_activate deactivate
|
245 |
+
+ '[' -n '' ']'
|
246 |
+
+ local ask_conda
|
247 |
+
++ PS1='(aku_env) '
|
248 |
+
++ __conda_exe shell.posix deactivate
|
249 |
+
++ '[' -n '' ']'
|
250 |
+
++ /home/apps/miniconda3/bin/conda shell.posix deactivate
|
251 |
+
+ ask_conda='export PATH='\''/home/apps/miniconda3/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand'\''
|
252 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/proj4-deactivate.sh"
|
253 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/pdal-python-deactivate.sh"
|
254 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libxml2_deactivate.sh"
|
255 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libpdal-core_deactivate.sh"
|
256 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libglib_deactivate.sh"
|
257 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/geotiff-deactivate.sh"
|
258 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/gdal-deactivate.sh"
|
259 |
+
unset CONDA_PREFIX_1
|
260 |
+
unset _CE_M
|
261 |
+
unset _CE_CONDA
|
262 |
+
PS1='\''(base) '\''
|
263 |
+
export CONDA_PREFIX='\''/home/apps/miniconda3'\''
|
264 |
+
export CONDA_SHLVL='\''1'\''
|
265 |
+
export CONDA_DEFAULT_ENV='\''base'\''
|
266 |
+
export CONDA_PROMPT_MODIFIER='\''(base) '\''
|
267 |
+
export CONDA_EXE='\''/home/apps/miniconda3/bin/conda'\''
|
268 |
+
export CONDA_PYTHON_EXE='\''/home/apps/miniconda3/bin/python'\'''
|
269 |
+
+ eval 'export PATH='\''/home/apps/miniconda3/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand'\''
|
270 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/proj4-deactivate.sh"
|
271 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/pdal-python-deactivate.sh"
|
272 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libxml2_deactivate.sh"
|
273 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libpdal-core_deactivate.sh"
|
274 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libglib_deactivate.sh"
|
275 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/geotiff-deactivate.sh"
|
276 |
+
. "/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/gdal-deactivate.sh"
|
277 |
+
unset CONDA_PREFIX_1
|
278 |
+
unset _CE_M
|
279 |
+
unset _CE_CONDA
|
280 |
+
PS1='\''(base) '\''
|
281 |
+
export CONDA_PREFIX='\''/home/apps/miniconda3'\''
|
282 |
+
export CONDA_SHLVL='\''1'\''
|
283 |
+
export CONDA_DEFAULT_ENV='\''base'\''
|
284 |
+
export CONDA_PROMPT_MODIFIER='\''(base) '\''
|
285 |
+
export CONDA_EXE='\''/home/apps/miniconda3/bin/conda'\''
|
286 |
+
export CONDA_PYTHON_EXE='\''/home/apps/miniconda3/bin/python'\'''
|
287 |
+
++ export PATH=/home/apps/miniconda3/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand
|
288 |
+
++ PATH=/home/apps/miniconda3/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/cli/servers/Stable-ddc367ed5c8936efe395cffeec279b04ffd7db78/server/bin/remote-cli:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/bin:/home/apps/MLDL/DL-CondaPy3/condabin:/home/IITB/ai-at-ieor/23m1521/.local/bin:/home/IITB/ai-at-ieor/23m1521/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/var/lib/snapd/snap/bin:/home/IITB/ai-at-ieor/23m1521/.vscode-server/extensions/ms-python.debugpy-2025.4.1-linux-x64/bundled/scripts/noConfigScripts:/home/IITB/ai-at-ieor/23m1521/.vscode-server/data/User/globalStorage/github.copilot-chat/debugCommand
|
289 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/proj4-deactivate.sh
|
290 |
+
+++ unset PROJ_DATA
|
291 |
+
+++ unset PROJ_NETWORK
|
292 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj ']'
|
293 |
+
+++ export PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
294 |
+
+++ PROJ_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/proj
|
295 |
+
+++ unset _CONDA_SET_PROJ_DATA
|
296 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/pdal-python-deactivate.sh
|
297 |
+
+++ [[ -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib ]]
|
298 |
+
+++ export PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
299 |
+
+++ PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib
|
300 |
+
+++ unset _CONDA_SET_PDAL_PYTHON_DRIVER_PATH
|
301 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libxml2_deactivate.sh
|
302 |
+
+++ test -n 'file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
303 |
+
+++ export 'XML_CATALOG_FILES=file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
304 |
+
+++ XML_CATALOG_FILES='file:///home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/xml/catalog file:///etc/xml/catalog'
|
305 |
+
+++ unset xml_catalog_files_libxml2
|
306 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libpdal-core_deactivate.sh
|
307 |
+
+++ unset PDAL_DRIVER_PATH
|
308 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal ']'
|
309 |
+
+++ export PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
310 |
+
+++ PDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib:/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/python3.12/site-packages/pdal
|
311 |
+
+++ unset _CONDA_SET_PDAL_DRIVER_PATH
|
312 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/libglib_deactivate.sh
|
313 |
+
+++ export GSETTINGS_SCHEMA_DIR=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
314 |
+
+++ GSETTINGS_SCHEMA_DIR=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas
|
315 |
+
+++ unset GSETTINGS_SCHEMA_DIR_CONDA_BACKUP
|
316 |
+
+++ '[' -z /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/glib-2.0/schemas ']'
|
317 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/geotiff-deactivate.sh
|
318 |
+
+++ unset GEOTIFF_CSV
|
319 |
+
+++ '[' -n '' ']'
|
320 |
+
++ . /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/etc/conda/deactivate.d/gdal-deactivate.sh
|
321 |
+
+++ unset GDAL_DATA
|
322 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal ']'
|
323 |
+
+++ export GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
324 |
+
+++ GDAL_DATA=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/share/gdal
|
325 |
+
+++ unset _CONDA_SET_GDAL_DATA
|
326 |
+
+++ unset GDAL_DRIVER_PATH
|
327 |
+
+++ '[' -n /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins ']'
|
328 |
+
+++ export GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
329 |
+
+++ GDAL_DRIVER_PATH=/home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env/lib/gdalplugins
|
330 |
+
+++ unset _CONDA_SET_GDAL_DRIVER_PATH
|
331 |
+
+++ unset CPL_ZIP_ENCODING
|
332 |
+
++ unset CONDA_PREFIX_1
|
333 |
+
++ unset _CE_M
|
334 |
+
++ unset _CE_CONDA
|
335 |
+
++ PS1='(base) '
|
336 |
+
++ export CONDA_PREFIX=/home/apps/miniconda3
|
337 |
+
++ CONDA_PREFIX=/home/apps/miniconda3
|
338 |
+
++ export CONDA_SHLVL=1
|
339 |
+
++ CONDA_SHLVL=1
|
340 |
+
++ export CONDA_DEFAULT_ENV=base
|
341 |
+
++ CONDA_DEFAULT_ENV=base
|
342 |
+
++ export 'CONDA_PROMPT_MODIFIER=(base) '
|
343 |
+
++ CONDA_PROMPT_MODIFIER='(base) '
|
344 |
+
++ export CONDA_EXE=/home/apps/miniconda3/bin/conda
|
345 |
+
++ CONDA_EXE=/home/apps/miniconda3/bin/conda
|
346 |
+
++ export CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
347 |
+
++ CONDA_PYTHON_EXE=/home/apps/miniconda3/bin/python
|
348 |
+
+ __conda_hashr
|
349 |
+
+ '[' -n '' ']'
|
350 |
+
+ '[' -n '' ']'
|
351 |
+
+ hash -r
|
Vaani/39448.out
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# conda environments:
|
3 |
+
#
|
4 |
+
aku_env /home/IITB/ai-at-ieor/23m1521/.conda/envs/aku_env
|
5 |
+
cuml /home/IITB/ai-at-ieor/23m1521/.conda/envs/cuml
|
6 |
+
base * /home/apps/miniconda3
|
7 |
+
SCA_deepspeed /home/apps/miniconda3/envs/SCA_deepspeed
|
8 |
+
llama2 /home/apps/miniconda3/envs/llama2
|
9 |
+
tutorial /home/apps/miniconda3/envs/tutorial
|
10 |
+
|
11 |
+
Results saved to /home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/image_dimensions_count.csv
|
Vaani/IISc_VaaniProject_M_AP_Anantpur_00014520_1544240000_APATSR_190315_1880_16300.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903b573851ab7767554050c6b238964660511571352084706283a2db802ffb35
|
3 |
+
size 462726
|
Vaani/LDM/__init__.py
ADDED
File without changes
|
Vaani/LDM/notebooks/Vaani-subplot.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-15_16.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-30_16.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-4.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-5.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-6_16.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/Vaani_VQVAE_Recon_Images/reconstructed_images_EP-8_16.png
ADDED
![]() |
Git LFS Details
|
Vaani/LDM/notebooks/_1_Main.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Vaani/LDM/notebooks/_2_Rough-LPIPS.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Vaani/LDM/scripts/AE-training.log
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/3 [00:00<?, ?it/s]
|
|
|
1 |
0%| | 0/32201 [00:00<?, ?it/s][A
|
|
|
2 |
0%| | 1/32201 [00:04<42:33:43, 4.76s/it][A
|
|
|
3 |
0%| | 2/32201 [00:05<19:42:29, 2.20s/it][A
|
|
|
4 |
0%| | 3/32201 [00:05<13:55:59, 1.56s/it][A
|
|
|
5 |
0%| | 4/32201 [00:06<11:09:27, 1.25s/it][A
|
|
|
6 |
0%| | 5/32201 [00:07<9:39:35, 1.08s/it] [A
|
|
|
7 |
0%| | 6/32201 [00:08<8:45:29, 1.02it/s][A
|
|
|
8 |
0%| | 7/32201 [00:09<8:11:20, 1.09it/s][A
|
|
|
9 |
0%| | 8/32201 [00:09<7:48:52, 1.14it/s][A
|
|
|
10 |
0%| | 9/32201 [00:10<7:33:28, 1.18it/s][A
|
|
|
11 |
0%| | 10/32201 [00:11<7:22:44, 1.21it/s][A
|
|
|
12 |
0%| | 11/32201 [00:12<7:15:53, 1.23it/s][A
|
|
|
13 |
0%| | 12/32201 [00:13<7:11:41, 1.24it/s][A
|
|
|
14 |
0%| | 13/32201 [00:13<7:08:13, 1.25it/s][A
|
|
|
15 |
0%| | 14/32201 [00:14<7:05:54, 1.26it/s][A
|
|
|
16 |
0%| | 15/32201 [00:15<7:05:03, 1.26it/s][A
|
|
|
17 |
0%| | 16/32201 [00:16<7:02:58, 1.27it/s][A
|
|
|
18 |
0%| | 17/32201 [00:16<7:01:54, 1.27it/s][A
|
|
|
19 |
0%| | 18/32201 [00:17<7:01:32, 1.27it/s][A
|
|
|
20 |
0%| | 19/32201 [00:18<7:01:28, 1.27it/s][A
|
|
|
21 |
0%| | 20/32201 [00:19<7:00:58, 1.27it/s][A
|
|
|
22 |
0%| | 21/32201 [00:20<7:00:49, 1.27it/s][A
|
|
|
23 |
0%| | 22/32201 [00:20<7:00:22, 1.28it/s][A
|
|
|
24 |
0%| | 23/32201 [00:21<7:00:16, 1.28it/s][A
|
|
|
25 |
0%| | 24/32201 [00:22<7:00:04, 1.28it/s][A
|
|
|
26 |
0%| | 25/32201 [00:23<7:00:03, 1.28it/s][A
|
|
|
27 |
0%| | 26/32201 [00:23<7:00:35, 1.27it/s][A
|
|
|
28 |
0%| | 27/32201 [00:24<7:00:58, 1.27it/s][A
|
|
|
29 |
0%| | 28/32201 [00:25<7:01:00, 1.27it/s][A
|
|
|
30 |
0%| | 29/32201 [00:26<7:01:05, 1.27it/s][A
|
|
|
31 |
0%| | 30/32201 [00:27<7:00:31, 1.28it/s][A
|
|
|
32 |
0%| | 31/32201 [00:27<7:00:28, 1.28it/s][A
|
|
|
33 |
0%| | 32/32201 [00:28<7:00:15, 1.28it/s][A
|
|
|
34 |
0%| | 33/32201 [00:29<7:00:04, 1.28it/s][A
|
|
|
35 |
0%| | 34/32201 [00:30<7:00:28, 1.28it/s][A
|
|
|
36 |
0%| | 35/32201 [00:31<7:00:09, 1.28it/s][A
|
|
|
37 |
0%| | 36/32201 [00:31<6:59:58, 1.28it/s][A
|
|
|
38 |
0%| | 37/32201 [00:32<7:00:04, 1.28it/s][A
|
|
|
39 |
0%| | 38/32201 [00:33<7:00:27, 1.27it/s][A
|
|
|
40 |
0%| | 39/32201 [00:34<7:00:33, 1.27it/s][A
|
|
|
41 |
0%| | 40/32201 [00:34<7:00:21, 1.28it/s][A
|
|
|
42 |
0%| | 41/32201 [00:35<7:00:25, 1.27it/s][A
|
|
|
43 |
0%| | 42/32201 [00:36<7:00:46, 1.27it/s][A
|
|
|
44 |
0%| | 43/32201 [00:37<7:00:35, 1.27it/s][A
|
|
|
45 |
0%| | 44/32201 [00:38<7:00:56, 1.27it/s][A
|
|
|
46 |
0%| | 45/32201 [00:38<7:00:58, 1.27it/s][A
|
|
|
47 |
0%| | 46/32201 [00:39<7:01:10, 1.27it/s][A
|
|
|
48 |
0%| | 47/32201 [00:40<7:01:06, 1.27it/s][A
|
|
|
49 |
0%| | 48/32201 [00:41<7:00:54, 1.27it/s][A
|
|
|
50 |
0%| | 49/32201 [00:42<7:01:07, 1.27it/s][A
|
|
|
51 |
0%| | 50/32201 [00:42<7:01:11, 1.27it/s][A
|
|
|
52 |
0%| | 51/32201 [00:43<7:01:03, 1.27it/s][A
|
|
|
53 |
0%| | 52/32201 [00:44<7:00:58, 1.27it/s][A
|
|
|
54 |
0%| | 53/32201 [00:45<7:01:05, 1.27it/s][A
|
|
|
55 |
0%| | 54/32201 [00:45<7:00:55, 1.27it/s][A
|
|
|
56 |
0%| | 55/32201 [00:46<7:01:12, 1.27it/s][A
|
|
|
57 |
0%| | 56/32201 [00:47<7:01:30, 1.27it/s][A
|
|
|
58 |
0%| | 57/32201 [00:48<7:01:27, 1.27it/s][A
|
|
|
59 |
0%| | 58/32201 [00:49<7:01:30, 1.27it/s][A
|
|
|
60 |
0%| | 59/32201 [00:49<7:02:07, 1.27it/s][A
|
61 |
0%| | 59/32201 [00:50<7:36:56, 1.17it/s]
|
|
|
62 |
0%| | 0/3 [00:50<?, ?it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TIME: 2025-03-25 01:30:39.070253
|
2 |
+
DEVICE: cuda
|
3 |
+
{'autoencoder_params': {'attn_down': [False, False],
|
4 |
+
'codebook_size': 20,
|
5 |
+
'down_channels': [32, 64, 128],
|
6 |
+
'down_sample': [True, True],
|
7 |
+
'mid_channels': [128, 128],
|
8 |
+
'norm_channels': 32,
|
9 |
+
'num_down_layers': 4,
|
10 |
+
'num_heads': 16,
|
11 |
+
'num_mid_layers': 4,
|
12 |
+
'num_up_layers': 4,
|
13 |
+
'z_channels': 3},
|
14 |
+
'dataset_params': {'im_channels': 3,
|
15 |
+
'im_path': '/home/taruntejaneurips23/Ashish/datasets/CelebA/img_align_celeba/img_align_celeba',
|
16 |
+
'im_size': 256},
|
17 |
+
'diffusion_params': {'beta_end': 0.0195, 'beta_start': 0.0015, 'num_timesteps': 1000},
|
18 |
+
'ldm_params': {'attn_down': [True, True, True],
|
19 |
+
'conv_out_channels': 128,
|
20 |
+
'down_channels': [128, 256, 256, 256],
|
21 |
+
'down_sample': [False, False, False],
|
22 |
+
'mid_channels': [256, 256],
|
23 |
+
'norm_channels': 32,
|
24 |
+
'num_down_layers': 2,
|
25 |
+
'num_heads': 16,
|
26 |
+
'num_mid_layers': 2,
|
27 |
+
'num_up_layers': 2,
|
28 |
+
'time_emb_dim': 256},
|
29 |
+
'train_params': {'autoencoder_acc_steps': 1,
|
30 |
+
'autoencoder_batch_size': 4,
|
31 |
+
'autoencoder_epochs': 3,
|
32 |
+
'autoencoder_img_save_steps': 8,
|
33 |
+
'autoencoder_lr': 0.0001,
|
34 |
+
'checkpoint_dir': './',
|
35 |
+
'codebook_weight': 1,
|
36 |
+
'commitment_beta': 0.2,
|
37 |
+
'disc_start': 1000,
|
38 |
+
'disc_weight': 0.5,
|
39 |
+
'kl_weight': 5e-06,
|
40 |
+
'ldm_batch_size': 1,
|
41 |
+
'ldm_ckpt_name': 'ddpm_ckpt.pth',
|
42 |
+
'ldm_epochs': 10,
|
43 |
+
'ldm_lr': 1e-05,
|
44 |
+
'num_grid_rows': 3,
|
45 |
+
'num_samples': 9,
|
46 |
+
'perceptual_weight': 1,
|
47 |
+
'save_latents': True,
|
48 |
+
'seed': 4422,
|
49 |
+
'task_name': 'VaaniLDM',
|
50 |
+
'vqvae_autoencoder_ckpt_name': 'vqvae_autoencoder_ckpt.pth',
|
51 |
+
'vqvae_discriminator_ckpt_name': 'vqvae_discriminator_ckpt.pth',
|
52 |
+
'vqvae_latent_dir_name': 'vqvae_latents'},
|
53 |
+
'training': {'_continue_': True}}
|
54 |
+
Files found: 128807
|
55 |
+
IMAGE SHAPE: torch.Size([3, 256, 256])
|
56 |
+
BATCH SHAPE: torch.Size([4, 3, 256, 256])
|
57 |
+
No checkpoint found. Starting from scratch.
|
58 |
+
|
59 |
0%| | 0/3 [00:00<?, ?it/s]
|
60 |
+
|
61 |
0%| | 0/32201 [00:00<?, ?it/s][A
|
62 |
+
|
63 |
0%| | 1/32201 [00:04<42:33:43, 4.76s/it][A
|
64 |
+
|
65 |
0%| | 2/32201 [00:05<19:42:29, 2.20s/it][A
|
66 |
+
|
67 |
0%| | 3/32201 [00:05<13:55:59, 1.56s/it][A
|
68 |
+
|
69 |
0%| | 4/32201 [00:06<11:09:27, 1.25s/it][A
|
70 |
+
|
71 |
0%| | 5/32201 [00:07<9:39:35, 1.08s/it] [A
|
72 |
+
|
73 |
0%| | 6/32201 [00:08<8:45:29, 1.02it/s][A
|
74 |
+
|
75 |
0%| | 7/32201 [00:09<8:11:20, 1.09it/s][A
|
76 |
+
|
77 |
0%| | 8/32201 [00:09<7:48:52, 1.14it/s][A
|
78 |
+
|
79 |
0%| | 9/32201 [00:10<7:33:28, 1.18it/s][A
|
80 |
+
|
81 |
0%| | 10/32201 [00:11<7:22:44, 1.21it/s][A
|
82 |
+
|
83 |
0%| | 11/32201 [00:12<7:15:53, 1.23it/s][A
|
84 |
+
|
85 |
0%| | 12/32201 [00:13<7:11:41, 1.24it/s][A
|
86 |
+
|
87 |
0%| | 13/32201 [00:13<7:08:13, 1.25it/s][A
|
88 |
+
|
89 |
0%| | 14/32201 [00:14<7:05:54, 1.26it/s][A
|
90 |
+
|
91 |
0%| | 15/32201 [00:15<7:05:03, 1.26it/s][A
|
92 |
+
|
93 |
0%| | 16/32201 [00:16<7:02:58, 1.27it/s][A
|
94 |
+
|
95 |
0%| | 17/32201 [00:16<7:01:54, 1.27it/s][A
|
96 |
+
|
97 |
0%| | 18/32201 [00:17<7:01:32, 1.27it/s][A
|
98 |
+
|
99 |
0%| | 19/32201 [00:18<7:01:28, 1.27it/s][A
|
100 |
+
|
101 |
0%| | 20/32201 [00:19<7:00:58, 1.27it/s][A
|
102 |
+
|
103 |
0%| | 21/32201 [00:20<7:00:49, 1.27it/s][A
|
104 |
+
|
105 |
0%| | 22/32201 [00:20<7:00:22, 1.28it/s][A
|
106 |
+
|
107 |
0%| | 23/32201 [00:21<7:00:16, 1.28it/s][A
|
108 |
+
|
109 |
0%| | 24/32201 [00:22<7:00:04, 1.28it/s][A
|
110 |
+
|
111 |
0%| | 25/32201 [00:23<7:00:03, 1.28it/s][A
|
112 |
+
|
113 |
0%| | 26/32201 [00:23<7:00:35, 1.27it/s][A
|
114 |
+
|
115 |
0%| | 27/32201 [00:24<7:00:58, 1.27it/s][A
|
116 |
+
|
117 |
0%| | 28/32201 [00:25<7:01:00, 1.27it/s][A
|
118 |
+
|
119 |
0%| | 29/32201 [00:26<7:01:05, 1.27it/s][A
|
120 |
+
|
121 |
0%| | 30/32201 [00:27<7:00:31, 1.28it/s][A
|
122 |
+
|
123 |
0%| | 31/32201 [00:27<7:00:28, 1.28it/s][A
|
124 |
+
|
125 |
0%| | 32/32201 [00:28<7:00:15, 1.28it/s][A
|
126 |
+
|
127 |
0%| | 33/32201 [00:29<7:00:04, 1.28it/s][A
|
128 |
+
|
129 |
0%| | 34/32201 [00:30<7:00:28, 1.28it/s][A
|
130 |
+
|
131 |
0%| | 35/32201 [00:31<7:00:09, 1.28it/s][A
|
132 |
+
|
133 |
0%| | 36/32201 [00:31<6:59:58, 1.28it/s][A
|
134 |
+
|
135 |
0%| | 37/32201 [00:32<7:00:04, 1.28it/s][A
|
136 |
+
|
137 |
0%| | 38/32201 [00:33<7:00:27, 1.27it/s][A
|
138 |
+
|
139 |
0%| | 39/32201 [00:34<7:00:33, 1.27it/s][A
|
140 |
+
|
141 |
0%| | 40/32201 [00:34<7:00:21, 1.28it/s][A
|
142 |
+
|
143 |
0%| | 41/32201 [00:35<7:00:25, 1.27it/s][A
|
144 |
+
|
145 |
0%| | 42/32201 [00:36<7:00:46, 1.27it/s][A
|
146 |
+
|
147 |
0%| | 43/32201 [00:37<7:00:35, 1.27it/s][A
|
148 |
+
|
149 |
0%| | 44/32201 [00:38<7:00:56, 1.27it/s][A
|
150 |
+
|
151 |
0%| | 45/32201 [00:38<7:00:58, 1.27it/s][A
|
152 |
+
|
153 |
0%| | 46/32201 [00:39<7:01:10, 1.27it/s][A
|
154 |
+
|
155 |
0%| | 47/32201 [00:40<7:01:06, 1.27it/s][A
|
156 |
+
|
157 |
0%| | 48/32201 [00:41<7:00:54, 1.27it/s][A
|
158 |
+
|
159 |
0%| | 49/32201 [00:42<7:01:07, 1.27it/s][A
|
160 |
+
|
161 |
0%| | 50/32201 [00:42<7:01:11, 1.27it/s][A
|
162 |
+
|
163 |
0%| | 51/32201 [00:43<7:01:03, 1.27it/s][A
|
164 |
+
|
165 |
0%| | 52/32201 [00:44<7:00:58, 1.27it/s][A
|
166 |
+
|
167 |
0%| | 53/32201 [00:45<7:01:05, 1.27it/s][A
|
168 |
+
|
169 |
0%| | 54/32201 [00:45<7:00:55, 1.27it/s][A
|
170 |
+
|
171 |
0%| | 55/32201 [00:46<7:01:12, 1.27it/s][A
|
172 |
+
|
173 |
0%| | 56/32201 [00:47<7:01:30, 1.27it/s][A
|
174 |
+
|
175 |
0%| | 57/32201 [00:48<7:01:27, 1.27it/s][A
|
176 |
+
|
177 |
0%| | 58/32201 [00:49<7:01:30, 1.27it/s][A
|
178 |
+
|
179 |
0%| | 59/32201 [00:49<7:02:07, 1.27it/s][A
|
180 |
0%| | 59/32201 [00:50<7:36:56, 1.17it/s]
|
181 |
+
|
182 |
0%| | 0/3 [00:50<?, ?it/s]
|
183 |
+
Traceback (most recent call last):
|
184 |
+
File "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/Vaani-VQVAE-Main.py", line 1105, in <module>
|
185 |
+
trainVAE(Config, dataloader)
|
186 |
+
File "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/Vaani-VQVAE-Main.py", line 1049, in trainVAE
|
187 |
+
images = images.to(device)
|
188 |
+
^^^^^^^^^^^^^^^^^
|
189 |
+
KeyboardInterrupt
|
Vaani/LDM/scripts/Main.py
ADDED
@@ -0,0 +1,2303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# L A T E N T D I F F U S I O N M O D E L
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : November 3, 2024
|
6 |
+
# Description: This script implements a Latent Diffusion Model using
|
7 |
+
# a cosine or linear noise scheduling approach for high-resolution
|
8 |
+
# image generation. The model leverages generative techniques to
|
9 |
+
# learn a latent representation and progressively reduce noise to
|
10 |
+
# generate clear, realistic images.
|
11 |
+
# ==================================================================
|
12 |
+
# I M P O R T S
|
13 |
+
# ==================================================================
|
14 |
+
|
15 |
+
import os
|
16 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
17 |
+
|
18 |
+
"""Lpips"""
|
19 |
+
|
20 |
+
# from __future__ import absolute_import
|
21 |
+
from collections import namedtuple
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.nn.init as init
|
25 |
+
from torch.autograd import Variable
|
26 |
+
import numpy as np
|
27 |
+
import torch.nn
|
28 |
+
import torchvision
|
29 |
+
|
30 |
+
# Taken from https://github.com/richzhang/PerceptualSimilarity/blob/master/lpips/lpips.py
|
31 |
+
|
32 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
+
|
34 |
+
|
35 |
+
def spatial_average(in_tens, keepdim=True):
|
36 |
+
return in_tens.mean([2, 3], keepdim=keepdim)
|
37 |
+
|
38 |
+
|
39 |
+
class vgg16(torch.nn.Module):
|
40 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
41 |
+
super(vgg16, self).__init__()
|
42 |
+
vgg_pretrained_features = torchvision.models.vgg16(
|
43 |
+
weights=torchvision.models.VGG16_Weights.IMAGENET1K_V1
|
44 |
+
).features
|
45 |
+
self.slice1 = torch.nn.Sequential()
|
46 |
+
self.slice2 = torch.nn.Sequential()
|
47 |
+
self.slice3 = torch.nn.Sequential()
|
48 |
+
self.slice4 = torch.nn.Sequential()
|
49 |
+
self.slice5 = torch.nn.Sequential()
|
50 |
+
self.N_slices = 5
|
51 |
+
for x in range(4):
|
52 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
53 |
+
for x in range(4, 9):
|
54 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
55 |
+
for x in range(9, 16):
|
56 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
57 |
+
for x in range(16, 23):
|
58 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
59 |
+
for x in range(23, 30):
|
60 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
61 |
+
|
62 |
+
# Freeze vgg model
|
63 |
+
if not requires_grad:
|
64 |
+
for param in self.parameters():
|
65 |
+
param.requires_grad = False
|
66 |
+
|
67 |
+
def forward(self, X):
|
68 |
+
# Return output of vgg features
|
69 |
+
h = self.slice1(X)
|
70 |
+
h_relu1_2 = h
|
71 |
+
h = self.slice2(h)
|
72 |
+
h_relu2_2 = h
|
73 |
+
h = self.slice3(h)
|
74 |
+
h_relu3_3 = h
|
75 |
+
h = self.slice4(h)
|
76 |
+
h_relu4_3 = h
|
77 |
+
h = self.slice5(h)
|
78 |
+
h_relu5_3 = h
|
79 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
80 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
81 |
+
return out
|
82 |
+
|
83 |
+
|
84 |
+
# Learned perceptual metric
|
85 |
+
class LPIPS(nn.Module):
|
86 |
+
def __init__(self, net='vgg', version='0.1', use_dropout=True):
|
87 |
+
super(LPIPS, self).__init__()
|
88 |
+
self.version = version
|
89 |
+
# Imagenet normalization
|
90 |
+
self.scaling_layer = ScalingLayer()
|
91 |
+
########################
|
92 |
+
|
93 |
+
# Instantiate vgg model
|
94 |
+
self.chns = [64, 128, 256, 512, 512]
|
95 |
+
self.L = len(self.chns)
|
96 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
97 |
+
|
98 |
+
# Add 1x1 convolutional Layers
|
99 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
100 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
101 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
102 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
103 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
104 |
+
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
105 |
+
self.lins = nn.ModuleList(self.lins)
|
106 |
+
########################
|
107 |
+
|
108 |
+
# Load the weights of trained LPIPS model
|
109 |
+
import inspect
|
110 |
+
import os
|
111 |
+
# /home/taruntejaneurips23/.cache/torch/hub/checkpoints/vgg16-397923af.pth
|
112 |
+
print(os.path.abspath(os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth' % (version, net))))
|
113 |
+
# model_path = os.path.abspath(
|
114 |
+
# os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth' % (version, net)))
|
115 |
+
|
116 |
+
# print('Loading model from: %s' % model_path)
|
117 |
+
# self.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
118 |
+
########################
|
119 |
+
|
120 |
+
# Freeze all parameters
|
121 |
+
self.eval()
|
122 |
+
for param in self.parameters():
|
123 |
+
param.requires_grad = False
|
124 |
+
########################
|
125 |
+
|
126 |
+
def forward(self, in0, in1, normalize=False):
|
127 |
+
# Scale the inputs to -1 to +1 range if needed
|
128 |
+
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
|
129 |
+
in0 = 2 * in0 - 1
|
130 |
+
in1 = 2 * in1 - 1
|
131 |
+
########################
|
132 |
+
|
133 |
+
# Normalize the inputs according to imagenet normalization
|
134 |
+
in0_input, in1_input = self.scaling_layer(in0), self.scaling_layer(in1)
|
135 |
+
########################
|
136 |
+
|
137 |
+
# Get VGG outputs for image0 and image1
|
138 |
+
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
|
139 |
+
feats0, feats1, diffs = {}, {}, {}
|
140 |
+
########################
|
141 |
+
|
142 |
+
# Compute Square of Difference for each layer output
|
143 |
+
for kk in range(self.L):
|
144 |
+
feats0[kk], feats1[kk] = torch.nn.functional.normalize(outs0[kk], dim=1), torch.nn.functional.normalize(
|
145 |
+
outs1[kk])
|
146 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
147 |
+
########################
|
148 |
+
|
149 |
+
# 1x1 convolution followed by spatial average on the square differences
|
150 |
+
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
|
151 |
+
val = 0
|
152 |
+
|
153 |
+
# Aggregate the results of each layer
|
154 |
+
for l in range(self.L):
|
155 |
+
val += res[l]
|
156 |
+
return val
|
157 |
+
|
158 |
+
|
159 |
+
class ScalingLayer(nn.Module):
|
160 |
+
def __init__(self):
|
161 |
+
super(ScalingLayer, self).__init__()
|
162 |
+
# Imagnet normalization for (0-1)
|
163 |
+
# mean = [0.485, 0.456, 0.406]
|
164 |
+
# std = [0.229, 0.224, 0.225]
|
165 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
166 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
167 |
+
|
168 |
+
def forward(self, inp):
|
169 |
+
return (inp - self.shift) / self.scale
|
170 |
+
|
171 |
+
|
172 |
+
class NetLinLayer(nn.Module):
|
173 |
+
''' A single linear layer which does a 1x1 conv '''
|
174 |
+
|
175 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
176 |
+
super(NetLinLayer, self).__init__()
|
177 |
+
|
178 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
179 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
180 |
+
self.model = nn.Sequential(*layers)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
out = self.model(x)
|
184 |
+
return out
|
185 |
+
|
186 |
+
"""Blocks"""
|
187 |
+
|
188 |
+
import torch
|
189 |
+
import numpy as np
|
190 |
+
|
191 |
+
|
192 |
+
class LinearNoiseScheduler:
|
193 |
+
r"""
|
194 |
+
Class for the linear noise scheduler that is used in DDPM.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, num_timesteps, beta_start, beta_end):
|
198 |
+
|
199 |
+
self.num_timesteps = num_timesteps
|
200 |
+
self.beta_start = beta_start
|
201 |
+
self.beta_end = beta_end
|
202 |
+
# Mimicking how compvis repo creates schedule
|
203 |
+
self.betas = (
|
204 |
+
torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_timesteps) ** 2
|
205 |
+
)
|
206 |
+
self.alphas = 1. - self.betas
|
207 |
+
self.alpha_cum_prod = torch.cumprod(self.alphas, dim=0)
|
208 |
+
self.sqrt_alpha_cum_prod = torch.sqrt(self.alpha_cum_prod)
|
209 |
+
self.sqrt_one_minus_alpha_cum_prod = torch.sqrt(1 - self.alpha_cum_prod)
|
210 |
+
|
211 |
+
def add_noise(self, original, noise, t):
|
212 |
+
r"""
|
213 |
+
Forward method for diffusion
|
214 |
+
:param original: Image on which noise is to be applied
|
215 |
+
:param noise: Random Noise Tensor (from normal dist)
|
216 |
+
:param t: timestep of the forward process of shape -> (B,)
|
217 |
+
:return:
|
218 |
+
"""
|
219 |
+
original_shape = original.shape
|
220 |
+
batch_size = original_shape[0]
|
221 |
+
|
222 |
+
sqrt_alpha_cum_prod = self.sqrt_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
223 |
+
sqrt_one_minus_alpha_cum_prod = self.sqrt_one_minus_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
224 |
+
|
225 |
+
# Reshape till (B,) becomes (B,1,1,1) if image is (B,C,H,W)
|
226 |
+
for _ in range(len(original_shape) - 1):
|
227 |
+
sqrt_alpha_cum_prod = sqrt_alpha_cum_prod.unsqueeze(-1)
|
228 |
+
for _ in range(len(original_shape) - 1):
|
229 |
+
sqrt_one_minus_alpha_cum_prod = sqrt_one_minus_alpha_cum_prod.unsqueeze(-1)
|
230 |
+
|
231 |
+
# Apply and Return Forward process equation
|
232 |
+
return (sqrt_alpha_cum_prod.to(original.device) * original
|
233 |
+
+ sqrt_one_minus_alpha_cum_prod.to(original.device) * noise)
|
234 |
+
|
235 |
+
def sample_prev_timestep(self, xt, noise_pred, t):
|
236 |
+
r"""
|
237 |
+
Use the noise prediction by model to get
|
238 |
+
xt-1 using xt and the nosie predicted
|
239 |
+
:param xt: current timestep sample
|
240 |
+
:param noise_pred: model noise prediction
|
241 |
+
:param t: current timestep we are at
|
242 |
+
:return:
|
243 |
+
"""
|
244 |
+
x0 = ((xt - (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t] * noise_pred)) /
|
245 |
+
torch.sqrt(self.alpha_cum_prod.to(xt.device)[t]))
|
246 |
+
x0 = torch.clamp(x0, -1., 1.)
|
247 |
+
|
248 |
+
mean = xt - ((self.betas.to(xt.device)[t]) * noise_pred) / (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t])
|
249 |
+
mean = mean / torch.sqrt(self.alphas.to(xt.device)[t])
|
250 |
+
|
251 |
+
if t == 0:
|
252 |
+
return mean, x0
|
253 |
+
else:
|
254 |
+
variance = (1 - self.alpha_cum_prod.to(xt.device)[t - 1]) / (1.0 - self.alpha_cum_prod.to(xt.device)[t])
|
255 |
+
variance = variance * self.betas.to(xt.device)[t]
|
256 |
+
sigma = variance ** 0.5
|
257 |
+
z = torch.randn(xt.shape).to(xt.device)
|
258 |
+
|
259 |
+
# OR
|
260 |
+
# variance = self.betas[t]
|
261 |
+
# sigma = variance ** 0.5
|
262 |
+
# z = torch.randn(xt.shape).to(xt.device)
|
263 |
+
return mean + sigma * z, x0
|
264 |
+
|
265 |
+
|
266 |
+
import torch
|
267 |
+
import math
|
268 |
+
|
269 |
+
class CosineNoiseScheduler:
|
270 |
+
r"""
|
271 |
+
Class for the cosine noise scheduler, often used in DDPM-based models.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, num_timesteps, s=0.008):
|
275 |
+
self.num_timesteps = num_timesteps
|
276 |
+
self.s = s
|
277 |
+
|
278 |
+
# Cosine schedule based on paper
|
279 |
+
def cosine_schedule(t):
|
280 |
+
return math.cos((t / self.num_timesteps + s) / (1 + s) * math.pi / 2) ** 2
|
281 |
+
|
282 |
+
# Compute alphas
|
283 |
+
self.alphas = torch.tensor([cosine_schedule(t) for t in range(num_timesteps)])
|
284 |
+
self.alpha_cum_prod = torch.cumprod(self.alphas, dim=0)
|
285 |
+
self.sqrt_alpha_cum_prod = torch.sqrt(self.alpha_cum_prod)
|
286 |
+
self.sqrt_one_minus_alpha_cum_prod = torch.sqrt(1 - self.alpha_cum_prod)
|
287 |
+
|
288 |
+
def add_noise(self, original, noise, t):
|
289 |
+
original_shape = original.shape
|
290 |
+
batch_size = original_shape[0]
|
291 |
+
|
292 |
+
sqrt_alpha_cum_prod = self.sqrt_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
293 |
+
sqrt_one_minus_alpha_cum_prod = self.sqrt_one_minus_alpha_cum_prod.to(original.device)[t].reshape(batch_size)
|
294 |
+
|
295 |
+
for _ in range(len(original_shape) - 1):
|
296 |
+
sqrt_alpha_cum_prod = sqrt_alpha_cum_prod.unsqueeze(-1)
|
297 |
+
for _ in range(len(original_shape) - 1):
|
298 |
+
sqrt_one_minus_alpha_cum_prod = sqrt_one_minus_alpha_cum_prod.unsqueeze(-1)
|
299 |
+
|
300 |
+
return (sqrt_alpha_cum_prod * original + sqrt_one_minus_alpha_cum_prod * noise)
|
301 |
+
|
302 |
+
def sample_prev_timestep(self, xt, noise_pred, t):
|
303 |
+
x0 = ((xt - (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t] * noise_pred)) /
|
304 |
+
torch.sqrt(self.alpha_cum_prod.to(xt.device)[t]))
|
305 |
+
x0 = torch.clamp(x0, -1., 1.)
|
306 |
+
|
307 |
+
mean = xt - ((1 - self.alphas.to(xt.device)[t]) * noise_pred) / (self.sqrt_one_minus_alpha_cum_prod.to(xt.device)[t])
|
308 |
+
mean = mean / torch.sqrt(self.alphas.to(xt.device)[t])
|
309 |
+
|
310 |
+
if t == 0:
|
311 |
+
return mean, x0
|
312 |
+
else:
|
313 |
+
variance = (1 - self.alpha_cum_prod.to(xt.device)[t - 1]) / (1.0 - self.alpha_cum_prod.to(xt.device)[t])
|
314 |
+
variance = variance * (1 - self.alphas.to(xt.device)[t])
|
315 |
+
sigma = variance ** 0.5
|
316 |
+
z = torch.randn(xt.shape).to(xt.device)
|
317 |
+
return mean + sigma * z, x0
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
import torch
|
323 |
+
import torch.nn as nn
|
324 |
+
|
325 |
+
|
326 |
+
def get_time_embedding(time_steps, temb_dim):
|
327 |
+
r"""
|
328 |
+
Convert time steps tensor into an embedding using the
|
329 |
+
sinusoidal time embedding formula
|
330 |
+
:param time_steps: 1D tensor of length batch size
|
331 |
+
:param temb_dim: Dimension of the embedding
|
332 |
+
:return: BxD embedding representation of B time steps
|
333 |
+
"""
|
334 |
+
assert temb_dim % 2 == 0, "time embedding dimension must be divisible by 2"
|
335 |
+
|
336 |
+
# factor = 10000^(2i/d_model)
|
337 |
+
factor = 10000 ** ((torch.arange(
|
338 |
+
start=0, end=temb_dim // 2, dtype=torch.float32, device=time_steps.device) / (temb_dim // 2))
|
339 |
+
)
|
340 |
+
|
341 |
+
# pos / factor
|
342 |
+
# timesteps B -> B, 1 -> B, temb_dim
|
343 |
+
t_emb = time_steps[:, None].repeat(1, temb_dim // 2) / factor
|
344 |
+
t_emb = torch.cat([torch.sin(t_emb), torch.cos(t_emb)], dim=-1)
|
345 |
+
return t_emb
|
346 |
+
|
347 |
+
|
348 |
+
class DownBlock(nn.Module):
|
349 |
+
r"""
|
350 |
+
Down conv block with attention.
|
351 |
+
Sequence of following block
|
352 |
+
1. Resnet block with time embedding
|
353 |
+
2. Attention block
|
354 |
+
3. Downsample
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(self, in_channels, out_channels, t_emb_dim,
|
358 |
+
down_sample, num_heads, num_layers, attn, norm_channels, cross_attn=False, context_dim=None):
|
359 |
+
super().__init__()
|
360 |
+
self.num_layers = num_layers
|
361 |
+
self.down_sample = down_sample
|
362 |
+
self.attn = attn
|
363 |
+
self.context_dim = context_dim
|
364 |
+
self.cross_attn = cross_attn
|
365 |
+
self.t_emb_dim = t_emb_dim
|
366 |
+
self.resnet_conv_first = nn.ModuleList(
|
367 |
+
[
|
368 |
+
nn.Sequential(
|
369 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
370 |
+
nn.SiLU(),
|
371 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels,
|
372 |
+
kernel_size=3, stride=1, padding=1),
|
373 |
+
)
|
374 |
+
for i in range(num_layers)
|
375 |
+
]
|
376 |
+
)
|
377 |
+
if self.t_emb_dim is not None:
|
378 |
+
self.t_emb_layers = nn.ModuleList([
|
379 |
+
nn.Sequential(
|
380 |
+
nn.SiLU(),
|
381 |
+
nn.Linear(self.t_emb_dim, out_channels)
|
382 |
+
)
|
383 |
+
for _ in range(num_layers)
|
384 |
+
])
|
385 |
+
self.resnet_conv_second = nn.ModuleList(
|
386 |
+
[
|
387 |
+
nn.Sequential(
|
388 |
+
nn.GroupNorm(norm_channels, out_channels),
|
389 |
+
nn.SiLU(),
|
390 |
+
nn.Conv2d(out_channels, out_channels,
|
391 |
+
kernel_size=3, stride=1, padding=1),
|
392 |
+
)
|
393 |
+
for _ in range(num_layers)
|
394 |
+
]
|
395 |
+
)
|
396 |
+
|
397 |
+
if self.attn:
|
398 |
+
self.attention_norms = nn.ModuleList(
|
399 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
400 |
+
for _ in range(num_layers)]
|
401 |
+
)
|
402 |
+
|
403 |
+
self.attentions = nn.ModuleList(
|
404 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
405 |
+
for _ in range(num_layers)]
|
406 |
+
)
|
407 |
+
|
408 |
+
if self.cross_attn:
|
409 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
410 |
+
self.cross_attention_norms = nn.ModuleList(
|
411 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
412 |
+
for _ in range(num_layers)]
|
413 |
+
)
|
414 |
+
self.cross_attentions = nn.ModuleList(
|
415 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
416 |
+
for _ in range(num_layers)]
|
417 |
+
)
|
418 |
+
self.context_proj = nn.ModuleList(
|
419 |
+
[nn.Linear(context_dim, out_channels)
|
420 |
+
for _ in range(num_layers)]
|
421 |
+
)
|
422 |
+
|
423 |
+
self.residual_input_conv = nn.ModuleList(
|
424 |
+
[
|
425 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
426 |
+
for i in range(num_layers)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
self.down_sample_conv = nn.Conv2d(out_channels, out_channels,
|
430 |
+
4, 2, 1) if self.down_sample else nn.Identity()
|
431 |
+
|
432 |
+
def forward(self, x, t_emb=None, context=None):
|
433 |
+
out = x
|
434 |
+
for i in range(self.num_layers):
|
435 |
+
# Resnet block of Unet
|
436 |
+
resnet_input = out
|
437 |
+
out = self.resnet_conv_first[i](out)
|
438 |
+
if self.t_emb_dim is not None:
|
439 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
440 |
+
out = self.resnet_conv_second[i](out)
|
441 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
442 |
+
|
443 |
+
if self.attn:
|
444 |
+
# Attention block of Unet
|
445 |
+
batch_size, channels, h, w = out.shape
|
446 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
447 |
+
in_attn = self.attention_norms[i](in_attn)
|
448 |
+
in_attn = in_attn.transpose(1, 2)
|
449 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
450 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
451 |
+
out = out + out_attn
|
452 |
+
|
453 |
+
if self.cross_attn:
|
454 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
455 |
+
batch_size, channels, h, w = out.shape
|
456 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
457 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
458 |
+
in_attn = in_attn.transpose(1, 2)
|
459 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
460 |
+
context_proj = self.context_proj[i](context)
|
461 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
462 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
463 |
+
out = out + out_attn
|
464 |
+
|
465 |
+
# Downsample
|
466 |
+
out = self.down_sample_conv(out)
|
467 |
+
return out
|
468 |
+
|
469 |
+
|
470 |
+
class MidBlock(nn.Module):
|
471 |
+
r"""
|
472 |
+
Mid conv block with attention.
|
473 |
+
Sequence of following blocks
|
474 |
+
1. Resnet block with time embedding
|
475 |
+
2. Attention block
|
476 |
+
3. Resnet block with time embedding
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(self, in_channels, out_channels, t_emb_dim, num_heads, num_layers, norm_channels, cross_attn=None, context_dim=None):
|
480 |
+
super().__init__()
|
481 |
+
self.num_layers = num_layers
|
482 |
+
self.t_emb_dim = t_emb_dim
|
483 |
+
self.context_dim = context_dim
|
484 |
+
self.cross_attn = cross_attn
|
485 |
+
self.resnet_conv_first = nn.ModuleList(
|
486 |
+
[
|
487 |
+
nn.Sequential(
|
488 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
489 |
+
nn.SiLU(),
|
490 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
491 |
+
padding=1),
|
492 |
+
)
|
493 |
+
for i in range(num_layers + 1)
|
494 |
+
]
|
495 |
+
)
|
496 |
+
|
497 |
+
if self.t_emb_dim is not None:
|
498 |
+
self.t_emb_layers = nn.ModuleList([
|
499 |
+
nn.Sequential(
|
500 |
+
nn.SiLU(),
|
501 |
+
nn.Linear(t_emb_dim, out_channels)
|
502 |
+
)
|
503 |
+
for _ in range(num_layers + 1)
|
504 |
+
])
|
505 |
+
self.resnet_conv_second = nn.ModuleList(
|
506 |
+
[
|
507 |
+
nn.Sequential(
|
508 |
+
nn.GroupNorm(norm_channels, out_channels),
|
509 |
+
nn.SiLU(),
|
510 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
511 |
+
)
|
512 |
+
for _ in range(num_layers + 1)
|
513 |
+
]
|
514 |
+
)
|
515 |
+
|
516 |
+
self.attention_norms = nn.ModuleList(
|
517 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
518 |
+
for _ in range(num_layers)]
|
519 |
+
)
|
520 |
+
|
521 |
+
self.attentions = nn.ModuleList(
|
522 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
523 |
+
for _ in range(num_layers)]
|
524 |
+
)
|
525 |
+
if self.cross_attn:
|
526 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
527 |
+
self.cross_attention_norms = nn.ModuleList(
|
528 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
529 |
+
for _ in range(num_layers)]
|
530 |
+
)
|
531 |
+
self.cross_attentions = nn.ModuleList(
|
532 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
533 |
+
for _ in range(num_layers)]
|
534 |
+
)
|
535 |
+
self.context_proj = nn.ModuleList(
|
536 |
+
[nn.Linear(context_dim, out_channels)
|
537 |
+
for _ in range(num_layers)]
|
538 |
+
)
|
539 |
+
self.residual_input_conv = nn.ModuleList(
|
540 |
+
[
|
541 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
542 |
+
for i in range(num_layers + 1)
|
543 |
+
]
|
544 |
+
)
|
545 |
+
|
546 |
+
def forward(self, x, t_emb=None, context=None):
|
547 |
+
out = x
|
548 |
+
|
549 |
+
# First resnet block
|
550 |
+
resnet_input = out
|
551 |
+
out = self.resnet_conv_first[0](out)
|
552 |
+
if self.t_emb_dim is not None:
|
553 |
+
out = out + self.t_emb_layers[0](t_emb)[:, :, None, None]
|
554 |
+
out = self.resnet_conv_second[0](out)
|
555 |
+
out = out + self.residual_input_conv[0](resnet_input)
|
556 |
+
|
557 |
+
for i in range(self.num_layers):
|
558 |
+
# Attention Block
|
559 |
+
batch_size, channels, h, w = out.shape
|
560 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
561 |
+
in_attn = self.attention_norms[i](in_attn)
|
562 |
+
in_attn = in_attn.transpose(1, 2)
|
563 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
564 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
565 |
+
out = out + out_attn
|
566 |
+
|
567 |
+
if self.cross_attn:
|
568 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
569 |
+
batch_size, channels, h, w = out.shape
|
570 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
571 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
572 |
+
in_attn = in_attn.transpose(1, 2)
|
573 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
574 |
+
context_proj = self.context_proj[i](context)
|
575 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
576 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
577 |
+
out = out + out_attn
|
578 |
+
|
579 |
+
|
580 |
+
# Resnet Block
|
581 |
+
resnet_input = out
|
582 |
+
out = self.resnet_conv_first[i + 1](out)
|
583 |
+
if self.t_emb_dim is not None:
|
584 |
+
out = out + self.t_emb_layers[i + 1](t_emb)[:, :, None, None]
|
585 |
+
out = self.resnet_conv_second[i + 1](out)
|
586 |
+
out = out + self.residual_input_conv[i + 1](resnet_input)
|
587 |
+
|
588 |
+
return out
|
589 |
+
|
590 |
+
|
591 |
+
class UpBlock(nn.Module):
|
592 |
+
r"""
|
593 |
+
Up conv block with attention.
|
594 |
+
Sequence of following blocks
|
595 |
+
1. Upsample
|
596 |
+
1. Concatenate Down block output
|
597 |
+
2. Resnet block with time embedding
|
598 |
+
3. Attention Block
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __init__(self, in_channels, out_channels, t_emb_dim,
|
602 |
+
up_sample, num_heads, num_layers, attn, norm_channels):
|
603 |
+
super().__init__()
|
604 |
+
self.num_layers = num_layers
|
605 |
+
self.up_sample = up_sample
|
606 |
+
self.t_emb_dim = t_emb_dim
|
607 |
+
self.attn = attn
|
608 |
+
self.resnet_conv_first = nn.ModuleList(
|
609 |
+
[
|
610 |
+
nn.Sequential(
|
611 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
612 |
+
nn.SiLU(),
|
613 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
614 |
+
padding=1),
|
615 |
+
)
|
616 |
+
for i in range(num_layers)
|
617 |
+
]
|
618 |
+
)
|
619 |
+
|
620 |
+
if self.t_emb_dim is not None:
|
621 |
+
self.t_emb_layers = nn.ModuleList([
|
622 |
+
nn.Sequential(
|
623 |
+
nn.SiLU(),
|
624 |
+
nn.Linear(t_emb_dim, out_channels)
|
625 |
+
)
|
626 |
+
for _ in range(num_layers)
|
627 |
+
])
|
628 |
+
|
629 |
+
self.resnet_conv_second = nn.ModuleList(
|
630 |
+
[
|
631 |
+
nn.Sequential(
|
632 |
+
nn.GroupNorm(norm_channels, out_channels),
|
633 |
+
nn.SiLU(),
|
634 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
635 |
+
)
|
636 |
+
for _ in range(num_layers)
|
637 |
+
]
|
638 |
+
)
|
639 |
+
if self.attn:
|
640 |
+
self.attention_norms = nn.ModuleList(
|
641 |
+
[
|
642 |
+
nn.GroupNorm(norm_channels, out_channels)
|
643 |
+
for _ in range(num_layers)
|
644 |
+
]
|
645 |
+
)
|
646 |
+
|
647 |
+
self.attentions = nn.ModuleList(
|
648 |
+
[
|
649 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
650 |
+
for _ in range(num_layers)
|
651 |
+
]
|
652 |
+
)
|
653 |
+
|
654 |
+
self.residual_input_conv = nn.ModuleList(
|
655 |
+
[
|
656 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
657 |
+
for i in range(num_layers)
|
658 |
+
]
|
659 |
+
)
|
660 |
+
self.up_sample_conv = nn.ConvTranspose2d(in_channels, in_channels,
|
661 |
+
4, 2, 1) \
|
662 |
+
if self.up_sample else nn.Identity()
|
663 |
+
|
664 |
+
def forward(self, x, out_down=None, t_emb=None):
|
665 |
+
# Upsample
|
666 |
+
x = self.up_sample_conv(x)
|
667 |
+
|
668 |
+
# Concat with Downblock output
|
669 |
+
if out_down is not None:
|
670 |
+
x = torch.cat([x, out_down], dim=1)
|
671 |
+
|
672 |
+
out = x
|
673 |
+
for i in range(self.num_layers):
|
674 |
+
# Resnet Block
|
675 |
+
resnet_input = out
|
676 |
+
out = self.resnet_conv_first[i](out)
|
677 |
+
if self.t_emb_dim is not None:
|
678 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
679 |
+
out = self.resnet_conv_second[i](out)
|
680 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
681 |
+
|
682 |
+
# Self Attention
|
683 |
+
if self.attn:
|
684 |
+
batch_size, channels, h, w = out.shape
|
685 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
686 |
+
in_attn = self.attention_norms[i](in_attn)
|
687 |
+
in_attn = in_attn.transpose(1, 2)
|
688 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
689 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
690 |
+
out = out + out_attn
|
691 |
+
return out
|
692 |
+
|
693 |
+
|
694 |
+
class UpBlockUnet(nn.Module):
|
695 |
+
r"""
|
696 |
+
Up conv block with attention.
|
697 |
+
Sequence of following blocks
|
698 |
+
1. Upsample
|
699 |
+
1. Concatenate Down block output
|
700 |
+
2. Resnet block with time embedding
|
701 |
+
3. Attention Block
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, in_channels, out_channels, t_emb_dim, up_sample,
|
705 |
+
num_heads, num_layers, norm_channels, cross_attn=False, context_dim=None):
|
706 |
+
super().__init__()
|
707 |
+
self.num_layers = num_layers
|
708 |
+
self.up_sample = up_sample
|
709 |
+
self.t_emb_dim = t_emb_dim
|
710 |
+
self.cross_attn = cross_attn
|
711 |
+
self.context_dim = context_dim
|
712 |
+
self.resnet_conv_first = nn.ModuleList(
|
713 |
+
[
|
714 |
+
nn.Sequential(
|
715 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
716 |
+
nn.SiLU(),
|
717 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=3, stride=1,
|
718 |
+
padding=1),
|
719 |
+
)
|
720 |
+
for i in range(num_layers)
|
721 |
+
]
|
722 |
+
)
|
723 |
+
|
724 |
+
if self.t_emb_dim is not None:
|
725 |
+
self.t_emb_layers = nn.ModuleList([
|
726 |
+
nn.Sequential(
|
727 |
+
nn.SiLU(),
|
728 |
+
nn.Linear(t_emb_dim, out_channels)
|
729 |
+
)
|
730 |
+
for _ in range(num_layers)
|
731 |
+
])
|
732 |
+
|
733 |
+
self.resnet_conv_second = nn.ModuleList(
|
734 |
+
[
|
735 |
+
nn.Sequential(
|
736 |
+
nn.GroupNorm(norm_channels, out_channels),
|
737 |
+
nn.SiLU(),
|
738 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
739 |
+
)
|
740 |
+
for _ in range(num_layers)
|
741 |
+
]
|
742 |
+
)
|
743 |
+
|
744 |
+
self.attention_norms = nn.ModuleList(
|
745 |
+
[
|
746 |
+
nn.GroupNorm(norm_channels, out_channels)
|
747 |
+
for _ in range(num_layers)
|
748 |
+
]
|
749 |
+
)
|
750 |
+
|
751 |
+
self.attentions = nn.ModuleList(
|
752 |
+
[
|
753 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
754 |
+
for _ in range(num_layers)
|
755 |
+
]
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.cross_attn:
|
759 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
760 |
+
self.cross_attention_norms = nn.ModuleList(
|
761 |
+
[nn.GroupNorm(norm_channels, out_channels)
|
762 |
+
for _ in range(num_layers)]
|
763 |
+
)
|
764 |
+
self.cross_attentions = nn.ModuleList(
|
765 |
+
[nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
766 |
+
for _ in range(num_layers)]
|
767 |
+
)
|
768 |
+
self.context_proj = nn.ModuleList(
|
769 |
+
[nn.Linear(context_dim, out_channels)
|
770 |
+
for _ in range(num_layers)]
|
771 |
+
)
|
772 |
+
self.residual_input_conv = nn.ModuleList(
|
773 |
+
[
|
774 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
775 |
+
for i in range(num_layers)
|
776 |
+
]
|
777 |
+
)
|
778 |
+
self.up_sample_conv = nn.ConvTranspose2d(in_channels // 2, in_channels // 2,
|
779 |
+
4, 2, 1) \
|
780 |
+
if self.up_sample else nn.Identity()
|
781 |
+
|
782 |
+
def forward(self, x, out_down=None, t_emb=None, context=None):
|
783 |
+
x = self.up_sample_conv(x)
|
784 |
+
if out_down is not None:
|
785 |
+
x = torch.cat([x, out_down], dim=1)
|
786 |
+
|
787 |
+
out = x
|
788 |
+
for i in range(self.num_layers):
|
789 |
+
# Resnet
|
790 |
+
resnet_input = out
|
791 |
+
out = self.resnet_conv_first[i](out)
|
792 |
+
if self.t_emb_dim is not None:
|
793 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
794 |
+
out = self.resnet_conv_second[i](out)
|
795 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
796 |
+
# Self Attention
|
797 |
+
batch_size, channels, h, w = out.shape
|
798 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
799 |
+
in_attn = self.attention_norms[i](in_attn)
|
800 |
+
in_attn = in_attn.transpose(1, 2)
|
801 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
802 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
803 |
+
out = out + out_attn
|
804 |
+
# Cross Attention
|
805 |
+
if self.cross_attn:
|
806 |
+
assert context is not None, "context cannot be None if cross attention layers are used"
|
807 |
+
batch_size, channels, h, w = out.shape
|
808 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
809 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
810 |
+
in_attn = in_attn.transpose(1, 2)
|
811 |
+
assert len(context.shape) == 3, \
|
812 |
+
"Context shape does not match B,_,CONTEXT_DIM"
|
813 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim,\
|
814 |
+
"Context shape does not match B,_,CONTEXT_DIM"
|
815 |
+
context_proj = self.context_proj[i](context)
|
816 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
817 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
818 |
+
out = out + out_attn
|
819 |
+
|
820 |
+
return out
|
821 |
+
|
822 |
+
"""Vqvae"""
|
823 |
+
|
824 |
+
import torch
|
825 |
+
import torch.nn as nn
|
826 |
+
|
827 |
+
|
828 |
+
class VQVAE(nn.Module):
|
829 |
+
def __init__(self, im_channels, model_config):
|
830 |
+
super().__init__()
|
831 |
+
self.down_channels = model_config.down_channels
|
832 |
+
self.mid_channels = model_config.mid_channels
|
833 |
+
self.down_sample = model_config.down_sample
|
834 |
+
self.num_down_layers = model_config.num_down_layers
|
835 |
+
self.num_mid_layers = model_config.num_mid_layers
|
836 |
+
self.num_up_layers = model_config.num_up_layers
|
837 |
+
|
838 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
839 |
+
self.attns = model_config.attn_down
|
840 |
+
|
841 |
+
# Latent Dimension
|
842 |
+
self.z_channels = model_config.z_channels
|
843 |
+
self.codebook_size = model_config.codebook_size
|
844 |
+
self.norm_channels = model_config.norm_channels
|
845 |
+
self.num_heads = model_config.num_heads
|
846 |
+
|
847 |
+
# Assertion to validate the channel information
|
848 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
849 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
850 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
851 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
852 |
+
|
853 |
+
# Wherever we use downsampling in encoder correspondingly use
|
854 |
+
# upsampling in decoder
|
855 |
+
self.up_sample = list(reversed(self.down_sample))
|
856 |
+
|
857 |
+
##################### Encoder ######################
|
858 |
+
self.encoder_conv_in = nn.Conv2d(im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1))
|
859 |
+
|
860 |
+
# Downblock + Midblock
|
861 |
+
self.encoder_layers = nn.ModuleList([])
|
862 |
+
for i in range(len(self.down_channels) - 1):
|
863 |
+
self.encoder_layers.append(DownBlock(self.down_channels[i], self.down_channels[i + 1],
|
864 |
+
t_emb_dim=None, down_sample=self.down_sample[i],
|
865 |
+
num_heads=self.num_heads,
|
866 |
+
num_layers=self.num_down_layers,
|
867 |
+
attn=self.attns[i],
|
868 |
+
norm_channels=self.norm_channels))
|
869 |
+
|
870 |
+
self.encoder_mids = nn.ModuleList([])
|
871 |
+
for i in range(len(self.mid_channels) - 1):
|
872 |
+
self.encoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i + 1],
|
873 |
+
t_emb_dim=None,
|
874 |
+
num_heads=self.num_heads,
|
875 |
+
num_layers=self.num_mid_layers,
|
876 |
+
norm_channels=self.norm_channels))
|
877 |
+
|
878 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
879 |
+
self.encoder_conv_out = nn.Conv2d(self.down_channels[-1], self.z_channels, kernel_size=3, padding=1)
|
880 |
+
|
881 |
+
# Pre Quantization Convolution
|
882 |
+
self.pre_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
883 |
+
|
884 |
+
# Codebook
|
885 |
+
self.embedding = nn.Embedding(self.codebook_size, self.z_channels)
|
886 |
+
####################################################
|
887 |
+
|
888 |
+
##################### Decoder ######################
|
889 |
+
|
890 |
+
# Post Quantization Convolution
|
891 |
+
self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
892 |
+
self.decoder_conv_in = nn.Conv2d(self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1))
|
893 |
+
|
894 |
+
# Midblock + Upblock
|
895 |
+
self.decoder_mids = nn.ModuleList([])
|
896 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
897 |
+
self.decoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i - 1],
|
898 |
+
t_emb_dim=None,
|
899 |
+
num_heads=self.num_heads,
|
900 |
+
num_layers=self.num_mid_layers,
|
901 |
+
norm_channels=self.norm_channels))
|
902 |
+
|
903 |
+
self.decoder_layers = nn.ModuleList([])
|
904 |
+
for i in reversed(range(1, len(self.down_channels))):
|
905 |
+
self.decoder_layers.append(UpBlock(self.down_channels[i], self.down_channels[i - 1],
|
906 |
+
t_emb_dim=None, up_sample=self.down_sample[i - 1],
|
907 |
+
num_heads=self.num_heads,
|
908 |
+
num_layers=self.num_up_layers,
|
909 |
+
attn=self.attns[i-1],
|
910 |
+
norm_channels=self.norm_channels))
|
911 |
+
|
912 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
913 |
+
self.decoder_conv_out = nn.Conv2d(self.down_channels[0], im_channels, kernel_size=3, padding=1)
|
914 |
+
|
915 |
+
def quantize(self, x):
|
916 |
+
B, C, H, W = x.shape
|
917 |
+
|
918 |
+
# B, C, H, W -> B, H, W, C
|
919 |
+
x = x.permute(0, 2, 3, 1)
|
920 |
+
|
921 |
+
# B, H, W, C -> B, H*W, C
|
922 |
+
x = x.reshape(x.size(0), -1, x.size(-1))
|
923 |
+
|
924 |
+
# Find nearest embedding/codebook vector
|
925 |
+
# dist between (B, H*W, C) and (B, K, C) -> (B, H*W, K)
|
926 |
+
dist = torch.cdist(x, self.embedding.weight[None, :].repeat((x.size(0), 1, 1)))
|
927 |
+
# (B, H*W)
|
928 |
+
min_encoding_indices = torch.argmin(dist, dim=-1)
|
929 |
+
|
930 |
+
# Replace encoder output with nearest codebook
|
931 |
+
# quant_out -> B*H*W, C
|
932 |
+
quant_out = torch.index_select(self.embedding.weight, 0, min_encoding_indices.view(-1))
|
933 |
+
|
934 |
+
# x -> B*H*W, C
|
935 |
+
x = x.reshape((-1, x.size(-1)))
|
936 |
+
commmitment_loss = torch.mean((quant_out.detach() - x) ** 2)
|
937 |
+
codebook_loss = torch.mean((quant_out - x.detach()) ** 2)
|
938 |
+
quantize_losses = {
|
939 |
+
'codebook_loss': codebook_loss,
|
940 |
+
'commitment_loss': commmitment_loss
|
941 |
+
}
|
942 |
+
# Straight through estimation
|
943 |
+
quant_out = x + (quant_out - x).detach()
|
944 |
+
|
945 |
+
# quant_out -> B, C, H, W
|
946 |
+
quant_out = quant_out.reshape((B, H, W, C)).permute(0, 3, 1, 2)
|
947 |
+
min_encoding_indices = min_encoding_indices.reshape((-1, quant_out.size(-2), quant_out.size(-1)))
|
948 |
+
return quant_out, quantize_losses, min_encoding_indices
|
949 |
+
|
950 |
+
def encode(self, x):
|
951 |
+
out = self.encoder_conv_in(x)
|
952 |
+
for idx, down in enumerate(self.encoder_layers):
|
953 |
+
out = down(out)
|
954 |
+
for mid in self.encoder_mids:
|
955 |
+
out = mid(out)
|
956 |
+
out = self.encoder_norm_out(out)
|
957 |
+
out = nn.SiLU()(out)
|
958 |
+
out = self.encoder_conv_out(out)
|
959 |
+
out = self.pre_quant_conv(out)
|
960 |
+
out, quant_losses, _ = self.quantize(out)
|
961 |
+
return out, quant_losses
|
962 |
+
|
963 |
+
def decode(self, z):
|
964 |
+
out = z
|
965 |
+
out = self.post_quant_conv(out)
|
966 |
+
out = self.decoder_conv_in(out)
|
967 |
+
for mid in self.decoder_mids:
|
968 |
+
out = mid(out)
|
969 |
+
for idx, up in enumerate(self.decoder_layers):
|
970 |
+
out = up(out)
|
971 |
+
|
972 |
+
out = self.decoder_norm_out(out)
|
973 |
+
out = nn.SiLU()(out)
|
974 |
+
out = self.decoder_conv_out(out)
|
975 |
+
return out
|
976 |
+
|
977 |
+
def forward(self, x):
|
978 |
+
z, quant_losses = self.encode(x)
|
979 |
+
out = self.decode(z)
|
980 |
+
return out, z, quant_losses
|
981 |
+
|
982 |
+
"""Vae"""
|
983 |
+
|
984 |
+
import torch
|
985 |
+
import torch.nn as nn
|
986 |
+
|
987 |
+
|
988 |
+
class VAE(nn.Module):
|
989 |
+
def __init__(self, im_channels, model_config):
|
990 |
+
super().__init__()
|
991 |
+
self.down_channels = model_config['down_channels']
|
992 |
+
self.mid_channels = model_config['mid_channels']
|
993 |
+
self.down_sample = model_config['down_sample']
|
994 |
+
self.num_down_layers = model_config['num_down_layers']
|
995 |
+
self.num_mid_layers = model_config['num_mid_layers']
|
996 |
+
self.num_up_layers = model_config['num_up_layers']
|
997 |
+
|
998 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
999 |
+
self.attns = model_config['attn_down']
|
1000 |
+
|
1001 |
+
# Latent Dimension
|
1002 |
+
self.z_channels = model_config['z_channels']
|
1003 |
+
self.norm_channels = model_config['norm_channels']
|
1004 |
+
self.num_heads = model_config['num_heads']
|
1005 |
+
|
1006 |
+
# Assertion to validate the channel information
|
1007 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
1008 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
1009 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
1010 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
1011 |
+
|
1012 |
+
# Wherever we use downsampling in encoder correspondingly use
|
1013 |
+
# upsampling in decoder
|
1014 |
+
self.up_sample = list(reversed(self.down_sample))
|
1015 |
+
|
1016 |
+
##################### Encoder ######################
|
1017 |
+
self.encoder_conv_in = nn.Conv2d(im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1))
|
1018 |
+
|
1019 |
+
# Downblock + Midblock
|
1020 |
+
self.encoder_layers = nn.ModuleList([])
|
1021 |
+
for i in range(len(self.down_channels) - 1):
|
1022 |
+
self.encoder_layers.append(DownBlock(self.down_channels[i], self.down_channels[i + 1],
|
1023 |
+
t_emb_dim=None, down_sample=self.down_sample[i],
|
1024 |
+
num_heads=self.num_heads,
|
1025 |
+
num_layers=self.num_down_layers,
|
1026 |
+
attn=self.attns[i],
|
1027 |
+
norm_channels=self.norm_channels))
|
1028 |
+
|
1029 |
+
self.encoder_mids = nn.ModuleList([])
|
1030 |
+
for i in range(len(self.mid_channels) - 1):
|
1031 |
+
self.encoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i + 1],
|
1032 |
+
t_emb_dim=None,
|
1033 |
+
num_heads=self.num_heads,
|
1034 |
+
num_layers=self.num_mid_layers,
|
1035 |
+
norm_channels=self.norm_channels))
|
1036 |
+
|
1037 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
1038 |
+
self.encoder_conv_out = nn.Conv2d(self.down_channels[-1], 2*self.z_channels, kernel_size=3, padding=1)
|
1039 |
+
|
1040 |
+
# Latent Dimension is 2*Latent because we are predicting mean & variance
|
1041 |
+
self.pre_quant_conv = nn.Conv2d(2*self.z_channels, 2*self.z_channels, kernel_size=1)
|
1042 |
+
####################################################
|
1043 |
+
|
1044 |
+
|
1045 |
+
##################### Decoder ######################
|
1046 |
+
self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
1047 |
+
self.decoder_conv_in = nn.Conv2d(self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1))
|
1048 |
+
|
1049 |
+
# Midblock + Upblock
|
1050 |
+
self.decoder_mids = nn.ModuleList([])
|
1051 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
1052 |
+
self.decoder_mids.append(MidBlock(self.mid_channels[i], self.mid_channels[i - 1],
|
1053 |
+
t_emb_dim=None,
|
1054 |
+
num_heads=self.num_heads,
|
1055 |
+
num_layers=self.num_mid_layers,
|
1056 |
+
norm_channels=self.norm_channels))
|
1057 |
+
|
1058 |
+
self.decoder_layers = nn.ModuleList([])
|
1059 |
+
for i in reversed(range(1, len(self.down_channels))):
|
1060 |
+
self.decoder_layers.append(UpBlock(self.down_channels[i], self.down_channels[i - 1],
|
1061 |
+
t_emb_dim=None, up_sample=self.down_sample[i - 1],
|
1062 |
+
num_heads=self.num_heads,
|
1063 |
+
num_layers=self.num_up_layers,
|
1064 |
+
attn=self.attns[i - 1],
|
1065 |
+
norm_channels=self.norm_channels))
|
1066 |
+
|
1067 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
1068 |
+
self.decoder_conv_out = nn.Conv2d(self.down_channels[0], im_channels, kernel_size=3, padding=1)
|
1069 |
+
|
1070 |
+
def encode(self, x):
|
1071 |
+
out = self.encoder_conv_in(x)
|
1072 |
+
for idx, down in enumerate(self.encoder_layers):
|
1073 |
+
out = down(out)
|
1074 |
+
for mid in self.encoder_mids:
|
1075 |
+
out = mid(out)
|
1076 |
+
out = self.encoder_norm_out(out)
|
1077 |
+
out = nn.SiLU()(out)
|
1078 |
+
out = self.encoder_conv_out(out)
|
1079 |
+
out = self.pre_quant_conv(out)
|
1080 |
+
mean, logvar = torch.chunk(out, 2, dim=1)
|
1081 |
+
std = torch.exp(0.5 * logvar)
|
1082 |
+
sample = mean + std * torch.randn(mean.shape).to(device=x.device)
|
1083 |
+
return sample, out
|
1084 |
+
|
1085 |
+
def decode(self, z):
|
1086 |
+
out = z
|
1087 |
+
out = self.post_quant_conv(out)
|
1088 |
+
out = self.decoder_conv_in(out)
|
1089 |
+
for mid in self.decoder_mids:
|
1090 |
+
out = mid(out)
|
1091 |
+
for idx, up in enumerate(self.decoder_layers):
|
1092 |
+
out = up(out)
|
1093 |
+
|
1094 |
+
out = self.decoder_norm_out(out)
|
1095 |
+
out = nn.SiLU()(out)
|
1096 |
+
out = self.decoder_conv_out(out)
|
1097 |
+
return out
|
1098 |
+
|
1099 |
+
def forward(self, x):
|
1100 |
+
z, encoder_output = self.encode(x)
|
1101 |
+
out = self.decode(z)
|
1102 |
+
return out, encoder_output
|
1103 |
+
|
1104 |
+
"""Discriminator"""
|
1105 |
+
|
1106 |
+
import torch
|
1107 |
+
import torch.nn as nn
|
1108 |
+
|
1109 |
+
|
1110 |
+
class Discriminator(nn.Module):
|
1111 |
+
r"""
|
1112 |
+
PatchGAN Discriminator.
|
1113 |
+
Rather than taking IMG_CHANNELSxIMG_HxIMG_W all the way to
|
1114 |
+
1 scalar value , we instead predict grid of values.
|
1115 |
+
Where each grid is prediction of how likely
|
1116 |
+
the discriminator thinks that the image patch corresponding
|
1117 |
+
to the grid cell is real
|
1118 |
+
"""
|
1119 |
+
|
1120 |
+
def __init__(self, im_channels=3,
|
1121 |
+
conv_channels=[64, 128, 256],
|
1122 |
+
kernels=[4,4,4,4],
|
1123 |
+
strides=[2,2,2,1],
|
1124 |
+
paddings=[1,1,1,1]):
|
1125 |
+
super().__init__()
|
1126 |
+
self.im_channels = im_channels
|
1127 |
+
activation = nn.LeakyReLU(0.2)
|
1128 |
+
layers_dim = [self.im_channels] + conv_channels + [1]
|
1129 |
+
self.layers = nn.ModuleList([
|
1130 |
+
nn.Sequential(
|
1131 |
+
nn.Conv2d(layers_dim[i], layers_dim[i + 1],
|
1132 |
+
kernel_size=kernels[i],
|
1133 |
+
stride=strides[i],
|
1134 |
+
padding=paddings[i],
|
1135 |
+
bias=False if i !=0 else True),
|
1136 |
+
nn.BatchNorm2d(layers_dim[i + 1]) if i != len(layers_dim) - 2 and i != 0 else nn.Identity(),
|
1137 |
+
activation if i != len(layers_dim) - 2 else nn.Identity()
|
1138 |
+
)
|
1139 |
+
for i in range(len(layers_dim) - 1)
|
1140 |
+
])
|
1141 |
+
|
1142 |
+
def forward(self, x):
|
1143 |
+
out = x
|
1144 |
+
for layer in self.layers:
|
1145 |
+
out = layer(out)
|
1146 |
+
return out
|
1147 |
+
|
1148 |
+
|
1149 |
+
# if __name__ == '__main__':
|
1150 |
+
# x = torch.randn((2,3, 256, 256))
|
1151 |
+
# prob = Discriminator(im_channels=3)(x)
|
1152 |
+
# print(prob.shape)
|
1153 |
+
|
1154 |
+
# import os
|
1155 |
+
|
1156 |
+
# image_paths = [os.path.join("/home/taruntejaneurips23/Ashish/datasets/animefacedata/images", f)
|
1157 |
+
# for f in os.listdir("/home/taruntejaneurips23/Ashish/datasets/animefacedata/images")]
|
1158 |
+
# image_paths
|
1159 |
+
|
1160 |
+
import glob
|
1161 |
+
import os
|
1162 |
+
import torchvision
|
1163 |
+
from PIL import Image
|
1164 |
+
from tqdm import tqdm, trange
|
1165 |
+
# from utils.diffusion_utils import load_latents
|
1166 |
+
from torch.utils.data.dataset import Dataset
|
1167 |
+
|
1168 |
+
import pickle
|
1169 |
+
import glob
|
1170 |
+
import os
|
1171 |
+
import torch
|
1172 |
+
|
1173 |
+
|
1174 |
+
def load_latents(latent_path):
|
1175 |
+
r"""
|
1176 |
+
Simple utility to save latents to speed up ldm training
|
1177 |
+
:param latent_path:
|
1178 |
+
:return:
|
1179 |
+
"""
|
1180 |
+
latent_maps = {}
|
1181 |
+
for fname in glob.glob(os.path.join(latent_path, '*.pkl')):
|
1182 |
+
s = pickle.load(open(fname, 'rb'))
|
1183 |
+
for k, v in s.items():
|
1184 |
+
latent_maps[k] = v[0]
|
1185 |
+
return latent_maps
|
1186 |
+
|
1187 |
+
|
1188 |
+
def drop_text_condition(text_embed, im, empty_text_embed, text_drop_prob):
|
1189 |
+
if text_drop_prob > 0:
|
1190 |
+
text_drop_mask = torch.zeros((im.shape[0]), device=im.device).float().uniform_(0,
|
1191 |
+
1) < text_drop_prob
|
1192 |
+
assert empty_text_embed is not None, ("Text Conditioning required as well as"
|
1193 |
+
" text dropping but empty text representation not created")
|
1194 |
+
text_embed[text_drop_mask, :, :] = empty_text_embed[0]
|
1195 |
+
return text_embed
|
1196 |
+
|
1197 |
+
|
1198 |
+
def drop_image_condition(image_condition, im, im_drop_prob):
|
1199 |
+
if im_drop_prob > 0:
|
1200 |
+
im_drop_mask = torch.zeros((im.shape[0], 1, 1, 1), device=im.device).float().uniform_(0,
|
1201 |
+
1) > im_drop_prob
|
1202 |
+
return image_condition * im_drop_mask
|
1203 |
+
else:
|
1204 |
+
return image_condition
|
1205 |
+
|
1206 |
+
|
1207 |
+
def drop_class_condition(class_condition, class_drop_prob, im):
|
1208 |
+
if class_drop_prob > 0:
|
1209 |
+
class_drop_mask = torch.zeros((im.shape[0], 1), device=im.device).float().uniform_(0,
|
1210 |
+
1) > class_drop_prob
|
1211 |
+
return class_condition * class_drop_mask
|
1212 |
+
else:
|
1213 |
+
return class_condition
|
1214 |
+
|
1215 |
+
|
1216 |
+
class MnistDataset(Dataset):
|
1217 |
+
r"""
|
1218 |
+
Nothing special here. Just a simple dataset class for mnist images.
|
1219 |
+
Created a dataset class rather using torchvision to allow
|
1220 |
+
replacement with any other image dataset
|
1221 |
+
"""
|
1222 |
+
|
1223 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1224 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1225 |
+
r"""
|
1226 |
+
Init method for initializing the dataset properties
|
1227 |
+
:param split: train/test to locate the image files
|
1228 |
+
:param im_path: root folder of images
|
1229 |
+
:param im_ext: image extension. assumes all
|
1230 |
+
images would be this type.
|
1231 |
+
"""
|
1232 |
+
self.split = split
|
1233 |
+
self.im_size = im_size
|
1234 |
+
self.im_channels = im_channels
|
1235 |
+
|
1236 |
+
# Should we use latents or not
|
1237 |
+
self.latent_maps = None
|
1238 |
+
self.use_latents = False
|
1239 |
+
|
1240 |
+
# Conditioning for the dataset
|
1241 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1242 |
+
|
1243 |
+
self.images, self.labels = self.load_images(im_path)
|
1244 |
+
|
1245 |
+
# Whether to load images and call vae or to load latents
|
1246 |
+
if use_latents and latent_path is not None:
|
1247 |
+
latent_maps = load_latents(latent_path)
|
1248 |
+
if len(latent_maps) == len(self.images):
|
1249 |
+
self.use_latents = True
|
1250 |
+
self.latent_maps = latent_maps
|
1251 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1252 |
+
else:
|
1253 |
+
print('Latents not found')
|
1254 |
+
|
1255 |
+
def load_images(self, im_path):
|
1256 |
+
r"""
|
1257 |
+
Gets all images from the path specified
|
1258 |
+
and stacks them all up
|
1259 |
+
:param im_path:
|
1260 |
+
:return:
|
1261 |
+
"""
|
1262 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1263 |
+
ims = []
|
1264 |
+
labels = []
|
1265 |
+
for d_name in tqdm(os.listdir(im_path)):
|
1266 |
+
fnames = glob.glob(os.path.join(im_path, d_name, '*.{}'.format('png')))
|
1267 |
+
fnames += glob.glob(os.path.join(im_path, d_name, '*.{}'.format('jpg')))
|
1268 |
+
fnames += glob.glob(os.path.join(im_path, d_name, '*.{}'.format('jpeg')))
|
1269 |
+
for fname in fnames:
|
1270 |
+
ims.append(fname)
|
1271 |
+
if 'class' in self.condition_types:
|
1272 |
+
labels.append(int(d_name))
|
1273 |
+
print('Found {} images for split {}'.format(len(ims), self.split))
|
1274 |
+
return ims, labels
|
1275 |
+
|
1276 |
+
def __len__(self):
|
1277 |
+
return len(self.images)
|
1278 |
+
|
1279 |
+
def __getitem__(self, index):
|
1280 |
+
######## Set Conditioning Info ########
|
1281 |
+
cond_inputs = {}
|
1282 |
+
if 'class' in self.condition_types:
|
1283 |
+
cond_inputs['class'] = self.labels[index]
|
1284 |
+
#######################################
|
1285 |
+
|
1286 |
+
if self.use_latents:
|
1287 |
+
latent = self.latent_maps[self.images[index]]
|
1288 |
+
if len(self.condition_types) == 0:
|
1289 |
+
return latent
|
1290 |
+
else:
|
1291 |
+
return latent, cond_inputs
|
1292 |
+
else:
|
1293 |
+
im = Image.open(self.images[index])
|
1294 |
+
im_tensor = torchvision.transforms.ToTensor()(im)
|
1295 |
+
|
1296 |
+
# Convert input to -1 to 1 range.
|
1297 |
+
im_tensor = (2 * im_tensor) - 1
|
1298 |
+
if len(self.condition_types) == 0:
|
1299 |
+
return im_tensor
|
1300 |
+
else:
|
1301 |
+
return im_tensor, cond_inputs
|
1302 |
+
|
1303 |
+
|
1304 |
+
class AnimeFaceDataset(Dataset):
|
1305 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1306 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1307 |
+
|
1308 |
+
self.split = split
|
1309 |
+
self.im_size = im_size
|
1310 |
+
self.im_channels = im_channels
|
1311 |
+
|
1312 |
+
# Should we use latents or not
|
1313 |
+
self.latent_maps = None
|
1314 |
+
self.use_latents = False
|
1315 |
+
|
1316 |
+
# Conditioning for the dataset
|
1317 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1318 |
+
|
1319 |
+
self.images = self.load_images(im_path)
|
1320 |
+
|
1321 |
+
# Whether to load images and call vae or to load latents
|
1322 |
+
if use_latents and latent_path is not None:
|
1323 |
+
latent_maps = load_latents(latent_path)
|
1324 |
+
if len(latent_maps) == len(self.images):
|
1325 |
+
self.use_latents = True
|
1326 |
+
self.latent_maps = latent_maps
|
1327 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1328 |
+
else:
|
1329 |
+
print('Latents not found')
|
1330 |
+
|
1331 |
+
def load_images(self, im_path):
|
1332 |
+
r"""
|
1333 |
+
Gets all images from the path specified
|
1334 |
+
and stacks them all up
|
1335 |
+
:param im_path:
|
1336 |
+
:return:
|
1337 |
+
"""
|
1338 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1339 |
+
# ims = []
|
1340 |
+
# labels = []
|
1341 |
+
ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1342 |
+
return ims
|
1343 |
+
|
1344 |
+
def __len__(self):
|
1345 |
+
return len(self.images)
|
1346 |
+
|
1347 |
+
def __getitem__(self, index):
|
1348 |
+
######## Set Conditioning Info ########
|
1349 |
+
# cond_inputs = {}
|
1350 |
+
# if 'class' in self.condition_types:
|
1351 |
+
# cond_inputs['class'] = self.labels[index]
|
1352 |
+
#######################################
|
1353 |
+
|
1354 |
+
if self.use_latents:
|
1355 |
+
latent = self.latent_maps[self.images[index]]
|
1356 |
+
if len(self.condition_types) == 0:
|
1357 |
+
return latent
|
1358 |
+
# else:
|
1359 |
+
# return latent, cond_inputs
|
1360 |
+
else:
|
1361 |
+
im = Image.open(self.images[index])
|
1362 |
+
im_tensor = torchvision.transforms.Compose([
|
1363 |
+
torchvision.transforms.Resize(self.im_size),
|
1364 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1365 |
+
torchvision.transforms.ToTensor(),
|
1366 |
+
])(im)
|
1367 |
+
im.close()
|
1368 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1369 |
+
|
1370 |
+
# Convert input to -1 to 1 range.
|
1371 |
+
im_tensor = (2 * im_tensor) - 1
|
1372 |
+
if len(self.condition_types) == 0:
|
1373 |
+
return im_tensor
|
1374 |
+
# else:
|
1375 |
+
# return im_tensor, cond_inputs
|
1376 |
+
|
1377 |
+
|
1378 |
+
import glob
|
1379 |
+
import os
|
1380 |
+
import random
|
1381 |
+
import torch
|
1382 |
+
import torchvision
|
1383 |
+
import numpy as np
|
1384 |
+
from PIL import Image
|
1385 |
+
from tqdm import tqdm
|
1386 |
+
from torch.utils.data.dataset import Dataset
|
1387 |
+
|
1388 |
+
|
1389 |
+
class CelebDataset(Dataset):
|
1390 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1391 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1392 |
+
|
1393 |
+
self.split = split
|
1394 |
+
self.im_size = im_size
|
1395 |
+
self.im_channels = im_channels
|
1396 |
+
|
1397 |
+
# Should we use latents or not
|
1398 |
+
self.latent_maps = None
|
1399 |
+
self.use_latents = False
|
1400 |
+
|
1401 |
+
# Conditioning for the dataset
|
1402 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1403 |
+
|
1404 |
+
self.images = self.load_images(im_path)
|
1405 |
+
|
1406 |
+
# Whether to load images and call vae or to load latents
|
1407 |
+
if use_latents and latent_path is not None:
|
1408 |
+
latent_maps = load_latents(latent_path)
|
1409 |
+
if len(latent_maps) == len(self.images):
|
1410 |
+
self.use_latents = True
|
1411 |
+
self.latent_maps = latent_maps
|
1412 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1413 |
+
else:
|
1414 |
+
print('Latents not found')
|
1415 |
+
|
1416 |
+
def load_images(self, im_path):
|
1417 |
+
r"""
|
1418 |
+
Gets all images from the path specified
|
1419 |
+
and stacks them all up
|
1420 |
+
:param im_path:
|
1421 |
+
:return:
|
1422 |
+
"""
|
1423 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1424 |
+
# ims = []
|
1425 |
+
# labels = []
|
1426 |
+
ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1427 |
+
return ims
|
1428 |
+
|
1429 |
+
def __len__(self):
|
1430 |
+
return len(self.images)
|
1431 |
+
|
1432 |
+
def __getitem__(self, index):
|
1433 |
+
######## Set Conditioning Info ########
|
1434 |
+
# cond_inputs = {}
|
1435 |
+
# if 'class' in self.condition_types:
|
1436 |
+
# cond_inputs['class'] = self.labels[index]
|
1437 |
+
#######################################
|
1438 |
+
|
1439 |
+
if self.use_latents:
|
1440 |
+
latent = self.latent_maps[self.images[index]]
|
1441 |
+
if len(self.condition_types) == 0:
|
1442 |
+
return latent
|
1443 |
+
# else:
|
1444 |
+
# return latent, cond_inputs
|
1445 |
+
else:
|
1446 |
+
im = Image.open(self.images[index])
|
1447 |
+
im_tensor = torchvision.transforms.Compose([
|
1448 |
+
# torchvision.transforms.Resize(self.im_size),
|
1449 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1450 |
+
torchvision.transforms.ToTensor(),
|
1451 |
+
])(im)
|
1452 |
+
im.close()
|
1453 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1454 |
+
|
1455 |
+
# Convert input to -1 to 1 range.
|
1456 |
+
im_tensor = (2 * im_tensor) - 1
|
1457 |
+
if len(self.condition_types) == 0:
|
1458 |
+
return im_tensor
|
1459 |
+
# else:
|
1460 |
+
# return im_tensor, cond_inputs
|
1461 |
+
import pandas as pd
|
1462 |
+
class CelebHairDataset(Dataset):
|
1463 |
+
def __init__(self, split, im_path, im_size, im_channels,
|
1464 |
+
use_latents=False, latent_path=None, condition_config=None):
|
1465 |
+
|
1466 |
+
self.df = pd.read_csv("/home/taruntejaneurips23/Ashish/DDPM/hair_df_100.csv")
|
1467 |
+
self.split = split
|
1468 |
+
self.im_size = im_size
|
1469 |
+
self.im_channels = im_channels
|
1470 |
+
|
1471 |
+
# Should we use latents or not
|
1472 |
+
self.latent_maps = None
|
1473 |
+
self.use_latents = False
|
1474 |
+
|
1475 |
+
# Conditioning for the dataset
|
1476 |
+
self.condition_types = [] if condition_config is None else condition_config['condition_types']
|
1477 |
+
|
1478 |
+
self.images = self.load_images(im_path, self.df)
|
1479 |
+
|
1480 |
+
# Whether to load images and call vae or to load latents
|
1481 |
+
if use_latents and latent_path is not None:
|
1482 |
+
latent_maps = load_latents(latent_path)
|
1483 |
+
if len(latent_maps) == len(self.images):
|
1484 |
+
self.use_latents = True
|
1485 |
+
self.latent_maps = latent_maps
|
1486 |
+
print('Found {} latents'.format(len(self.latent_maps)))
|
1487 |
+
else:
|
1488 |
+
print('Latents not found')
|
1489 |
+
|
1490 |
+
def load_images(self, im_path, df):
|
1491 |
+
r"""
|
1492 |
+
Gets all images from the path specified
|
1493 |
+
and stacks them all up
|
1494 |
+
:param im_path:
|
1495 |
+
:return:
|
1496 |
+
"""
|
1497 |
+
assert os.path.exists(im_path), "images path {} does not exist".format(im_path)
|
1498 |
+
# ims = []
|
1499 |
+
# labels = []
|
1500 |
+
# ims = [os.path.join(im_path, f) for f in os.listdir(im_path)]
|
1501 |
+
ims = [os.path.join(im_path, i) for i in df.image_id.values]
|
1502 |
+
return ims
|
1503 |
+
|
1504 |
+
def __len__(self):
|
1505 |
+
return len(self.images)
|
1506 |
+
|
1507 |
+
def __getitem__(self, index):
|
1508 |
+
######## Set Conditioning Info ########
|
1509 |
+
# cond_inputs = {}
|
1510 |
+
# if 'class' in self.condition_types:
|
1511 |
+
# cond_inputs['class'] = self.labels[index]
|
1512 |
+
#######################################
|
1513 |
+
|
1514 |
+
if self.use_latents:
|
1515 |
+
latent = self.latent_maps[self.images[index]]
|
1516 |
+
if len(self.condition_types) == 0:
|
1517 |
+
return latent
|
1518 |
+
# else:
|
1519 |
+
# return latent, cond_inputs
|
1520 |
+
else:
|
1521 |
+
im = Image.open(self.images[index])
|
1522 |
+
im_tensor = torchvision.transforms.Compose([
|
1523 |
+
# torchvision.transforms.Resize(self.im_size),
|
1524 |
+
torchvision.transforms.CenterCrop(self.im_size),
|
1525 |
+
torchvision.transforms.ToTensor(),
|
1526 |
+
])(im)
|
1527 |
+
im.close()
|
1528 |
+
# im_tensor = torchvision.transforms.ToTensor()(im)
|
1529 |
+
|
1530 |
+
# Convert input to -1 to 1 range.
|
1531 |
+
im_tensor = (2 * im_tensor) - 1
|
1532 |
+
if len(self.condition_types) == 0:
|
1533 |
+
return im_tensor
|
1534 |
+
# else:
|
1535 |
+
# return im_tensor, cond_inputs
|
1536 |
+
|
1537 |
+
#"""Train VQVAE"""...............................................................................................................................................
|
1538 |
+
|
1539 |
+
# Commented out IPython magic to ensure Python compatibility.
|
1540 |
+
import torch
|
1541 |
+
import torch.nn as nn
|
1542 |
+
import yaml
|
1543 |
+
from ashish.MTP.Vaani.LDM.scripts.dotdict import DotDict
|
1544 |
+
|
1545 |
+
config_path = "/home/taruntejaneurips23/Ashish/DDPM/_5_ldm_celeba.yaml"
|
1546 |
+
with open(config_path, 'r') as file:
|
1547 |
+
Config = yaml.safe_load(file)
|
1548 |
+
|
1549 |
+
|
1550 |
+
Config = DotDict.from_dict(Config)
|
1551 |
+
dataset_config = Config.dataset_params
|
1552 |
+
diffusion_config = Config.diffusion_params
|
1553 |
+
model_config = Config.model_params
|
1554 |
+
train_config = Config.train_params
|
1555 |
+
|
1556 |
+
import torch
|
1557 |
+
import os
|
1558 |
+
import random
|
1559 |
+
import numpy as np
|
1560 |
+
import matplotlib.pyplot as plt
|
1561 |
+
from tqdm import tqdm
|
1562 |
+
from torch.optim import Adam
|
1563 |
+
from torch.utils.data import Dataset, TensorDataset, DataLoader
|
1564 |
+
# device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
|
1565 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
1566 |
+
|
1567 |
+
|
1568 |
+
|
1569 |
+
from torchvision.utils import make_grid
|
1570 |
+
|
1571 |
+
def trainVAE(Config):
|
1572 |
+
|
1573 |
+
dataset_config = Config.dataset_params
|
1574 |
+
autoencoder_config = Config.autoencoder_params
|
1575 |
+
train_config = Config.train_params
|
1576 |
+
|
1577 |
+
# Set the desired seed value #
|
1578 |
+
seed = train_config.seed
|
1579 |
+
torch.manual_seed(seed)
|
1580 |
+
np.random.seed(seed)
|
1581 |
+
random.seed(seed)
|
1582 |
+
if device == 'cuda':
|
1583 |
+
torch.cuda.manual_seed_all(seed)
|
1584 |
+
#############################
|
1585 |
+
|
1586 |
+
# Create the model and dataset #
|
1587 |
+
model = VQVAE(im_channels=dataset_config.im_channels,
|
1588 |
+
model_config=autoencoder_config).to(device)
|
1589 |
+
# model.load_state_dict(torch.load("/home/taruntejaneurips23/Ashish/DDPM/celebAhair_ldm/vqvae_autoencoder_ckpt.pth", map_location=device))
|
1590 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name)):
|
1591 |
+
print('Loaded vae checkpoint')
|
1592 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.vqvae_autoencoder_ckpt_name),
|
1593 |
+
map_location=device, weights_only=True))
|
1594 |
+
|
1595 |
+
# Create the dataset
|
1596 |
+
im_dataset_cls = {
|
1597 |
+
'mnist': MnistDataset,
|
1598 |
+
'celebA': CelebDataset,
|
1599 |
+
'animeface': AnimeFaceDataset,
|
1600 |
+
'celebAhair': CelebHairDataset
|
1601 |
+
}.get(dataset_config.name)
|
1602 |
+
|
1603 |
+
im_dataset = im_dataset_cls(split='train',
|
1604 |
+
im_path=dataset_config.im_path,
|
1605 |
+
im_size=dataset_config.im_size,
|
1606 |
+
im_channels=dataset_config.im_channels)
|
1607 |
+
|
1608 |
+
data_loader = DataLoader(im_dataset,
|
1609 |
+
batch_size=train_config.autoencoder_batch_size,
|
1610 |
+
shuffle=True,
|
1611 |
+
num_workers=os.cpu_count(),
|
1612 |
+
pin_memory=True,
|
1613 |
+
drop_last=True,
|
1614 |
+
persistent_workers=True, pin_memory_device=device)
|
1615 |
+
|
1616 |
+
# Create output directories
|
1617 |
+
if not os.path.exists(train_config.task_name):
|
1618 |
+
os.mkdir(train_config.task_name)
|
1619 |
+
|
1620 |
+
num_epochs = train_config.autoencoder_epochs
|
1621 |
+
|
1622 |
+
# L1/L2 loss for Reconstruction
|
1623 |
+
recon_criterion = torch.nn.MSELoss()
|
1624 |
+
# Disc Loss can even be BCEWithLogits
|
1625 |
+
disc_criterion = torch.nn.MSELoss()
|
1626 |
+
|
1627 |
+
# No need to freeze lpips as lpips.py takes care of that
|
1628 |
+
lpips_model = LPIPS().eval().to(device)
|
1629 |
+
discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)
|
1630 |
+
# discriminator.load_state_dict(torch.load("/home/taruntejaneurips23/Ashish/DDPM/celebAhair_ldm/vqvae_discriminator_ckpt.pth", map_location=device))
|
1631 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name)):
|
1632 |
+
print('Loaded discriminator checkpoint')
|
1633 |
+
discriminator.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.vqvae_discriminator_ckpt_name),
|
1634 |
+
map_location=device, weights_only=True))
|
1635 |
+
|
1636 |
+
optimizer_d = Adam(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1637 |
+
optimizer_g = Adam(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1638 |
+
|
1639 |
+
disc_step_start = train_config.disc_start
|
1640 |
+
step_count = 0
|
1641 |
+
|
1642 |
+
# This is for accumulating gradients incase the images are huge
|
1643 |
+
# And one cant afford higher batch sizes
|
1644 |
+
acc_steps = train_config.autoencoder_acc_steps
|
1645 |
+
image_save_steps = train_config.autoencoder_img_save_steps
|
1646 |
+
img_save_count = 0
|
1647 |
+
|
1648 |
+
for epoch_idx in trange(num_epochs, desc='Training VQVAE'):
|
1649 |
+
recon_losses = []
|
1650 |
+
codebook_losses = []
|
1651 |
+
#commitment_losses = []
|
1652 |
+
perceptual_losses = []
|
1653 |
+
disc_losses = []
|
1654 |
+
gen_losses = []
|
1655 |
+
losses = []
|
1656 |
+
|
1657 |
+
optimizer_g.zero_grad()
|
1658 |
+
optimizer_d.zero_grad()
|
1659 |
+
|
1660 |
+
# for im in tqdm(data_loader):
|
1661 |
+
for im in data_loader:
|
1662 |
+
step_count += 1
|
1663 |
+
im = im.float().to(device)
|
1664 |
+
|
1665 |
+
# Fetch autoencoders output(reconstructions)
|
1666 |
+
model_output = model(im)
|
1667 |
+
output, z, quantize_losses = model_output
|
1668 |
+
|
1669 |
+
# Image Saving Logic
|
1670 |
+
if step_count % image_save_steps == 0 or step_count == 1:
|
1671 |
+
sample_size = min(8, im.shape[0])
|
1672 |
+
save_output = torch.clamp(output[:sample_size], -1., 1.).detach().cpu()
|
1673 |
+
save_output = ((save_output + 1) / 2)
|
1674 |
+
save_input = ((im[:sample_size] + 1) / 2).detach().cpu()
|
1675 |
+
|
1676 |
+
grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)
|
1677 |
+
img = torchvision.transforms.ToPILImage()(grid)
|
1678 |
+
if not os.path.exists(os.path.join(train_config.task_name,'vqvae_autoencoder_samples')):
|
1679 |
+
os.mkdir(os.path.join(train_config.task_name, 'vqvae_autoencoder_samples'))
|
1680 |
+
img.save(os.path.join(train_config.task_name,'vqvae_autoencoder_samples',
|
1681 |
+
'current_autoencoder_sample_{}.png'.format(img_save_count)))
|
1682 |
+
img_save_count += 1
|
1683 |
+
img.close()
|
1684 |
+
|
1685 |
+
######### Optimize Generator ##########
|
1686 |
+
# L2 Loss
|
1687 |
+
recon_loss = recon_criterion(output, im)
|
1688 |
+
recon_losses.append(recon_loss.item())
|
1689 |
+
recon_loss = recon_loss / acc_steps
|
1690 |
+
g_loss = (recon_loss +
|
1691 |
+
(train_config.codebook_weight * quantize_losses['codebook_loss'] / acc_steps) +
|
1692 |
+
(train_config.commitment_beta * quantize_losses['commitment_loss'] / acc_steps))
|
1693 |
+
codebook_losses.append(train_config.codebook_weight * quantize_losses['codebook_loss'].item())
|
1694 |
+
# Adversarial loss only if disc_step_start steps passed
|
1695 |
+
if step_count > disc_step_start:
|
1696 |
+
disc_fake_pred = discriminator(model_output[0])
|
1697 |
+
disc_fake_loss = disc_criterion(disc_fake_pred,
|
1698 |
+
torch.ones(disc_fake_pred.shape,
|
1699 |
+
device=disc_fake_pred.device))
|
1700 |
+
gen_losses.append(train_config.disc_weight * disc_fake_loss.item())
|
1701 |
+
g_loss += train_config.disc_weight * disc_fake_loss / acc_steps
|
1702 |
+
lpips_loss = torch.mean(lpips_model(output, im)) / acc_steps
|
1703 |
+
perceptual_losses.append(train_config.perceptual_weight * lpips_loss.item())
|
1704 |
+
g_loss += train_config.perceptual_weight*lpips_loss / acc_steps
|
1705 |
+
losses.append(g_loss.item())
|
1706 |
+
g_loss.backward()
|
1707 |
+
#####################################
|
1708 |
+
|
1709 |
+
######### Optimize Discriminator #######
|
1710 |
+
if step_count > disc_step_start:
|
1711 |
+
fake = output
|
1712 |
+
disc_fake_pred = discriminator(fake.detach())
|
1713 |
+
disc_real_pred = discriminator(im)
|
1714 |
+
disc_fake_loss = disc_criterion(disc_fake_pred,
|
1715 |
+
torch.zeros(disc_fake_pred.shape,
|
1716 |
+
device=disc_fake_pred.device))
|
1717 |
+
disc_real_loss = disc_criterion(disc_real_pred,
|
1718 |
+
torch.ones(disc_real_pred.shape,
|
1719 |
+
device=disc_real_pred.device))
|
1720 |
+
disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2
|
1721 |
+
disc_losses.append(disc_loss.item())
|
1722 |
+
disc_loss = disc_loss / acc_steps
|
1723 |
+
disc_loss.backward()
|
1724 |
+
if step_count % acc_steps == 0:
|
1725 |
+
optimizer_d.step()
|
1726 |
+
optimizer_d.zero_grad()
|
1727 |
+
#####################################
|
1728 |
+
|
1729 |
+
if step_count % acc_steps == 0:
|
1730 |
+
optimizer_g.step()
|
1731 |
+
optimizer_g.zero_grad()
|
1732 |
+
optimizer_d.step()
|
1733 |
+
optimizer_d.zero_grad()
|
1734 |
+
optimizer_g.step()
|
1735 |
+
optimizer_g.zero_grad()
|
1736 |
+
if len(disc_losses) > 0:
|
1737 |
+
print(
|
1738 |
+
'Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | '
|
1739 |
+
'Codebook : {:.4f} | G Loss : {:.4f} | D Loss {:.4f}'.
|
1740 |
+
format(epoch_idx + 1,
|
1741 |
+
num_epochs,
|
1742 |
+
np.mean(recon_losses),
|
1743 |
+
np.mean(perceptual_losses),
|
1744 |
+
np.mean(codebook_losses),
|
1745 |
+
np.mean(gen_losses),
|
1746 |
+
np.mean(disc_losses)))
|
1747 |
+
else:
|
1748 |
+
print('Finished epoch: {}/{} | Recon Loss : {:.4f} | Perceptual Loss : {:.4f} | Codebook : {:.4f}'.
|
1749 |
+
format(epoch_idx + 1,
|
1750 |
+
num_epochs,
|
1751 |
+
np.mean(recon_losses),
|
1752 |
+
np.mean(perceptual_losses),
|
1753 |
+
np.mean(codebook_losses)))
|
1754 |
+
|
1755 |
+
torch.save(model.state_dict(), os.path.join(train_config.task_name,
|
1756 |
+
train_config.vqvae_autoencoder_ckpt_name))
|
1757 |
+
torch.save(discriminator.state_dict(), os.path.join(train_config.task_name,
|
1758 |
+
train_config.vqvae_discriminator_ckpt_name))
|
1759 |
+
print('Done Training...')
|
1760 |
+
|
1761 |
+
|
1762 |
+
# trainVAE(Config)
|
1763 |
+
|
1764 |
+
import torch
|
1765 |
+
import torch.nn as nn
|
1766 |
+
|
1767 |
+
|
1768 |
+
class Unet(nn.Module):
|
1769 |
+
r"""
|
1770 |
+
Unet model comprising
|
1771 |
+
Down blocks, Midblocks and Uplocks
|
1772 |
+
"""
|
1773 |
+
|
1774 |
+
def __init__(self, im_channels, model_config):
|
1775 |
+
super().__init__()
|
1776 |
+
self.down_channels = model_config.down_channels
|
1777 |
+
self.mid_channels = model_config.mid_channels
|
1778 |
+
self.t_emb_dim = model_config.time_emb_dim
|
1779 |
+
self.down_sample = model_config.down_sample
|
1780 |
+
self.num_down_layers = model_config.num_down_layers
|
1781 |
+
self.num_mid_layers = model_config.num_mid_layers
|
1782 |
+
self.num_up_layers = model_config.num_up_layers
|
1783 |
+
self.attns = model_config.attn_down
|
1784 |
+
self.norm_channels = model_config.norm_channels
|
1785 |
+
self.num_heads = model_config.num_heads
|
1786 |
+
self.conv_out_channels = model_config.conv_out_channels
|
1787 |
+
|
1788 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
1789 |
+
assert self.mid_channels[-1] == self.down_channels[-2]
|
1790 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
1791 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
1792 |
+
|
1793 |
+
# Initial projection from sinusoidal time embedding
|
1794 |
+
self.t_proj = nn.Sequential(
|
1795 |
+
nn.Linear(self.t_emb_dim, self.t_emb_dim),
|
1796 |
+
nn.SiLU(),
|
1797 |
+
nn.Linear(self.t_emb_dim, self.t_emb_dim),
|
1798 |
+
)
|
1799 |
+
|
1800 |
+
self.up_sample = list(reversed(self.down_sample))
|
1801 |
+
self.conv_in = nn.Conv2d(
|
1802 |
+
im_channels, self.down_channels[0], kernel_size=3, padding=1
|
1803 |
+
)
|
1804 |
+
|
1805 |
+
# --::----- D O W N - B l O C K S ----------------::--------------::----------------
|
1806 |
+
self.downs = nn.ModuleList([])
|
1807 |
+
for i in range(len(self.down_channels) - 1):
|
1808 |
+
self.downs.append(
|
1809 |
+
DownBlock(
|
1810 |
+
self.down_channels[i],
|
1811 |
+
self.down_channels[i + 1],
|
1812 |
+
self.t_emb_dim,
|
1813 |
+
down_sample=self.down_sample[i],
|
1814 |
+
num_heads=self.num_heads,
|
1815 |
+
num_layers=self.num_down_layers,
|
1816 |
+
attn=self.attns[i],
|
1817 |
+
norm_channels=self.norm_channels,
|
1818 |
+
)
|
1819 |
+
)
|
1820 |
+
|
1821 |
+
# --::----- M I D - B l O C K S ----------------::--------------::----------------
|
1822 |
+
self.mids = nn.ModuleList([])
|
1823 |
+
for i in range(len(self.mid_channels) - 1):
|
1824 |
+
self.mids.append(
|
1825 |
+
MidBlock(
|
1826 |
+
self.mid_channels[i],
|
1827 |
+
self.mid_channels[i + 1],
|
1828 |
+
self.t_emb_dim,
|
1829 |
+
num_heads=self.num_heads,
|
1830 |
+
num_layers=self.num_mid_layers,
|
1831 |
+
norm_channels=self.norm_channels,
|
1832 |
+
)
|
1833 |
+
)
|
1834 |
+
|
1835 |
+
# --::----- U P - B l O C K S ----------------::--------------::----------------
|
1836 |
+
self.ups = nn.ModuleList([])
|
1837 |
+
for i in reversed(range(len(self.down_channels) - 1)):
|
1838 |
+
self.ups.append(
|
1839 |
+
UpBlockUnet(
|
1840 |
+
self.down_channels[i] * 2,
|
1841 |
+
self.down_channels[i - 1] if i != 0 else self.conv_out_channels,
|
1842 |
+
self.t_emb_dim,
|
1843 |
+
up_sample=self.down_sample[i],
|
1844 |
+
num_heads=self.num_heads,
|
1845 |
+
num_layers=self.num_up_layers,
|
1846 |
+
norm_channels=self.norm_channels,
|
1847 |
+
)
|
1848 |
+
)
|
1849 |
+
|
1850 |
+
self.norm_out = nn.GroupNorm(self.norm_channels, self.conv_out_channels)
|
1851 |
+
self.conv_out = nn.Conv2d(
|
1852 |
+
self.conv_out_channels, im_channels, kernel_size=3, padding=1
|
1853 |
+
)
|
1854 |
+
|
1855 |
+
def forward(self, x, t):
|
1856 |
+
# Shapes assuming downblocks are [C1, C2, C3, C4]
|
1857 |
+
# Shapes assuming midblocks are [C4, C4, C3]
|
1858 |
+
# Shapes assuming downsamples are [True, True, False]
|
1859 |
+
# B x C x H x W
|
1860 |
+
out = self.conv_in(x)
|
1861 |
+
# B x C1 x H x W
|
1862 |
+
|
1863 |
+
# t_emb -> B x t_emb_dim
|
1864 |
+
t_emb = get_time_embedding(torch.as_tensor(t).long(), self.t_emb_dim)
|
1865 |
+
t_emb = self.t_proj(t_emb)
|
1866 |
+
|
1867 |
+
# --- Down Pass ------------------
|
1868 |
+
down_outs = []
|
1869 |
+
for idx, down in enumerate(self.downs):
|
1870 |
+
down_outs.append(out)
|
1871 |
+
out = down(out, t_emb)
|
1872 |
+
# down_outs [B x C1 x H x W, B x C2 x H/2 x W/2, B x C3 x H/4 x W/4]
|
1873 |
+
# out B x C4 x H/4 x W/4
|
1874 |
+
|
1875 |
+
# --- Mid Pass ------------------
|
1876 |
+
for mid in self.mids:
|
1877 |
+
out = mid(out, t_emb)
|
1878 |
+
# out B x C3 x H/4 x W/4
|
1879 |
+
|
1880 |
+
# --- Up Pass ------------------
|
1881 |
+
for up in self.ups:
|
1882 |
+
down_out = down_outs.pop()
|
1883 |
+
out = up(out, down_out, t_emb)
|
1884 |
+
# out [B x C2 x H/4 x W/4, B x C1 x H/2 x W/2, B x 16 x H x W]
|
1885 |
+
|
1886 |
+
out = self.norm_out(out)
|
1887 |
+
out = nn.SiLU()(out)
|
1888 |
+
out = self.conv_out(out)
|
1889 |
+
# out B x C x H x W
|
1890 |
+
return out
|
1891 |
+
|
1892 |
+
|
1893 |
+
def trainLDM(Config):
|
1894 |
+
|
1895 |
+
diffusion_config = Config.diffusion_params
|
1896 |
+
dataset_config = Config.dataset_params
|
1897 |
+
diffusion_model_config = Config.ldm_params
|
1898 |
+
autoencoder_model_config = Config.autoencoder_params
|
1899 |
+
train_config = Config.train_params
|
1900 |
+
|
1901 |
+
# Create the noise scheduler
|
1902 |
+
scheduler = LinearNoiseScheduler(num_timesteps=diffusion_config.num_timesteps,
|
1903 |
+
beta_start=diffusion_config.beta_start,
|
1904 |
+
beta_end=diffusion_config.beta_end)
|
1905 |
+
# scheduler = CosineNoiseScheduler(diffusion_config.num_timesteps)
|
1906 |
+
|
1907 |
+
im_dataset_cls = {
|
1908 |
+
'mnist': MnistDataset,
|
1909 |
+
'celebA': CelebDataset,
|
1910 |
+
'animeface': AnimeFaceDataset,
|
1911 |
+
'celebAhair': CelebHairDataset
|
1912 |
+
}.get(dataset_config.name)
|
1913 |
+
|
1914 |
+
im_dataset = im_dataset_cls(split='train',
|
1915 |
+
im_path=dataset_config.im_path,
|
1916 |
+
im_size=dataset_config.im_size,
|
1917 |
+
im_channels=dataset_config.im_channels,
|
1918 |
+
use_latents=True,
|
1919 |
+
latent_path=os.path.join(train_config.task_name,
|
1920 |
+
train_config.vqvae_latent_dir_name)
|
1921 |
+
)
|
1922 |
+
|
1923 |
+
data_loader = DataLoader(im_dataset,
|
1924 |
+
batch_size=train_config.ldm_batch_size,
|
1925 |
+
shuffle=True,
|
1926 |
+
num_workers=os.cpu_count(),
|
1927 |
+
pin_memory=True,
|
1928 |
+
drop_last=False,
|
1929 |
+
persistent_workers=True, pin_memory_device=device)
|
1930 |
+
|
1931 |
+
# Instantiate the model
|
1932 |
+
model = Unet(im_channels=autoencoder_model_config.z_channels,
|
1933 |
+
model_config=diffusion_model_config).to(device)
|
1934 |
+
if os.path.exists(os.path.join(train_config.task_name, train_config.ldm_ckpt_name)):
|
1935 |
+
print('Loaded ldm checkpoint')
|
1936 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name, train_config.ldm_ckpt_name), map_location=device, weights_only=True))
|
1937 |
+
model.train()
|
1938 |
+
|
1939 |
+
# Load VAE ONLY if latents are not to be used or are missing
|
1940 |
+
if not im_dataset.use_latents:
|
1941 |
+
print('Loading vqvae model as latents not present')
|
1942 |
+
vae = VQVAE(im_channels=dataset_config.im_channels,
|
1943 |
+
model_config=autoencoder_model_config).to(device)
|
1944 |
+
vae.eval()
|
1945 |
+
# Load vae if found
|
1946 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
1947 |
+
train_config.vqvae_autoencoder_ckpt_name)):
|
1948 |
+
print('Loaded vae checkpoint')
|
1949 |
+
vae.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
1950 |
+
train_config.vqvae_autoencoder_ckpt_name),
|
1951 |
+
map_location=device))
|
1952 |
+
# Specify training parameters
|
1953 |
+
num_epochs = train_config.ldm_epochs
|
1954 |
+
optimizer = Adam(model.parameters(), lr=train_config.ldm_lr)
|
1955 |
+
criterion = torch.nn.MSELoss()
|
1956 |
+
|
1957 |
+
# Run training
|
1958 |
+
if not im_dataset.use_latents:
|
1959 |
+
for param in vae.parameters():
|
1960 |
+
param.requires_grad = False
|
1961 |
+
|
1962 |
+
for epoch_idx in range(num_epochs):
|
1963 |
+
losses = []
|
1964 |
+
for im in tqdm(data_loader):
|
1965 |
+
optimizer.zero_grad()
|
1966 |
+
im = im.float().to(device)
|
1967 |
+
if not im_dataset.use_latents:
|
1968 |
+
with torch.no_grad():
|
1969 |
+
im, _ = vae.encode(im)
|
1970 |
+
|
1971 |
+
# Sample random noise
|
1972 |
+
noise = torch.randn_like(im).to(device)
|
1973 |
+
|
1974 |
+
# Sample timestep
|
1975 |
+
t = torch.randint(0, diffusion_config.num_timesteps, (im.shape[0],)).to(device)
|
1976 |
+
|
1977 |
+
# Add noise to images according to timestep
|
1978 |
+
noisy_im = scheduler.add_noise(im, noise, t)
|
1979 |
+
noise_pred = model(noisy_im, t)
|
1980 |
+
|
1981 |
+
loss = criterion(noise_pred, noise)
|
1982 |
+
losses.append(loss.item())
|
1983 |
+
loss.backward()
|
1984 |
+
optimizer.step()
|
1985 |
+
print(f'Finished epoch:{epoch_idx + 1}/{num_epochs} | Loss : {np.mean(losses):.4f}')
|
1986 |
+
|
1987 |
+
torch.save(model.state_dict(), os.path.join(train_config.task_name,
|
1988 |
+
train_config.ldm_ckpt_name))
|
1989 |
+
|
1990 |
+
# Doing Inference
|
1991 |
+
infer(Config)
|
1992 |
+
|
1993 |
+
# Checking to conntinue training
|
1994 |
+
train_continue = yaml.safe_load(open("/home/taruntejaneurips23/Ashish/DDPM/_5_ldm_celeba.yaml", 'r'))
|
1995 |
+
train_continue = DotDict.from_dict(train_continue)
|
1996 |
+
if train_continue.training._continue_ == False:
|
1997 |
+
print('Training Stoped ...')
|
1998 |
+
break
|
1999 |
+
|
2000 |
+
print('Done Training ...')
|
2001 |
+
|
2002 |
+
# trainLDM(Config)
|
2003 |
+
|
2004 |
+
# import subprocess
|
2005 |
+
# subprocess.run(f'kill {os.getpid()}', shell=True, check=True)
|
2006 |
+
|
2007 |
+
def sample(model, scheduler, train_config, diffusion_model_config,
|
2008 |
+
autoencoder_model_config, diffusion_config, dataset_config, vae):
|
2009 |
+
r"""
|
2010 |
+
Sample stepwise by going backward one timestep at a time.
|
2011 |
+
We save the x0 predictions
|
2012 |
+
"""
|
2013 |
+
im_size = dataset_config.im_size // 2**sum(autoencoder_model_config.down_sample)
|
2014 |
+
xt = torch.randn((train_config.num_samples,
|
2015 |
+
autoencoder_model_config.z_channels,
|
2016 |
+
im_size,
|
2017 |
+
im_size)).to(device)
|
2018 |
+
|
2019 |
+
save_count = 0
|
2020 |
+
for i in tqdm(reversed(range(diffusion_config.num_timesteps)), total=diffusion_config.num_timesteps):
|
2021 |
+
# Get prediction of noise
|
2022 |
+
noise_pred = model(xt, torch.as_tensor(i).unsqueeze(0).to(device))
|
2023 |
+
|
2024 |
+
# Use scheduler to get x0 and xt-1
|
2025 |
+
xt, x0_pred = scheduler.sample_prev_timestep(xt, noise_pred, torch.as_tensor(i).to(device))
|
2026 |
+
|
2027 |
+
# Save x0
|
2028 |
+
#ims = torch.clamp(xt, -1., 1.).detach().cpu()
|
2029 |
+
if i == 0:
|
2030 |
+
# Decode ONLY the final iamge to save time
|
2031 |
+
ims = vae.decode(xt)
|
2032 |
+
else:
|
2033 |
+
ims = xt
|
2034 |
+
|
2035 |
+
ims = torch.clamp(ims, -1., 1.).detach().cpu()
|
2036 |
+
ims = (ims + 1) / 2
|
2037 |
+
grid = make_grid(ims, nrow=train_config.num_grid_rows)
|
2038 |
+
img = torchvision.transforms.ToPILImage()(grid)
|
2039 |
+
|
2040 |
+
if not os.path.exists(os.path.join(train_config.task_name, 'samples')):
|
2041 |
+
os.mkdir(os.path.join(train_config.task_name, 'samples'))
|
2042 |
+
img.save(os.path.join(train_config.task_name, 'samples', 'x0_{}.png'.format(i)))
|
2043 |
+
img.close()
|
2044 |
+
|
2045 |
+
|
2046 |
+
def infer(Config):
|
2047 |
+
|
2048 |
+
diffusion_config = Config.diffusion_params
|
2049 |
+
dataset_config = Config.dataset_params
|
2050 |
+
diffusion_model_config = Config.ldm_params
|
2051 |
+
autoencoder_model_config = Config.autoencoder_params
|
2052 |
+
train_config = Config.train_params
|
2053 |
+
|
2054 |
+
# Create the noise scheduler
|
2055 |
+
scheduler = LinearNoiseScheduler(num_timesteps=diffusion_config.num_timesteps,
|
2056 |
+
beta_start=diffusion_config.beta_start,
|
2057 |
+
beta_end=diffusion_config.beta_end)
|
2058 |
+
# scheduler = CosineNoiseScheduler(diffusion_config.num_timesteps)
|
2059 |
+
|
2060 |
+
model = Unet(im_channels=autoencoder_model_config.z_channels,
|
2061 |
+
model_config=diffusion_model_config).to(device)
|
2062 |
+
model.eval()
|
2063 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
2064 |
+
train_config.ldm_ckpt_name)):
|
2065 |
+
print('Loaded unet checkpoint')
|
2066 |
+
model.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
2067 |
+
train_config.ldm_ckpt_name),
|
2068 |
+
map_location=device))
|
2069 |
+
# Create output directories
|
2070 |
+
if not os.path.exists(train_config.task_name):
|
2071 |
+
os.mkdir(train_config.task_name)
|
2072 |
+
|
2073 |
+
vae = VQVAE(im_channels=dataset_config.im_channels,
|
2074 |
+
model_config=autoencoder_model_config).to(device)
|
2075 |
+
vae.eval()
|
2076 |
+
|
2077 |
+
# Load vae if found
|
2078 |
+
if os.path.exists(os.path.join(train_config.task_name,
|
2079 |
+
train_config.vqvae_autoencoder_ckpt_name)):
|
2080 |
+
print('Loaded vae checkpoint')
|
2081 |
+
vae.load_state_dict(torch.load(os.path.join(train_config.task_name,
|
2082 |
+
train_config.vqvae_autoencoder_ckpt_name),
|
2083 |
+
map_location=device), strict=True)
|
2084 |
+
with torch.no_grad():
|
2085 |
+
sample(model, scheduler, train_config, diffusion_model_config,
|
2086 |
+
autoencoder_model_config, diffusion_config, dataset_config, vae)
|
2087 |
+
|
2088 |
+
|
2089 |
+
|
2090 |
+
import argparse
|
2091 |
+
|
2092 |
+
def get_args():
|
2093 |
+
parser = argparse.ArgumentParser(description="Choose between train VAE, train LDM, or infer mode.")
|
2094 |
+
parser.add_argument('--mode', choices=['train_vae', 'train_ldm', 'infer'], default='infer',
|
2095 |
+
help="Mode to run: train_vae, train_ldm, or infer")
|
2096 |
+
return parser.parse_args()
|
2097 |
+
|
2098 |
+
args = get_args()
|
2099 |
+
|
2100 |
+
if args.mode == 'train_vae':
|
2101 |
+
trainVAE(Config)
|
2102 |
+
elif args.mode == 'train_ldm':
|
2103 |
+
trainLDM(Config)
|
2104 |
+
else:
|
2105 |
+
infer(Config)
|
2106 |
+
|
2107 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode train_vae
|
2108 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode train_ldm
|
2109 |
+
# python _5.2_ldm_celeba_hair_cosine.py --mode infer
|
2110 |
+
|
2111 |
+
|
2112 |
+
|
2113 |
+
|
2114 |
+
# import matplotlib.pyplot as plt
|
2115 |
+
# from PIL import Image
|
2116 |
+
# # plt.style.use('dark_background')
|
2117 |
+
# # %matplotlib inline
|
2118 |
+
|
2119 |
+
# plt.imshow(Image.open('/home/taruntejaneurips23/Ashish/DDPM/mnist_ldm/samples/x0_0.png'), cmap='gray')
|
2120 |
+
|
2121 |
+
# import matplotlib.pyplot as plt
|
2122 |
+
# import matplotlib.image as mpimg
|
2123 |
+
|
2124 |
+
# dataset_name = 'animeface_ldm'
|
2125 |
+
|
2126 |
+
# image_paths = [f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_0.png',
|
2127 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_1.png',
|
2128 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_5.png',
|
2129 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_100.png',
|
2130 |
+
# f'/home/taruntejaneurips23/Ashish/DDPM/{dataset_name}/samples/x0_200.png'
|
2131 |
+
# ]
|
2132 |
+
|
2133 |
+
# fig, axes = plt.subplots(1, len(image_paths), figsize=(15, 5))
|
2134 |
+
|
2135 |
+
# for i, path in enumerate(image_paths):
|
2136 |
+
# img = mpimg.imread(path)
|
2137 |
+
# axes[i].imshow(img)
|
2138 |
+
# axes[i].axis('off') # Hide axes
|
2139 |
+
# axes[i].set_title(f't = {path.split("/")[-1].split(".")[0].split("_")[-1]}')
|
2140 |
+
|
2141 |
+
# plt.tight_layout()
|
2142 |
+
# plt.show()
|
2143 |
+
|
2144 |
+
# ---------------------------------------------------------
|
2145 |
+
# ---------- T H E - E N D -------------------------------
|
2146 |
+
# ---------------------------------------------------------
|
2147 |
+
|
2148 |
+
|
2149 |
+
|
2150 |
+
def save_checkpoint(
|
2151 |
+
total_steps, epoch, model, discriminator,
|
2152 |
+
optimizer_d, optimizer_g, loss, checkpoint_path
|
2153 |
+
):
|
2154 |
+
checkpoint = {
|
2155 |
+
"total_steps": total_steps,
|
2156 |
+
"epoch": epoch,
|
2157 |
+
"model_state_dict": model.state_dict(),
|
2158 |
+
"discriminator_state_dict": discriminator.state_dict(),
|
2159 |
+
"optimizer_d_state_dict": optimizer_d.state_dict(),
|
2160 |
+
"optimizer_g_state_dict": optimizer_g.state_dict(),
|
2161 |
+
"loss": loss,
|
2162 |
+
}
|
2163 |
+
torch.save(checkpoint, checkpoint_path)
|
2164 |
+
print(f"Checkpoint saved after {total_steps} steps at epoch {epoch}")
|
2165 |
+
|
2166 |
+
|
2167 |
+
def load_checkpoint(
|
2168 |
+
checkpoint_path, model, discriminator, optimizer_d, optimizer_g
|
2169 |
+
):
|
2170 |
+
if os.path.exists(checkpoint_path):
|
2171 |
+
checkpoint = torch.load(checkpoint_path)
|
2172 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
2173 |
+
discriminator.load_state_dict(checkpoint["discriminator_state_dict"])
|
2174 |
+
optimizer_d.load_state_dict(checkpoint["optimizer_d_state_dict"])
|
2175 |
+
optimizer_g.load_state_dict(checkpoint["optimizer_g_state_dict"])
|
2176 |
+
total_steps = checkpoint["total_steps"]
|
2177 |
+
start_epoch = checkpoint["epoch"] + 1
|
2178 |
+
loss = checkpoint["loss"]
|
2179 |
+
print(f"Checkpoint loaded. Resuming from epoch {start_epoch}")
|
2180 |
+
return total_steps, start_epoch, loss
|
2181 |
+
else:
|
2182 |
+
print("No checkpoint found. Starting from scratch.")
|
2183 |
+
return 0, 0, None
|
2184 |
+
|
2185 |
+
|
2186 |
+
def trainVAE(Config, dataloader):
|
2187 |
+
"""
|
2188 |
+
Trains a VQVAE model using the provided configuration and data loader.
|
2189 |
+
"""
|
2190 |
+
# --- Configurations ----------------------------------------------------
|
2191 |
+
dataset_config = Config.dataset_params
|
2192 |
+
autoencoder_config = Config.autoencoder_params
|
2193 |
+
train_config = Config.train_params
|
2194 |
+
|
2195 |
+
seed = train_config.seed
|
2196 |
+
torch.manual_seed(seed)
|
2197 |
+
np.random.seed(seed)
|
2198 |
+
random.seed(seed)
|
2199 |
+
if device == "cuda":
|
2200 |
+
torch.cuda.manual_seed_all(seed)
|
2201 |
+
|
2202 |
+
# --- Model Initialization ----------------------------------------------
|
2203 |
+
model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)
|
2204 |
+
discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)
|
2205 |
+
|
2206 |
+
# --- Load Checkpoints --------------------------------------------------
|
2207 |
+
checkpoint_path = os.path.join(train_config.task_name, "vqvae_checkpoint.pth")
|
2208 |
+
total_steps, start_epoch, _ = load_checkpoint(checkpoint_path, model, discriminator, None, None)
|
2209 |
+
|
2210 |
+
# --- Loss Function Initialization --------------------------------------
|
2211 |
+
recon_criterion = torch.nn.MSELoss()
|
2212 |
+
lpips_model = LPIPS().eval().to(device)
|
2213 |
+
disc_criterion = torch.nn.MSELoss()
|
2214 |
+
|
2215 |
+
# --- Optimizer Initialization ------------------------------------------
|
2216 |
+
optimizer_d = torch.optim.AdamW(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
2217 |
+
optimizer_g = torch.optim.AdamW(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
2218 |
+
|
2219 |
+
num_epochs = train_config.autoencoder_epochs
|
2220 |
+
acc_steps = train_config.autoencoder_acc_steps
|
2221 |
+
image_save_steps = train_config.autoencoder_img_save_steps
|
2222 |
+
img_save_count = 0
|
2223 |
+
|
2224 |
+
# Create necessary directories
|
2225 |
+
os.makedirs(os.path.join(train_config.task_name, "vqvae_autoencoder_samples"), exist_ok=True)
|
2226 |
+
|
2227 |
+
# --- Training Loop -----------------------------------------------------
|
2228 |
+
for epoch_idx in range(start_epoch, num_epochs):
|
2229 |
+
recon_losses, codebook_losses, perceptual_losses, disc_losses, gen_losses = [], [], [], [], []
|
2230 |
+
|
2231 |
+
for images in dataloader:
|
2232 |
+
total_steps += 1
|
2233 |
+
images = images.to(device)
|
2234 |
+
|
2235 |
+
# Forward pass
|
2236 |
+
model_output = model(images)
|
2237 |
+
output, z, quantize_losses = model_output
|
2238 |
+
|
2239 |
+
# Save generated images periodically
|
2240 |
+
if total_steps % image_save_steps == 0 or total_steps == 1:
|
2241 |
+
sample_size = min(8, images.shape[0])
|
2242 |
+
save_output = torch.clamp(output[:sample_size], -1.0, 1.0).detach().cpu()
|
2243 |
+
save_output = (save_output + 1) / 2
|
2244 |
+
save_input = ((images[:sample_size] + 1) / 2).detach().cpu()
|
2245 |
+
|
2246 |
+
grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)
|
2247 |
+
img = tv.transforms.ToPILImage()(grid)
|
2248 |
+
img.save(
|
2249 |
+
os.path.join(
|
2250 |
+
train_config.task_name,
|
2251 |
+
"vqvae_autoencoder_samples",
|
2252 |
+
f"current_autoencoder_sample_{img_save_count}.png",
|
2253 |
+
)
|
2254 |
+
)
|
2255 |
+
img_save_count += 1
|
2256 |
+
img.close()
|
2257 |
+
|
2258 |
+
# Reconstruction Loss
|
2259 |
+
recon_loss = recon_criterion(output, images) / acc_steps
|
2260 |
+
recon_losses.append(recon_loss.item())
|
2261 |
+
|
2262 |
+
# Generator Loss
|
2263 |
+
codebook_loss = train_config.codebook_weight * quantize_losses["codebook_loss"] / acc_steps
|
2264 |
+
perceptual_loss = train_config.perceptual_weight * lpips_model(output, images).mean() / acc_steps
|
2265 |
+
g_loss = recon_loss + codebook_loss + perceptual_loss
|
2266 |
+
|
2267 |
+
if total_steps > train_config.disc_start:
|
2268 |
+
disc_fake_pred = discriminator(output)
|
2269 |
+
gen_loss = train_config.disc_weight * disc_criterion(
|
2270 |
+
disc_fake_pred, torch.ones_like(disc_fake_pred)
|
2271 |
+
) / acc_steps
|
2272 |
+
g_loss += gen_loss
|
2273 |
+
gen_losses.append(gen_loss.item())
|
2274 |
+
|
2275 |
+
g_loss.backward()
|
2276 |
+
optimizer_g.step()
|
2277 |
+
optimizer_g.zero_grad()
|
2278 |
+
|
2279 |
+
# Discriminator Loss
|
2280 |
+
if total_steps > train_config.disc_start:
|
2281 |
+
disc_fake_pred = discriminator(output.detach())
|
2282 |
+
disc_real_pred = discriminator(images)
|
2283 |
+
disc_fake_loss = disc_criterion(
|
2284 |
+
disc_fake_pred, torch.zeros_like(disc_fake_pred)
|
2285 |
+
) / acc_steps
|
2286 |
+
disc_real_loss = disc_criterion(
|
2287 |
+
disc_real_pred, torch.ones_like(disc_real_pred)
|
2288 |
+
) / acc_steps
|
2289 |
+
disc_loss = train_config.disc_weight * (disc_fake_loss + disc_real_loss) / 2
|
2290 |
+
disc_loss.backward()
|
2291 |
+
optimizer_d.step()
|
2292 |
+
optimizer_d.zero_grad()
|
2293 |
+
disc_losses.append(disc_loss.item())
|
2294 |
+
|
2295 |
+
# Save checkpoint after each epoch
|
2296 |
+
save_checkpoint(total_steps, epoch_idx, model, discriminator, optimizer_d, optimizer_g, recon_losses, checkpoint_path)
|
2297 |
+
|
2298 |
+
# Print epoch summary
|
2299 |
+
print(
|
2300 |
+
f"Epoch {epoch_idx + 1}/{num_epochs} | Recon Loss: {np.mean(recon_losses):.4f} | "
|
2301 |
+
f"Perceptual Loss: {np.mean(perceptual_losses):.4f} | Codebook Loss: {np.mean(codebook_losses):.4f} | "
|
2302 |
+
f"G Loss: {np.mean(gen_losses):.4f} | D Loss: {np.mean(disc_losses):.4f}"
|
2303 |
+
)
|
Vaani/LDM/scripts/SLURM-AE-Train.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash -x
|
2 |
+
#SBATCH -p gpu
|
3 |
+
#SBATCH -N 1
|
4 |
+
#SBATCH --ntasks-per-node=48
|
5 |
+
#SBATCH --mem 128G
|
6 |
+
#SBATCH -t 2-00:00:00
|
7 |
+
#SBATCH -J ASHISH_AE_Train
|
8 |
+
#SBATCH -o %j.out # name of stdout output file(--output)
|
9 |
+
#SBATCH -e %j.err # name of stderr error file(--error)
|
10 |
+
cd $SLURM_WORKDIR
|
11 |
+
|
12 |
+
module purge
|
13 |
+
module load miniconda # load the module and environment
|
14 |
+
source /home/apps/miniconda3/etc/profile.d/conda.sh
|
15 |
+
conda env list
|
16 |
+
conda activate aku # load working environment
|
17 |
+
|
18 |
+
python "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/Vaani-VQVAE-Main.py" > "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/AE-training.log" 2>&1 # run python script
|
19 |
+
|
20 |
+
conda deactivate # deactivate environment
|
21 |
+
# end of script
|
Vaani/LDM/scripts/SLURM-AE-Train2.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash -x
|
2 |
+
#SBATCH -p gpu
|
3 |
+
#SBATCH -N 1
|
4 |
+
#SBATCH --ntasks-per-node=48
|
5 |
+
#SBATCH --mem 128G
|
6 |
+
#SBATCH -t 10:00:00
|
7 |
+
#SBATCH -J ASHISH_AE_Train
|
8 |
+
#SBATCH -o %j.out # name of stdout output file(--output)
|
9 |
+
#SBATCH -e %j.err # name of stderr error file(--error)
|
10 |
+
cd $SLURM_WORKDIR
|
11 |
+
|
12 |
+
module purge
|
13 |
+
module load miniconda # load the module and environment
|
14 |
+
source /home/apps/miniconda3/etc/profile.d/conda.sh
|
15 |
+
conda env list
|
16 |
+
conda activate aku # load working environment
|
17 |
+
|
18 |
+
python "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/Vaani-VQVAE-Main.py" > "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/AE-training.log" 2>&1 # run python script
|
19 |
+
|
20 |
+
conda deactivate # deactivate environment
|
21 |
+
# end of script
|
Vaani/LDM/scripts/Vaani-VQVAE-Main.py
ADDED
@@ -0,0 +1,1151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# V Q - V A E T R A I N I N G
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : November 3, 2024
|
6 |
+
# Description: This script implements the training of a VQ-VAE model for
|
7 |
+
# image reconstruction. It uses LPIPS (Learned Perceptual Image Patch Similarity)
|
8 |
+
# loss to capture perceptual differences and PatchGAN loss to enforce local
|
9 |
+
# realism. The model maps images to a discrete latent space and reconstructs
|
10 |
+
# high-fidelity outputs by minimizing these combined losses.
|
11 |
+
# ==================================================================
|
12 |
+
# I M P O R T S
|
13 |
+
# ==================================================================
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import numpy as np
|
22 |
+
from collections import namedtuple
|
23 |
+
|
24 |
+
import pandas as pd
|
25 |
+
import torchvision as tv
|
26 |
+
from torchvision.transforms import v2
|
27 |
+
from tqdm.auto import tqdm, trange
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
|
30 |
+
import yaml
|
31 |
+
import random
|
32 |
+
import datetime
|
33 |
+
import torch.hub
|
34 |
+
from torch.utils.data import Dataset, DataLoader
|
35 |
+
from torchvision.utils import make_grid
|
36 |
+
|
37 |
+
print("TIME:", datetime.datetime.now())
|
38 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
print("DEVICE:", device)
|
40 |
+
|
41 |
+
|
42 |
+
# ==================================================================
|
43 |
+
# H E L P E R S
|
44 |
+
# ==================================================================
|
45 |
+
from typing import Any
|
46 |
+
from argparse import Namespace
|
47 |
+
import typing
|
48 |
+
|
49 |
+
|
50 |
+
class DotDict(Namespace):
|
51 |
+
"""A simple class that builds upon `argparse.Namespace`
|
52 |
+
in order to make chained attributes possible."""
|
53 |
+
|
54 |
+
def __init__(self, temp=False, key=None, parent=None) -> None:
|
55 |
+
self._temp = temp
|
56 |
+
self._key = key
|
57 |
+
self._parent = parent
|
58 |
+
|
59 |
+
def __eq__(self, other):
|
60 |
+
if not isinstance(other, DotDict):
|
61 |
+
return NotImplemented
|
62 |
+
return vars(self) == vars(other)
|
63 |
+
|
64 |
+
def __getattr__(self, __name: str) -> Any:
|
65 |
+
if __name not in self.__dict__ and not self._temp:
|
66 |
+
self.__dict__[__name] = DotDict(temp=True, key=__name, parent=self)
|
67 |
+
else:
|
68 |
+
del self._parent.__dict__[self._key]
|
69 |
+
raise AttributeError("No attribute '%s'" % __name)
|
70 |
+
return self.__dict__[__name]
|
71 |
+
|
72 |
+
def __repr__(self) -> str:
|
73 |
+
item_keys = [k for k in self.__dict__ if not k.startswith("_")]
|
74 |
+
|
75 |
+
if len(item_keys) == 0:
|
76 |
+
return "DotDict()"
|
77 |
+
elif len(item_keys) == 1:
|
78 |
+
key = item_keys[0]
|
79 |
+
val = self.__dict__[key]
|
80 |
+
return "DotDict(%s=%s)" % (key, repr(val))
|
81 |
+
else:
|
82 |
+
return "DotDict(%s)" % ", ".join(
|
83 |
+
"%s=%s" % (key, repr(val)) for key, val in self.__dict__.items()
|
84 |
+
)
|
85 |
+
|
86 |
+
@classmethod
|
87 |
+
def from_dict(cls, original: typing.Mapping[str, any]) -> "DotDict":
|
88 |
+
"""Create a DotDict from a (possibly nested) dict `original`.
|
89 |
+
Warning: this method should not be used on very deeply nested inputs,
|
90 |
+
since it's recursively traversing the nested dictionary values.
|
91 |
+
"""
|
92 |
+
dd = DotDict()
|
93 |
+
for key, value in original.items():
|
94 |
+
if isinstance(value, typing.Mapping):
|
95 |
+
value = cls.from_dict(value)
|
96 |
+
setattr(dd, key, value)
|
97 |
+
return dd
|
98 |
+
|
99 |
+
|
100 |
+
# ==================================================================
|
101 |
+
# L P I P S
|
102 |
+
# ==================================================================
|
103 |
+
class vgg16(nn.Module):
|
104 |
+
def __init__(self):
|
105 |
+
super(vgg16, self).__init__()
|
106 |
+
vgg_pretrained_features = tv.models.vgg16(
|
107 |
+
weights=tv.models.VGG16_Weights.IMAGENET1K_V1
|
108 |
+
).features
|
109 |
+
self.slice1 = torch.nn.Sequential()
|
110 |
+
self.slice2 = torch.nn.Sequential()
|
111 |
+
self.slice3 = torch.nn.Sequential()
|
112 |
+
self.slice4 = torch.nn.Sequential()
|
113 |
+
self.slice5 = torch.nn.Sequential()
|
114 |
+
self.N_slices = 5
|
115 |
+
for x in range(4):
|
116 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
117 |
+
for x in range(4, 9):
|
118 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
119 |
+
for x in range(9, 16):
|
120 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
121 |
+
for x in range(16, 23):
|
122 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
123 |
+
for x in range(23, 30):
|
124 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
125 |
+
|
126 |
+
self.eval()
|
127 |
+
for param in self.parameters():
|
128 |
+
param.requires_grad = False
|
129 |
+
|
130 |
+
def forward(self, X):
|
131 |
+
h1 = self.slice1(X)
|
132 |
+
h2 = self.slice2(h1)
|
133 |
+
h3 = self.slice3(h2)
|
134 |
+
h4 = self.slice4(h3)
|
135 |
+
h5 = self.slice5(h4)
|
136 |
+
vgg_outputs = namedtuple("VggOutputs", ['h1', 'h2', 'h3', 'h4', 'h5'])
|
137 |
+
out = vgg_outputs(h1, h2, h3, h4, h5)
|
138 |
+
return out
|
139 |
+
|
140 |
+
|
141 |
+
def _spatial_average(in_tens, keepdim=True):
|
142 |
+
return in_tens.mean([2, 3], keepdim=keepdim)
|
143 |
+
|
144 |
+
|
145 |
+
def _normalize_tensor(in_feat, eps= 1e-8):
|
146 |
+
norm_factor = torch.sqrt(eps + torch.sum(in_feat**2, dim=1, keepdim=True))
|
147 |
+
return in_feat / norm_factor
|
148 |
+
|
149 |
+
|
150 |
+
class ScalingLayer(nn.Module):
|
151 |
+
def __init__(self):
|
152 |
+
super(ScalingLayer, self).__init__()
|
153 |
+
# Imagnet normalization for (0-1)
|
154 |
+
# mean = [0.485, 0.456, 0.406]
|
155 |
+
# std = [0.229, 0.224, 0.225]
|
156 |
+
|
157 |
+
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
158 |
+
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
159 |
+
|
160 |
+
def forward(self, inp):
|
161 |
+
return (inp - self.shift) / self.scale
|
162 |
+
|
163 |
+
|
164 |
+
class NetLinLayer(nn.Module):
|
165 |
+
''' A single linear layer which does a 1x1 conv '''
|
166 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
167 |
+
super(NetLinLayer, self).__init__()
|
168 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
169 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
170 |
+
self.model = nn.Sequential(*layers)
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
return self.model(x)
|
174 |
+
|
175 |
+
|
176 |
+
class LPIPS(nn.Module):
|
177 |
+
def __init__(self, net='vgg', version='0.1', use_dropout=True):
|
178 |
+
super(LPIPS, self).__init__()
|
179 |
+
self.version = version
|
180 |
+
self.scaling_layer = ScalingLayer()
|
181 |
+
self.chns = [64, 128, 256, 512, 512]
|
182 |
+
self.L = len(self.chns)
|
183 |
+
self.net = vgg16()
|
184 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
185 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
186 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
187 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
188 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
189 |
+
self.lins = nn.ModuleList([self.lin0, self.lin1, self.lin2, self.lin3, self.lin4])
|
190 |
+
|
191 |
+
# --- Orignal url --------------------
|
192 |
+
# weights_url = f"https://github.com/richzhang/PerceptualSimilarity/raw/master/lpips/weights/v{version}/{net}.pth"
|
193 |
+
|
194 |
+
# --- Orignal Forked url -------------
|
195 |
+
weights_url = f"https://github.com/akuresonite/PerceptualSimilarity-Forked/raw/master/lpips/weights/v{version}/{net}.pth"
|
196 |
+
|
197 |
+
# --- Orignal torchmetric url --------
|
198 |
+
# weights_url = "https://github.com/Lightning-AI/torchmetrics/raw/master/src/torchmetrics/functional/image/lpips_models/vgg.pth"
|
199 |
+
|
200 |
+
state_dict = torch.hub.load_state_dict_from_url(weights_url, map_location='cpu')
|
201 |
+
self.load_state_dict(state_dict, strict=False)
|
202 |
+
|
203 |
+
self.eval()
|
204 |
+
for param in self.parameters():
|
205 |
+
param.requires_grad = False
|
206 |
+
|
207 |
+
def forward(self, in0, in1, normalize=False):
|
208 |
+
# Scale the inputs to -1 to +1 range if input in [0,1]
|
209 |
+
if normalize:
|
210 |
+
in0 = 2 * in0 - 1
|
211 |
+
in1 = 2 * in1 - 1
|
212 |
+
|
213 |
+
in0_input, in1_input = self.scaling_layer(in0), self.scaling_layer(in1)
|
214 |
+
# in0_input, in1_input = in0, in1
|
215 |
+
|
216 |
+
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
|
217 |
+
|
218 |
+
diffs = {}
|
219 |
+
for kk in range(self.L):
|
220 |
+
feats0 = _normalize_tensor(outs0[kk])
|
221 |
+
feats1 = _normalize_tensor(outs1[kk])
|
222 |
+
diffs[kk] = (feats0 - feats1) ** 2
|
223 |
+
|
224 |
+
res = [_spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
|
225 |
+
val = sum(res)
|
226 |
+
return val.reshape(-1)
|
227 |
+
|
228 |
+
|
229 |
+
# ==================================================================
|
230 |
+
# P A T C H - G A N - D I S C R I M I N A T O R
|
231 |
+
# ==================================================================
|
232 |
+
class Discriminator(nn.Module):
|
233 |
+
r"""
|
234 |
+
PatchGAN Discriminator.
|
235 |
+
Rather than taking IMG_CHANNELSxIMG_HxIMG_W all the way to
|
236 |
+
1 scalar value , we instead predict grid of values.
|
237 |
+
Where each grid is prediction of how likely
|
238 |
+
the discriminator thinks that the image patch corresponding
|
239 |
+
to the grid cell is real
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
im_channels=3,
|
245 |
+
conv_channels=[64, 128, 256],
|
246 |
+
kernels=[4, 4, 4, 4],
|
247 |
+
strides=[2, 2, 2, 1],
|
248 |
+
paddings=[1, 1, 1, 1],
|
249 |
+
):
|
250 |
+
super().__init__()
|
251 |
+
self.im_channels = im_channels
|
252 |
+
activation = nn.LeakyReLU(0.2)
|
253 |
+
layers_dim = [self.im_channels] + conv_channels + [1]
|
254 |
+
self.layers = nn.ModuleList(
|
255 |
+
[
|
256 |
+
nn.Sequential(
|
257 |
+
nn.Conv2d(
|
258 |
+
layers_dim[i],
|
259 |
+
layers_dim[i + 1],
|
260 |
+
kernel_size=kernels[i],
|
261 |
+
stride=strides[i],
|
262 |
+
padding=paddings[i],
|
263 |
+
bias=False if i != 0 else True,
|
264 |
+
),
|
265 |
+
(
|
266 |
+
nn.BatchNorm2d(layers_dim[i + 1])
|
267 |
+
if i != len(layers_dim) - 2 and i != 0
|
268 |
+
else nn.Identity()
|
269 |
+
),
|
270 |
+
activation if i != len(layers_dim) - 2 else nn.Identity(),
|
271 |
+
)
|
272 |
+
for i in range(len(layers_dim) - 1)
|
273 |
+
]
|
274 |
+
)
|
275 |
+
|
276 |
+
def forward(self, x):
|
277 |
+
out = x
|
278 |
+
for layer in self.layers:
|
279 |
+
out = layer(out)
|
280 |
+
return out
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
# ==================================================================
|
285 |
+
# D O W E - B L O C K
|
286 |
+
# ==================================================================
|
287 |
+
class DownBlock(nn.Module):
|
288 |
+
r"""
|
289 |
+
Down conv block with attention.
|
290 |
+
Sequence of following block
|
291 |
+
1. Resnet block with time embedding
|
292 |
+
2. Attention block
|
293 |
+
3. Downsample
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(
|
297 |
+
self,
|
298 |
+
in_channels,
|
299 |
+
out_channels,
|
300 |
+
t_emb_dim,
|
301 |
+
down_sample,
|
302 |
+
num_heads,
|
303 |
+
num_layers,
|
304 |
+
attn,
|
305 |
+
norm_channels,
|
306 |
+
cross_attn=False,
|
307 |
+
context_dim=None,
|
308 |
+
):
|
309 |
+
super().__init__()
|
310 |
+
self.num_layers = num_layers
|
311 |
+
self.down_sample = down_sample
|
312 |
+
self.attn = attn
|
313 |
+
self.context_dim = context_dim
|
314 |
+
self.cross_attn = cross_attn
|
315 |
+
self.t_emb_dim = t_emb_dim
|
316 |
+
self.resnet_conv_first = nn.ModuleList(
|
317 |
+
[
|
318 |
+
nn.Sequential(
|
319 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
320 |
+
nn.SiLU(),
|
321 |
+
nn.Conv2d(
|
322 |
+
in_channels if i == 0 else out_channels,
|
323 |
+
out_channels,
|
324 |
+
kernel_size=3,
|
325 |
+
stride=1,
|
326 |
+
padding=1,
|
327 |
+
),
|
328 |
+
)
|
329 |
+
for i in range(num_layers)
|
330 |
+
]
|
331 |
+
)
|
332 |
+
if self.t_emb_dim is not None:
|
333 |
+
self.t_emb_layers = nn.ModuleList(
|
334 |
+
[
|
335 |
+
nn.Sequential(nn.SiLU(), nn.Linear(self.t_emb_dim, out_channels))
|
336 |
+
for _ in range(num_layers)
|
337 |
+
]
|
338 |
+
)
|
339 |
+
self.resnet_conv_second = nn.ModuleList(
|
340 |
+
[
|
341 |
+
nn.Sequential(
|
342 |
+
nn.GroupNorm(norm_channels, out_channels),
|
343 |
+
nn.SiLU(),
|
344 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
345 |
+
)
|
346 |
+
for _ in range(num_layers)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
|
350 |
+
if self.attn:
|
351 |
+
self.attention_norms = nn.ModuleList(
|
352 |
+
[nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]
|
353 |
+
)
|
354 |
+
|
355 |
+
self.attentions = nn.ModuleList(
|
356 |
+
[
|
357 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
358 |
+
for _ in range(num_layers)
|
359 |
+
]
|
360 |
+
)
|
361 |
+
if self.cross_attn:
|
362 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
363 |
+
self.cross_attention_norms = nn.ModuleList(
|
364 |
+
[nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]
|
365 |
+
)
|
366 |
+
self.cross_attentions = nn.ModuleList(
|
367 |
+
[
|
368 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
369 |
+
for _ in range(num_layers)
|
370 |
+
]
|
371 |
+
)
|
372 |
+
self.context_proj = nn.ModuleList(
|
373 |
+
[nn.Linear(context_dim, out_channels) for _ in range(num_layers)]
|
374 |
+
)
|
375 |
+
self.residual_input_conv = nn.ModuleList(
|
376 |
+
[
|
377 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
378 |
+
for i in range(num_layers)
|
379 |
+
]
|
380 |
+
)
|
381 |
+
self.down_sample_conv = (
|
382 |
+
nn.Conv2d(out_channels, out_channels, 4, 2, 1) if self.down_sample else nn.Identity()
|
383 |
+
)
|
384 |
+
|
385 |
+
def forward(self, x, t_emb=None, context=None):
|
386 |
+
out = x
|
387 |
+
for i in range(self.num_layers):
|
388 |
+
# Resnet block of Unet
|
389 |
+
|
390 |
+
resnet_input = out
|
391 |
+
out = self.resnet_conv_first[i](out)
|
392 |
+
if self.t_emb_dim is not None:
|
393 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
394 |
+
out = self.resnet_conv_second[i](out)
|
395 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
396 |
+
|
397 |
+
if self.attn:
|
398 |
+
# Attention block of Unet
|
399 |
+
|
400 |
+
batch_size, channels, h, w = out.shape
|
401 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
402 |
+
in_attn = self.attention_norms[i](in_attn)
|
403 |
+
in_attn = in_attn.transpose(1, 2)
|
404 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
405 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
406 |
+
out = out + out_attn
|
407 |
+
if self.cross_attn:
|
408 |
+
assert (
|
409 |
+
context is not None
|
410 |
+
), "context cannot be None if cross attention layers are used"
|
411 |
+
batch_size, channels, h, w = out.shape
|
412 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
413 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
414 |
+
in_attn = in_attn.transpose(1, 2)
|
415 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
416 |
+
context_proj = self.context_proj[i](context)
|
417 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
418 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
419 |
+
out = out + out_attn
|
420 |
+
# Downsample
|
421 |
+
|
422 |
+
out = self.down_sample_conv(out)
|
423 |
+
return out
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
+
# ==================================================================
|
428 |
+
# M I D - B L O C K
|
429 |
+
# ==================================================================
|
430 |
+
class MidBlock(nn.Module):
|
431 |
+
r"""
|
432 |
+
Mid conv block with attention.
|
433 |
+
Sequence of following blocks
|
434 |
+
1. Resnet block with time embedding
|
435 |
+
2. Attention block
|
436 |
+
3. Resnet block with time embedding
|
437 |
+
"""
|
438 |
+
|
439 |
+
def __init__(
|
440 |
+
self,
|
441 |
+
in_channels,
|
442 |
+
out_channels,
|
443 |
+
t_emb_dim,
|
444 |
+
num_heads,
|
445 |
+
num_layers,
|
446 |
+
norm_channels,
|
447 |
+
cross_attn=None,
|
448 |
+
context_dim=None,
|
449 |
+
):
|
450 |
+
super().__init__()
|
451 |
+
self.num_layers = num_layers
|
452 |
+
self.t_emb_dim = t_emb_dim
|
453 |
+
self.context_dim = context_dim
|
454 |
+
self.cross_attn = cross_attn
|
455 |
+
self.resnet_conv_first = nn.ModuleList(
|
456 |
+
[
|
457 |
+
nn.Sequential(
|
458 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
459 |
+
nn.SiLU(),
|
460 |
+
nn.Conv2d(
|
461 |
+
in_channels if i == 0 else out_channels,
|
462 |
+
out_channels,
|
463 |
+
kernel_size=3,
|
464 |
+
stride=1,
|
465 |
+
padding=1,
|
466 |
+
),
|
467 |
+
)
|
468 |
+
for i in range(num_layers + 1)
|
469 |
+
]
|
470 |
+
)
|
471 |
+
|
472 |
+
if self.t_emb_dim is not None:
|
473 |
+
self.t_emb_layers = nn.ModuleList(
|
474 |
+
[
|
475 |
+
nn.Sequential(nn.SiLU(), nn.Linear(t_emb_dim, out_channels))
|
476 |
+
for _ in range(num_layers + 1)
|
477 |
+
]
|
478 |
+
)
|
479 |
+
self.resnet_conv_second = nn.ModuleList(
|
480 |
+
[
|
481 |
+
nn.Sequential(
|
482 |
+
nn.GroupNorm(norm_channels, out_channels),
|
483 |
+
nn.SiLU(),
|
484 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
485 |
+
)
|
486 |
+
for _ in range(num_layers + 1)
|
487 |
+
]
|
488 |
+
)
|
489 |
+
|
490 |
+
self.attention_norms = nn.ModuleList(
|
491 |
+
[nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]
|
492 |
+
)
|
493 |
+
|
494 |
+
self.attentions = nn.ModuleList(
|
495 |
+
[
|
496 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
497 |
+
for _ in range(num_layers)
|
498 |
+
]
|
499 |
+
)
|
500 |
+
if self.cross_attn:
|
501 |
+
assert context_dim is not None, "Context Dimension must be passed for cross attention"
|
502 |
+
self.cross_attention_norms = nn.ModuleList(
|
503 |
+
[nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]
|
504 |
+
)
|
505 |
+
self.cross_attentions = nn.ModuleList(
|
506 |
+
[
|
507 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
508 |
+
for _ in range(num_layers)
|
509 |
+
]
|
510 |
+
)
|
511 |
+
self.context_proj = nn.ModuleList(
|
512 |
+
[nn.Linear(context_dim, out_channels) for _ in range(num_layers)]
|
513 |
+
)
|
514 |
+
self.residual_input_conv = nn.ModuleList(
|
515 |
+
[
|
516 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
517 |
+
for i in range(num_layers + 1)
|
518 |
+
]
|
519 |
+
)
|
520 |
+
|
521 |
+
def forward(self, x, t_emb=None, context=None):
|
522 |
+
out = x
|
523 |
+
|
524 |
+
# First resnet block
|
525 |
+
|
526 |
+
resnet_input = out
|
527 |
+
out = self.resnet_conv_first[0](out)
|
528 |
+
if self.t_emb_dim is not None:
|
529 |
+
out = out + self.t_emb_layers[0](t_emb)[:, :, None, None]
|
530 |
+
out = self.resnet_conv_second[0](out)
|
531 |
+
out = out + self.residual_input_conv[0](resnet_input)
|
532 |
+
|
533 |
+
for i in range(self.num_layers):
|
534 |
+
# Attention Block
|
535 |
+
|
536 |
+
batch_size, channels, h, w = out.shape
|
537 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
538 |
+
in_attn = self.attention_norms[i](in_attn)
|
539 |
+
in_attn = in_attn.transpose(1, 2)
|
540 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
541 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
542 |
+
out = out + out_attn
|
543 |
+
|
544 |
+
if self.cross_attn:
|
545 |
+
assert (
|
546 |
+
context is not None
|
547 |
+
), "context cannot be None if cross attention layers are used"
|
548 |
+
batch_size, channels, h, w = out.shape
|
549 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
550 |
+
in_attn = self.cross_attention_norms[i](in_attn)
|
551 |
+
in_attn = in_attn.transpose(1, 2)
|
552 |
+
assert context.shape[0] == x.shape[0] and context.shape[-1] == self.context_dim
|
553 |
+
context_proj = self.context_proj[i](context)
|
554 |
+
out_attn, _ = self.cross_attentions[i](in_attn, context_proj, context_proj)
|
555 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
556 |
+
out = out + out_attn
|
557 |
+
# Resnet Block
|
558 |
+
|
559 |
+
resnet_input = out
|
560 |
+
out = self.resnet_conv_first[i + 1](out)
|
561 |
+
if self.t_emb_dim is not None:
|
562 |
+
out = out + self.t_emb_layers[i + 1](t_emb)[:, :, None, None]
|
563 |
+
out = self.resnet_conv_second[i + 1](out)
|
564 |
+
out = out + self.residual_input_conv[i + 1](resnet_input)
|
565 |
+
return out
|
566 |
+
|
567 |
+
|
568 |
+
# ==================================================================
|
569 |
+
# U P - B L O C K
|
570 |
+
# ==================================================================
|
571 |
+
class UpBlock(nn.Module):
|
572 |
+
r"""
|
573 |
+
Up conv block with attention.
|
574 |
+
Sequence of following blocks
|
575 |
+
1. Upsample
|
576 |
+
1. Concatenate Down block output
|
577 |
+
2. Resnet block with time embedding
|
578 |
+
3. Attention Block
|
579 |
+
"""
|
580 |
+
|
581 |
+
def __init__(
|
582 |
+
self,
|
583 |
+
in_channels,
|
584 |
+
out_channels,
|
585 |
+
t_emb_dim,
|
586 |
+
up_sample,
|
587 |
+
num_heads,
|
588 |
+
num_layers,
|
589 |
+
attn,
|
590 |
+
norm_channels,
|
591 |
+
):
|
592 |
+
super().__init__()
|
593 |
+
self.num_layers = num_layers
|
594 |
+
self.up_sample = up_sample
|
595 |
+
self.t_emb_dim = t_emb_dim
|
596 |
+
self.attn = attn
|
597 |
+
self.resnet_conv_first = nn.ModuleList(
|
598 |
+
[
|
599 |
+
nn.Sequential(
|
600 |
+
nn.GroupNorm(norm_channels, in_channels if i == 0 else out_channels),
|
601 |
+
nn.SiLU(),
|
602 |
+
nn.Conv2d(
|
603 |
+
in_channels if i == 0 else out_channels,
|
604 |
+
out_channels,
|
605 |
+
kernel_size=3,
|
606 |
+
stride=1,
|
607 |
+
padding=1,
|
608 |
+
),
|
609 |
+
)
|
610 |
+
for i in range(num_layers)
|
611 |
+
]
|
612 |
+
)
|
613 |
+
|
614 |
+
if self.t_emb_dim is not None:
|
615 |
+
self.t_emb_layers = nn.ModuleList(
|
616 |
+
[
|
617 |
+
nn.Sequential(nn.SiLU(), nn.Linear(t_emb_dim, out_channels))
|
618 |
+
for _ in range(num_layers)
|
619 |
+
]
|
620 |
+
)
|
621 |
+
self.resnet_conv_second = nn.ModuleList(
|
622 |
+
[
|
623 |
+
nn.Sequential(
|
624 |
+
nn.GroupNorm(norm_channels, out_channels),
|
625 |
+
nn.SiLU(),
|
626 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
627 |
+
)
|
628 |
+
for _ in range(num_layers)
|
629 |
+
]
|
630 |
+
)
|
631 |
+
if self.attn:
|
632 |
+
self.attention_norms = nn.ModuleList(
|
633 |
+
[nn.GroupNorm(norm_channels, out_channels) for _ in range(num_layers)]
|
634 |
+
)
|
635 |
+
|
636 |
+
self.attentions = nn.ModuleList(
|
637 |
+
[
|
638 |
+
nn.MultiheadAttention(out_channels, num_heads, batch_first=True)
|
639 |
+
for _ in range(num_layers)
|
640 |
+
]
|
641 |
+
)
|
642 |
+
self.residual_input_conv = nn.ModuleList(
|
643 |
+
[
|
644 |
+
nn.Conv2d(in_channels if i == 0 else out_channels, out_channels, kernel_size=1)
|
645 |
+
for i in range(num_layers)
|
646 |
+
]
|
647 |
+
)
|
648 |
+
self.up_sample_conv = (
|
649 |
+
nn.ConvTranspose2d(in_channels, in_channels, 4, 2, 1)
|
650 |
+
if self.up_sample
|
651 |
+
else nn.Identity()
|
652 |
+
)
|
653 |
+
|
654 |
+
def forward(self, x, out_down=None, t_emb=None):
|
655 |
+
# Upsample
|
656 |
+
|
657 |
+
x = self.up_sample_conv(x)
|
658 |
+
|
659 |
+
# Concat with Downblock output
|
660 |
+
|
661 |
+
if out_down is not None:
|
662 |
+
x = torch.cat([x, out_down], dim=1)
|
663 |
+
out = x
|
664 |
+
for i in range(self.num_layers):
|
665 |
+
# Resnet Block
|
666 |
+
|
667 |
+
resnet_input = out
|
668 |
+
out = self.resnet_conv_first[i](out)
|
669 |
+
if self.t_emb_dim is not None:
|
670 |
+
out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]
|
671 |
+
out = self.resnet_conv_second[i](out)
|
672 |
+
out = out + self.residual_input_conv[i](resnet_input)
|
673 |
+
|
674 |
+
# Self Attention
|
675 |
+
|
676 |
+
if self.attn:
|
677 |
+
batch_size, channels, h, w = out.shape
|
678 |
+
in_attn = out.reshape(batch_size, channels, h * w)
|
679 |
+
in_attn = self.attention_norms[i](in_attn)
|
680 |
+
in_attn = in_attn.transpose(1, 2)
|
681 |
+
out_attn, _ = self.attentions[i](in_attn, in_attn, in_attn)
|
682 |
+
out_attn = out_attn.transpose(1, 2).reshape(batch_size, channels, h, w)
|
683 |
+
out = out + out_attn
|
684 |
+
return out
|
685 |
+
|
686 |
+
|
687 |
+
# ==================================================================
|
688 |
+
# V Q - V A E
|
689 |
+
# ==================================================================
|
690 |
+
class VQVAE(nn.Module):
|
691 |
+
def __init__(self, im_channels, model_config):
|
692 |
+
super().__init__()
|
693 |
+
self.down_channels = model_config.down_channels
|
694 |
+
self.mid_channels = model_config.mid_channels
|
695 |
+
self.down_sample = model_config.down_sample
|
696 |
+
self.num_down_layers = model_config.num_down_layers
|
697 |
+
self.num_mid_layers = model_config.num_mid_layers
|
698 |
+
self.num_up_layers = model_config.num_up_layers
|
699 |
+
|
700 |
+
# To disable attention in Downblock of Encoder and Upblock of Decoder
|
701 |
+
self.attns = model_config.attn_down
|
702 |
+
|
703 |
+
# Latent Dimension
|
704 |
+
self.z_channels = model_config.z_channels
|
705 |
+
self.codebook_size = model_config.codebook_size
|
706 |
+
self.norm_channels = model_config.norm_channels
|
707 |
+
self.num_heads = model_config.num_heads
|
708 |
+
|
709 |
+
# Assertion to validate the channel information
|
710 |
+
assert self.mid_channels[0] == self.down_channels[-1]
|
711 |
+
assert self.mid_channels[-1] == self.down_channels[-1]
|
712 |
+
assert len(self.down_sample) == len(self.down_channels) - 1
|
713 |
+
assert len(self.attns) == len(self.down_channels) - 1
|
714 |
+
|
715 |
+
# Wherever we use downsampling in encoder correspondingly use
|
716 |
+
# upsampling in decoder
|
717 |
+
self.up_sample = list(reversed(self.down_sample))
|
718 |
+
|
719 |
+
##################### Encoder ######################
|
720 |
+
self.encoder_conv_in = nn.Conv2d(
|
721 |
+
im_channels, self.down_channels[0], kernel_size=3, padding=(1, 1)
|
722 |
+
)
|
723 |
+
|
724 |
+
# Downblock + Midblock
|
725 |
+
self.encoder_layers = nn.ModuleList([])
|
726 |
+
for i in range(len(self.down_channels) - 1):
|
727 |
+
self.encoder_layers.append(
|
728 |
+
DownBlock(
|
729 |
+
self.down_channels[i],
|
730 |
+
self.down_channels[i + 1],
|
731 |
+
t_emb_dim=None,
|
732 |
+
down_sample=self.down_sample[i],
|
733 |
+
num_heads=self.num_heads,
|
734 |
+
num_layers=self.num_down_layers,
|
735 |
+
attn=self.attns[i],
|
736 |
+
norm_channels=self.norm_channels,
|
737 |
+
)
|
738 |
+
)
|
739 |
+
self.encoder_mids = nn.ModuleList([])
|
740 |
+
for i in range(len(self.mid_channels) - 1):
|
741 |
+
self.encoder_mids.append(
|
742 |
+
MidBlock(
|
743 |
+
self.mid_channels[i],
|
744 |
+
self.mid_channels[i + 1],
|
745 |
+
t_emb_dim=None,
|
746 |
+
num_heads=self.num_heads,
|
747 |
+
num_layers=self.num_mid_layers,
|
748 |
+
norm_channels=self.norm_channels,
|
749 |
+
)
|
750 |
+
)
|
751 |
+
self.encoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[-1])
|
752 |
+
self.encoder_conv_out = nn.Conv2d(
|
753 |
+
self.down_channels[-1], self.z_channels, kernel_size=3, padding=1
|
754 |
+
)
|
755 |
+
|
756 |
+
# Pre Quantization Convolution
|
757 |
+
self.pre_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
758 |
+
|
759 |
+
# Codebook
|
760 |
+
self.embedding = nn.Embedding(self.codebook_size, self.z_channels)
|
761 |
+
####################################################
|
762 |
+
|
763 |
+
##################### Decoder ######################
|
764 |
+
|
765 |
+
# Post Quantization Convolution
|
766 |
+
self.post_quant_conv = nn.Conv2d(self.z_channels, self.z_channels, kernel_size=1)
|
767 |
+
self.decoder_conv_in = nn.Conv2d(
|
768 |
+
self.z_channels, self.mid_channels[-1], kernel_size=3, padding=(1, 1)
|
769 |
+
)
|
770 |
+
|
771 |
+
# Midblock + Upblock
|
772 |
+
self.decoder_mids = nn.ModuleList([])
|
773 |
+
for i in reversed(range(1, len(self.mid_channels))):
|
774 |
+
self.decoder_mids.append(
|
775 |
+
MidBlock(
|
776 |
+
self.mid_channels[i],
|
777 |
+
self.mid_channels[i - 1],
|
778 |
+
t_emb_dim=None,
|
779 |
+
num_heads=self.num_heads,
|
780 |
+
num_layers=self.num_mid_layers,
|
781 |
+
norm_channels=self.norm_channels,
|
782 |
+
)
|
783 |
+
)
|
784 |
+
self.decoder_layers = nn.ModuleList([])
|
785 |
+
for i in reversed(range(1, len(self.down_channels))):
|
786 |
+
self.decoder_layers.append(
|
787 |
+
UpBlock(
|
788 |
+
self.down_channels[i],
|
789 |
+
self.down_channels[i - 1],
|
790 |
+
t_emb_dim=None,
|
791 |
+
up_sample=self.down_sample[i - 1],
|
792 |
+
num_heads=self.num_heads,
|
793 |
+
num_layers=self.num_up_layers,
|
794 |
+
attn=self.attns[i - 1],
|
795 |
+
norm_channels=self.norm_channels,
|
796 |
+
)
|
797 |
+
)
|
798 |
+
self.decoder_norm_out = nn.GroupNorm(self.norm_channels, self.down_channels[0])
|
799 |
+
self.decoder_conv_out = nn.Conv2d(
|
800 |
+
self.down_channels[0], im_channels, kernel_size=3, padding=1
|
801 |
+
)
|
802 |
+
|
803 |
+
def quantize(self, x):
|
804 |
+
B, C, H, W = x.shape
|
805 |
+
|
806 |
+
# B, C, H, W -> B, H, W, C
|
807 |
+
x = x.permute(0, 2, 3, 1)
|
808 |
+
|
809 |
+
# B, H, W, C -> B, H*W, C
|
810 |
+
x = x.reshape(x.size(0), -1, x.size(-1))
|
811 |
+
|
812 |
+
# Find nearest embedding/codebook vector
|
813 |
+
# dist between (B, H*W, C) and (B, K, C) -> (B, H*W, K)
|
814 |
+
dist = torch.cdist(x, self.embedding.weight[None, :].repeat((x.size(0), 1, 1)))
|
815 |
+
# (B, H*W)
|
816 |
+
min_encoding_indices = torch.argmin(dist, dim=-1)
|
817 |
+
|
818 |
+
# Replace encoder output with nearest codebook
|
819 |
+
# quant_out -> B*H*W, C
|
820 |
+
quant_out = torch.index_select(self.embedding.weight, 0, min_encoding_indices.view(-1))
|
821 |
+
|
822 |
+
# x -> B*H*W, C
|
823 |
+
x = x.reshape((-1, x.size(-1)))
|
824 |
+
commmitment_loss = torch.mean((quant_out.detach() - x) ** 2)
|
825 |
+
codebook_loss = torch.mean((quant_out - x.detach()) ** 2)
|
826 |
+
quantize_losses = {"codebook_loss": codebook_loss, "commitment_loss": commmitment_loss}
|
827 |
+
# Straight through estimation
|
828 |
+
quant_out = x + (quant_out - x).detach()
|
829 |
+
|
830 |
+
# quant_out -> B, C, H, W
|
831 |
+
quant_out = quant_out.reshape((B, H, W, C)).permute(0, 3, 1, 2)
|
832 |
+
min_encoding_indices = min_encoding_indices.reshape(
|
833 |
+
(-1, quant_out.size(-2), quant_out.size(-1))
|
834 |
+
)
|
835 |
+
return quant_out, quantize_losses, min_encoding_indices
|
836 |
+
|
837 |
+
def encode(self, x):
|
838 |
+
out = self.encoder_conv_in(x)
|
839 |
+
for idx, down in enumerate(self.encoder_layers):
|
840 |
+
out = down(out)
|
841 |
+
for mid in self.encoder_mids:
|
842 |
+
out = mid(out)
|
843 |
+
out = self.encoder_norm_out(out)
|
844 |
+
out = nn.SiLU()(out)
|
845 |
+
out = self.encoder_conv_out(out)
|
846 |
+
out = self.pre_quant_conv(out)
|
847 |
+
out, quant_losses, _ = self.quantize(out)
|
848 |
+
return out, quant_losses
|
849 |
+
|
850 |
+
def decode(self, z):
|
851 |
+
out = z
|
852 |
+
out = self.post_quant_conv(out)
|
853 |
+
out = self.decoder_conv_in(out)
|
854 |
+
for mid in self.decoder_mids:
|
855 |
+
out = mid(out)
|
856 |
+
for idx, up in enumerate(self.decoder_layers):
|
857 |
+
out = up(out)
|
858 |
+
out = self.decoder_norm_out(out)
|
859 |
+
out = nn.SiLU()(out)
|
860 |
+
out = self.decoder_conv_out(out)
|
861 |
+
return out
|
862 |
+
|
863 |
+
def forward(self, x):
|
864 |
+
'''out: [B, 3, 256, 256]
|
865 |
+
z: [B, 3, 64, 64]
|
866 |
+
quant_losses: {
|
867 |
+
codebook_loss: 0.0681,
|
868 |
+
commitment_loss: 0.0681
|
869 |
+
}
|
870 |
+
'''
|
871 |
+
z, quant_losses = self.encode(x)
|
872 |
+
out = self.decode(z)
|
873 |
+
return out, z, quant_losses
|
874 |
+
|
875 |
+
|
876 |
+
# ==================================================================
|
877 |
+
# C O N F I G U R A T I O N
|
878 |
+
# ==================================================================
|
879 |
+
import pprint
|
880 |
+
config_path = "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/LDM/scripts/config.yaml"
|
881 |
+
with open(config_path, 'r') as file:
|
882 |
+
Config = yaml.safe_load(file)
|
883 |
+
pprint.pprint(Config, width=120)
|
884 |
+
|
885 |
+
Config = DotDict.from_dict(Config)
|
886 |
+
dataset_config = Config.dataset_params
|
887 |
+
diffusion_config = Config.diffusion_params
|
888 |
+
model_config = Config.model_params
|
889 |
+
train_config = Config.train_params
|
890 |
+
paths = Config.paths
|
891 |
+
|
892 |
+
|
893 |
+
# ==================================================================
|
894 |
+
# V A A N I - D A T A S E T
|
895 |
+
# ==================================================================
|
896 |
+
IMAGES_PATH = paths.images_dir
|
897 |
+
|
898 |
+
def walkDIR(folder_path, include=None):
|
899 |
+
file_list = []
|
900 |
+
for root, _, files in os.walk(folder_path):
|
901 |
+
for file in files:
|
902 |
+
if include is None or any(file.endswith(ext) for ext in include):
|
903 |
+
file_list.append(os.path.join(root, file))
|
904 |
+
print("Files found:", len(file_list))
|
905 |
+
return file_list
|
906 |
+
|
907 |
+
files = walkDIR(IMAGES_PATH, include=['.png', '.jpeg', '.jpg'])
|
908 |
+
df = pd.DataFrame(files, columns=['image_path'])
|
909 |
+
|
910 |
+
class VaaniDataset(torch.utils.data.Dataset):
|
911 |
+
def __init__(self, files_paths, im_size):
|
912 |
+
self.files_paths = files_paths
|
913 |
+
self.im_size = im_size
|
914 |
+
|
915 |
+
def __len__(self):
|
916 |
+
return len(self.files_paths)
|
917 |
+
|
918 |
+
def __getitem__(self, idx):
|
919 |
+
image = tv.io.decode_image(self.files_paths[idx], mode='RGB')
|
920 |
+
image = v2.Resize((self.im_size,self.im_size))(image)
|
921 |
+
image = v2.ToDtype(torch.float32, scale=True)(image)
|
922 |
+
# image = 2*image - 1
|
923 |
+
return image
|
924 |
+
|
925 |
+
dataset = VaaniDataset(files_paths=files, im_size=dataset_config.im_size)
|
926 |
+
image = dataset[2]
|
927 |
+
print('IMAGE SHAPE:', image.shape)
|
928 |
+
|
929 |
+
dataloader = torch.utils.data.DataLoader(
|
930 |
+
dataset,
|
931 |
+
batch_size=train_config.autoencoder_batch_size,
|
932 |
+
shuffle=True,
|
933 |
+
num_workers=os.cpu_count(),
|
934 |
+
pin_memory=False,
|
935 |
+
drop_last=True,
|
936 |
+
persistent_workers=True
|
937 |
+
)
|
938 |
+
|
939 |
+
images = next(iter(dataloader))
|
940 |
+
print('BATCH SHAPE:', images.shape)
|
941 |
+
|
942 |
+
|
943 |
+
# ==================================================================
|
944 |
+
# M O D E L - I N I T I L I Z A T I O N
|
945 |
+
# ==================================================================
|
946 |
+
dataset_config = Config.dataset_params
|
947 |
+
autoencoder_config = Config.autoencoder_params
|
948 |
+
train_config = Config.train_params
|
949 |
+
|
950 |
+
model = VQVAE(im_channels=dataset_config.im_channels,
|
951 |
+
model_config=autoencoder_config).to(device)
|
952 |
+
|
953 |
+
# model_output = model(images)
|
954 |
+
# print('MODEL OUTPUT:')
|
955 |
+
# print(model_output[0].shape, model_output[1].shape, model_output[2])
|
956 |
+
|
957 |
+
|
958 |
+
|
959 |
+
# ==================================================================
|
960 |
+
# V Q - V A E - T R A I N I N G
|
961 |
+
# ==================================================================
|
962 |
+
# python your_script.py 2>&1 > training.log
|
963 |
+
import time
|
964 |
+
|
965 |
+
def format_time(t1, t2):
|
966 |
+
elapsed_time = t2 - t1
|
967 |
+
if elapsed_time < 60:
|
968 |
+
return f"{elapsed_time:.2f} seconds"
|
969 |
+
elif elapsed_time < 3600:
|
970 |
+
minutes = elapsed_time // 60
|
971 |
+
seconds = elapsed_time % 60
|
972 |
+
return f"{minutes:.0f} minutes {seconds:.2f} seconds"
|
973 |
+
elif elapsed_time < 86400:
|
974 |
+
hours = elapsed_time // 3600
|
975 |
+
remainder = elapsed_time % 3600
|
976 |
+
minutes = remainder // 60
|
977 |
+
seconds = remainder % 60
|
978 |
+
return f"{hours:.0f} hours {minutes:.0f} minutes {seconds:.2f} seconds"
|
979 |
+
else:
|
980 |
+
days = elapsed_time // 86400
|
981 |
+
remainder = elapsed_time % 86400
|
982 |
+
hours = remainder // 3600
|
983 |
+
remainder = remainder % 3600
|
984 |
+
minutes = remainder // 60
|
985 |
+
seconds = remainder % 60
|
986 |
+
return f"{days:.0f} days {hours:.0f} hours {minutes:.0f} minutes {seconds:.2f} seconds"
|
987 |
+
|
988 |
+
def save_checkpoint(
|
989 |
+
total_steps, epoch, model, discriminator, optimizer_d,
|
990 |
+
optimizer_g, metrics, checkpoint_path, logs, total_training_time
|
991 |
+
):
|
992 |
+
checkpoint = {
|
993 |
+
"total_steps": total_steps,
|
994 |
+
"epoch": epoch,
|
995 |
+
"model_state_dict": model.state_dict(),
|
996 |
+
"discriminator_state_dict": discriminator.state_dict(),
|
997 |
+
"optimizer_d_state_dict": optimizer_d.state_dict(),
|
998 |
+
"optimizer_g_state_dict": optimizer_g.state_dict(),
|
999 |
+
"metrics": metrics,
|
1000 |
+
"logs": logs,
|
1001 |
+
"total_training_time": total_training_time
|
1002 |
+
}
|
1003 |
+
torch.save(checkpoint, checkpoint_path)
|
1004 |
+
print(f"Checkpoint saved after {total_steps} steps at epoch {epoch}")
|
1005 |
+
|
1006 |
+
def load_checkpoint(checkpoint_path, model, discriminator, optimizer_d, optimizer_g):
|
1007 |
+
if os.path.exists(checkpoint_path):
|
1008 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
1009 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
1010 |
+
discriminator.load_state_dict(checkpoint["discriminator_state_dict"])
|
1011 |
+
optimizer_d.load_state_dict(checkpoint["optimizer_d_state_dict"])
|
1012 |
+
optimizer_g.load_state_dict(checkpoint["optimizer_g_state_dict"])
|
1013 |
+
total_steps = checkpoint["total_steps"]
|
1014 |
+
epoch = checkpoint["epoch"]
|
1015 |
+
metrics = checkpoint["metrics"]
|
1016 |
+
logs = checkpoint.get("logs", [])
|
1017 |
+
total_training_time = checkpoint.get("total_training_time", 0)
|
1018 |
+
print(f"Checkpoint loaded. Resuming from epoch {epoch + 1}, step {total_steps}")
|
1019 |
+
return total_steps, epoch + 1, metrics, logs, total_training_time
|
1020 |
+
else:
|
1021 |
+
print("No checkpoint found. Starting from scratch.")
|
1022 |
+
return 0, 0, None, [], 0
|
1023 |
+
|
1024 |
+
def inference(model, dataset, save_path, epoch, device="cuda", sample_size=8):
|
1025 |
+
if not os.path.exists(save_path):
|
1026 |
+
os.makedirs(save_path)
|
1027 |
+
|
1028 |
+
image_tensors = []
|
1029 |
+
for i in range(sample_size):
|
1030 |
+
image_tensors.append(dataset[i].unsqueeze(0))
|
1031 |
+
|
1032 |
+
image_tensors = torch.cat(image_tensors, dim=0).to(device)
|
1033 |
+
with torch.no_grad():
|
1034 |
+
outputs, _, _ = model(image_tensors)
|
1035 |
+
|
1036 |
+
save_input = image_tensors.detach().cpu()
|
1037 |
+
save_output = outputs
|
1038 |
+
|
1039 |
+
grid = make_grid(torch.cat([save_input, save_output], dim=0), nrow=sample_size)
|
1040 |
+
|
1041 |
+
combined_image = tv.transforms.ToPILImage()(grid)
|
1042 |
+
combined_image.save(os.path.join(save_path, f"reconstructed_images_EP-{epoch}_{sample_size}.png"))
|
1043 |
+
|
1044 |
+
print(f"Reconstructed images saved at: {save_path}")
|
1045 |
+
|
1046 |
+
|
1047 |
+
def trainVAE(Config, dataloader):
|
1048 |
+
dataset_config = Config.dataset_params
|
1049 |
+
autoencoder_config = Config.autoencoder_params
|
1050 |
+
train_config = Config.train_params
|
1051 |
+
paths = Config.paths
|
1052 |
+
|
1053 |
+
seed = train_config.seed
|
1054 |
+
torch.manual_seed(seed)
|
1055 |
+
np.random.seed(seed)
|
1056 |
+
random.seed(seed)
|
1057 |
+
if device == "cuda":
|
1058 |
+
torch.cuda.manual_seed_all(seed)
|
1059 |
+
|
1060 |
+
model = VQVAE(im_channels=dataset_config.im_channels, model_config=autoencoder_config).to(device)
|
1061 |
+
discriminator = Discriminator(im_channels=dataset_config.im_channels).to(device)
|
1062 |
+
|
1063 |
+
optimizer_d = torch.optim.AdamW(discriminator.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1064 |
+
optimizer_g = torch.optim.AdamW(model.parameters(), lr=train_config.autoencoder_lr, betas=(0.5, 0.999))
|
1065 |
+
|
1066 |
+
checkpoint_path = os.path.join(train_config.task_name, "vqvaq_ckpt.pth")
|
1067 |
+
total_steps, start_epoch, metrics, logs, total_training_time = load_checkpoint(checkpoint_path, model, discriminator, optimizer_d, optimizer_g)
|
1068 |
+
|
1069 |
+
if not os.path.exists(train_config.task_name):
|
1070 |
+
os.mkdir(train_config.task_name)
|
1071 |
+
|
1072 |
+
num_epochs = train_config.autoencoder_epochs
|
1073 |
+
recon_criterion = torch.nn.MSELoss()
|
1074 |
+
disc_criterion = torch.nn.MSELoss()
|
1075 |
+
lpips_model = LPIPS().eval().to(device)
|
1076 |
+
|
1077 |
+
acc_steps = train_config.autoencoder_acc_steps
|
1078 |
+
disc_step_start = train_config.disc_start
|
1079 |
+
|
1080 |
+
start_time_total = time.time() - total_training_time
|
1081 |
+
|
1082 |
+
for epoch_idx in trange(start_epoch, num_epochs):
|
1083 |
+
start_time_epoch = time.time()
|
1084 |
+
epoch_log = []
|
1085 |
+
|
1086 |
+
for images in tqdm(dataloader):
|
1087 |
+
batch_start_time = time.time()
|
1088 |
+
total_steps += 1
|
1089 |
+
|
1090 |
+
images = images.to(device)
|
1091 |
+
model_output = model(images)
|
1092 |
+
output, z, quantize_losses = model_output
|
1093 |
+
|
1094 |
+
recon_loss = recon_criterion(output, images) / acc_steps
|
1095 |
+
|
1096 |
+
g_loss = (
|
1097 |
+
recon_loss
|
1098 |
+
+ (train_config.codebook_weight * quantize_losses["codebook_loss"] / acc_steps)
|
1099 |
+
+ (train_config.commitment_beta * quantize_losses["commitment_loss"] / acc_steps)
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
if total_steps > disc_step_start:
|
1103 |
+
disc_fake_pred = discriminator(output)
|
1104 |
+
disc_fake_loss = disc_criterion(disc_fake_pred, torch.ones_like(disc_fake_pred))
|
1105 |
+
g_loss += train_config.disc_weight * disc_fake_loss / acc_steps
|
1106 |
+
|
1107 |
+
lpips_loss = torch.mean(lpips_model(output, images)) / acc_steps
|
1108 |
+
g_loss += train_config.perceptual_weight * lpips_loss
|
1109 |
+
|
1110 |
+
g_loss.backward()
|
1111 |
+
|
1112 |
+
if total_steps % acc_steps == 0:
|
1113 |
+
optimizer_g.step()
|
1114 |
+
optimizer_g.zero_grad()
|
1115 |
+
|
1116 |
+
if total_steps > disc_step_start:
|
1117 |
+
disc_fake_pred = discriminator(output.detach())
|
1118 |
+
disc_real_pred = discriminator(images)
|
1119 |
+
disc_loss = (disc_criterion(disc_fake_pred, torch.zeros_like(disc_fake_pred)) +
|
1120 |
+
disc_criterion(disc_real_pred, torch.ones_like(disc_real_pred))) / 2 / acc_steps
|
1121 |
+
disc_loss.backward()
|
1122 |
+
|
1123 |
+
if total_steps % acc_steps == 0:
|
1124 |
+
optimizer_d.step()
|
1125 |
+
optimizer_d.zero_grad()
|
1126 |
+
|
1127 |
+
batch_time = time.time() - batch_start_time
|
1128 |
+
epoch_log.append(format_time(0, batch_time))
|
1129 |
+
|
1130 |
+
epoch_time = time.time() - start_time_epoch
|
1131 |
+
logs.append({"epoch": epoch_idx + 1, "epoch_time": format_time(0, epoch_time), "batch_times": epoch_log})
|
1132 |
+
|
1133 |
+
total_training_time = time.time() - start_time_total
|
1134 |
+
|
1135 |
+
save_checkpoint(total_steps, epoch_idx + 1, model, discriminator, optimizer_d, optimizer_g, metrics, checkpoint_path, logs, total_training_time)
|
1136 |
+
recon_save_path = os.path.join(train_config.task_name, 'vqvae_recon')
|
1137 |
+
inference(model, dataset, recon_save_path, epoch=epoch_idx, device=device, sample_size=16)
|
1138 |
+
|
1139 |
+
print("Training completed.")
|
1140 |
+
|
1141 |
+
|
1142 |
+
|
1143 |
+
|
1144 |
+
# ==================================================================
|
1145 |
+
# S T A R T I N G - T R A I N I N G
|
1146 |
+
# ==================================================================
|
1147 |
+
|
1148 |
+
trainVAE(Config, dataloader)
|
1149 |
+
|
1150 |
+
# python Vaani-VQVAE-Main.py | tee AE-training.log
|
1151 |
+
# python Vaani-VQVAE-Main.py > AE-training.log 2>&1
|
Vaani/LDM/scripts/VaaniLDM/vqvaq_ckpt-15.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3204e13addde475d8203e0865947f1742ffeef2ecb828cf298a704c660a5964b
|
3 |
+
size 88345234
|
Vaani/LDM/scripts/VaaniLDM/vqvaq_ckpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c8b43abfb2f4362a48ffd111535aaf45ef239a08496838b79f8855f95d291bc
|
3 |
+
size 93659794
|
Vaani/LDM/scripts/_1_Lpips.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==================================================================
|
2 |
+
# LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY ( L P I P S )
|
3 |
+
# ==================================================================
|
4 |
+
# Author : Ashish Kumar Uchadiya
|
5 |
+
# Created : January 18, 2025
|
6 |
+
# Description: LPIPS essentially computes the similarity between the
|
7 |
+
# activations of two image patches for some pre-defined network.
|
8 |
+
# This measure has been shown to match human perception well.
|
9 |
+
# A low LPIPS score means that image patches are perceptual similar.
|
10 |
+
# ==================================================================
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class vgg16(torch.nn.Module):
|
15 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
16 |
+
super(vgg16, self).__init__()
|
17 |
+
vgg_pretrained_features = torchvision.models.vgg16(
|
18 |
+
weights=torchvision.models.VGG16_Weights.IMAGENET1K_V1
|
19 |
+
).features
|
20 |
+
self.slice1 = torch.nn.Sequential()
|
21 |
+
self.slice2 = torch.nn.Sequential()
|
22 |
+
self.slice3 = torch.nn.Sequential()
|
23 |
+
self.slice4 = torch.nn.Sequential()
|
24 |
+
self.slice5 = torch.nn.Sequential()
|
25 |
+
self.N_slices = 5
|
26 |
+
for x in range(4):
|
27 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
28 |
+
for x in range(4, 9):
|
29 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
30 |
+
for x in range(9, 16):
|
31 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
32 |
+
for x in range(16, 23):
|
33 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
34 |
+
for x in range(23, 30):
|
35 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
36 |
+
|
37 |
+
# Freeze vgg model
|
38 |
+
if not requires_grad:
|
39 |
+
for param in self.parameters():
|
40 |
+
param.requires_grad = False
|
41 |
+
|
42 |
+
def forward(self, X):
|
43 |
+
# Return output of vgg features
|
44 |
+
h = self.slice1(X)
|
45 |
+
h_relu1_2 = h
|
46 |
+
h = self.slice2(h)
|
47 |
+
h_relu2_2 = h
|
48 |
+
h = self.slice3(h)
|
49 |
+
h_relu3_3 = h
|
50 |
+
h = self.slice4(h)
|
51 |
+
h_relu4_3 = h
|
52 |
+
h = self.slice5(h)
|
53 |
+
h_relu5_3 = h
|
54 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
55 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
56 |
+
return out
|
Vaani/LDM/scripts/__init__.py
ADDED
File without changes
|
Vaani/LDM/scripts/config.yaml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_params:
|
2 |
+
im_channels: 3
|
3 |
+
im_size: 128
|
4 |
+
|
5 |
+
paths:
|
6 |
+
images_dir: "/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Images"
|
7 |
+
vqvae_recon:
|
8 |
+
|
9 |
+
diffusion_params:
|
10 |
+
num_timesteps: 1000
|
11 |
+
beta_start: 0.0015
|
12 |
+
beta_end: 0.0195
|
13 |
+
|
14 |
+
ldm_params:
|
15 |
+
down_channels: [ 128, 256, 256, 256 ]
|
16 |
+
mid_channels: [ 256, 256 ]
|
17 |
+
down_sample: [ False, False, False ]
|
18 |
+
attn_down: [ True, True, True ]
|
19 |
+
time_emb_dim: 256
|
20 |
+
norm_channels: 32
|
21 |
+
num_heads: 16
|
22 |
+
conv_out_channels: 128
|
23 |
+
num_down_layers: 2
|
24 |
+
num_mid_layers: 2
|
25 |
+
num_up_layers: 2
|
26 |
+
|
27 |
+
autoencoder_params:
|
28 |
+
z_channels: 3
|
29 |
+
codebook_size: 20
|
30 |
+
down_channels: [ 32, 64, 128 ]
|
31 |
+
mid_channels: [ 128, 128 ]
|
32 |
+
down_sample: [ True, True ]
|
33 |
+
attn_down: [ False, False ]
|
34 |
+
norm_channels: 32
|
35 |
+
num_heads: 16
|
36 |
+
num_down_layers: 4
|
37 |
+
num_mid_layers: 4
|
38 |
+
num_up_layers: 4
|
39 |
+
|
40 |
+
train_params:
|
41 |
+
seed: 4422
|
42 |
+
task_name: 'VaaniLDM'
|
43 |
+
ldm_batch_size: 1
|
44 |
+
autoencoder_batch_size: 4
|
45 |
+
disc_start: 1000
|
46 |
+
disc_weight: 0.5
|
47 |
+
codebook_weight: 1
|
48 |
+
commitment_beta: 0.2
|
49 |
+
perceptual_weight: 1
|
50 |
+
kl_weight: 0.000005
|
51 |
+
ldm_epochs: 10
|
52 |
+
autoencoder_epochs: 10
|
53 |
+
num_samples: 9
|
54 |
+
num_grid_rows: 3
|
55 |
+
ldm_lr: 0.00001
|
56 |
+
autoencoder_lr: 0.0001
|
57 |
+
autoencoder_acc_steps: 1
|
58 |
+
autoencoder_img_save_steps: 8
|
59 |
+
save_latents: True
|
60 |
+
vqvae_latent_dir_name: 'vqvae_latents'
|
61 |
+
ldm_ckpt_name: 'ddpm_ckpt.pth'
|
62 |
+
vqvae_ckpt_name: 'vqvaq_ckpt.pth'
|
63 |
+
|
64 |
+
training:
|
65 |
+
_continue_: True
|
Vaani/LDM/scripts/dotdict.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
from argparse import Namespace
|
3 |
+
import typing
|
4 |
+
|
5 |
+
|
6 |
+
class DotDict(Namespace):
|
7 |
+
"""A simple class that builds upon `argparse.Namespace`
|
8 |
+
in order to make chained attributes possible."""
|
9 |
+
|
10 |
+
def __init__(self, temp=False, key=None, parent=None) -> None:
|
11 |
+
self._temp = temp
|
12 |
+
self._key = key
|
13 |
+
self._parent = parent
|
14 |
+
|
15 |
+
def __eq__(self, other):
|
16 |
+
if not isinstance(other, DotDict):
|
17 |
+
return NotImplemented
|
18 |
+
return vars(self) == vars(other)
|
19 |
+
|
20 |
+
def __getattr__(self, __name: str) -> Any:
|
21 |
+
if __name not in self.__dict__ and not self._temp:
|
22 |
+
self.__dict__[__name] = DotDict(temp=True, key=__name, parent=self)
|
23 |
+
else:
|
24 |
+
del self._parent.__dict__[self._key]
|
25 |
+
raise AttributeError("No attribute '%s'" % __name)
|
26 |
+
return self.__dict__[__name]
|
27 |
+
|
28 |
+
def __repr__(self) -> str:
|
29 |
+
item_keys = [k for k in self.__dict__ if not k.startswith("_")]
|
30 |
+
|
31 |
+
if len(item_keys) == 0:
|
32 |
+
return "DotDict()"
|
33 |
+
elif len(item_keys) == 1:
|
34 |
+
key = item_keys[0]
|
35 |
+
val = self.__dict__[key]
|
36 |
+
return "DotDict(%s=%s)" % (key, repr(val))
|
37 |
+
else:
|
38 |
+
return "DotDict(%s)" % ", ".join(
|
39 |
+
"%s=%s" % (key, repr(val)) for key, val in self.__dict__.items()
|
40 |
+
)
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def from_dict(cls, original: typing.Mapping[str, any]) -> "DotDict":
|
44 |
+
"""Create a DotDict from a (possibly nested) dict `original`.
|
45 |
+
Warning: this method should not be used on very deeply nested inputs,
|
46 |
+
since it's recursively traversing the nested dictionary values.
|
47 |
+
"""
|
48 |
+
dd = DotDict()
|
49 |
+
for key, value in original.items():
|
50 |
+
if isinstance(value, typing.Mapping):
|
51 |
+
value = cls.from_dict(value)
|
52 |
+
setattr(dd, key, value)
|
53 |
+
return dd
|
Vaani/SLURM_test.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash -x
|
2 |
+
#SBATCH -N 1
|
3 |
+
#SBATCH --ntasks-per-node=48
|
4 |
+
#SBATCH --mem 128G
|
5 |
+
#SBATCH -t 01:00:00
|
6 |
+
#SBATCH -J ASHISH_test_cpu
|
7 |
+
#SBATCH -o %j.out # name of stdout output file(--output)
|
8 |
+
#SBATCH -e %j.err # name of stderr error file(--error)
|
9 |
+
cd $SLURM_WORKDIR
|
10 |
+
|
11 |
+
module purge
|
12 |
+
module load miniconda # load the module and environment
|
13 |
+
source /home/apps/miniconda3/etc/profile.d/conda.sh
|
14 |
+
conda env list
|
15 |
+
conda activate aku_env # load working environment
|
16 |
+
|
17 |
+
python /home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/image_data_metadata.py # run python script
|
18 |
+
|
19 |
+
conda deactivate # deactivate environment
|
20 |
+
# end of script
|
Vaani/VQVAE_architecture.svg
ADDED
|
Vaani/VQVAE_summary.txt
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TIME: 2025-05-09 21:58:45.534412
|
2 |
+
DEVICE: cuda
|
3 |
+
{'autoencoder_params': {'attn_down': [False, False],
|
4 |
+
'codebook_size': 20,
|
5 |
+
'down_channels': [32, 64, 128],
|
6 |
+
'down_sample': [True, True],
|
7 |
+
'mid_channels': [128, 128],
|
8 |
+
'norm_channels': 32,
|
9 |
+
'num_down_layers': 4,
|
10 |
+
'num_heads': 16,
|
11 |
+
'num_mid_layers': 4,
|
12 |
+
'num_up_layers': 4,
|
13 |
+
'z_channels': 3},
|
14 |
+
'dataset_params': {'im_channels': 3, 'im_size': 128},
|
15 |
+
'diffusion_params': {'beta_end': 0.0195, 'beta_start': 0.0015, 'num_timesteps': 1000},
|
16 |
+
'ldm_params': {'attn_down': [True, True, True],
|
17 |
+
'conv_out_channels': 128,
|
18 |
+
'down_channels': [128, 256, 256, 256],
|
19 |
+
'down_sample': [False, False, False],
|
20 |
+
'mid_channels': [256, 256],
|
21 |
+
'norm_channels': 32,
|
22 |
+
'num_down_layers': 2,
|
23 |
+
'num_heads': 16,
|
24 |
+
'num_mid_layers': 2,
|
25 |
+
'num_up_layers': 2,
|
26 |
+
'time_emb_dim': 256},
|
27 |
+
'paths': {'images_dir': '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Images'},
|
28 |
+
'train_params': {'autoencoder_acc_steps': 1,
|
29 |
+
'autoencoder_batch_size': 8,
|
30 |
+
'autoencoder_epochs': 30,
|
31 |
+
'autoencoder_img_save_steps': 8,
|
32 |
+
'autoencoder_lr': 0.0001,
|
33 |
+
'codebook_weight': 1,
|
34 |
+
'commitment_beta': 0.2,
|
35 |
+
'disc_start': 1000,
|
36 |
+
'disc_weight': 0.5,
|
37 |
+
'kl_weight': 5e-06,
|
38 |
+
'ldm_batch_size': 1,
|
39 |
+
'ldm_ckpt_name': 'ddpm_ckpt.pth',
|
40 |
+
'ldm_epochs': 10,
|
41 |
+
'ldm_lr': 1e-05,
|
42 |
+
'num_grid_rows': 3,
|
43 |
+
'num_samples': 9,
|
44 |
+
'perceptual_weight': 1,
|
45 |
+
'save_latents': True,
|
46 |
+
'seed': 4422,
|
47 |
+
'task_name': 'VaaniLDM',
|
48 |
+
'vqvae_ckpt_name': 'vqvaq_ckpt.pth',
|
49 |
+
'vqvae_latent_dir_name': 'vqvae_latents'},
|
50 |
+
'training': {'_continue_': True}}
|
51 |
+
|
52 |
+
|
53 |
+
Files found: 128807
|
54 |
+
IMAGE SHAPE: torch.Size([3, 128, 128])
|
55 |
+
BATCH SHAPE: torch.Size([8, 3, 128, 128])
|
56 |
+
|
57 |
+
|
58 |
+
======================================================================================================================================================
|
59 |
+
Layer (type (var_name)) Input Shape Output Shape Param # Trainable Param %
|
60 |
+
======================================================================================================================================================
|
61 |
+
VQVAE (VQVAE) [8, 3, 128, 128] [8, 3, 128, 128] 60 True 0.00%
|
62 |
+
├─Conv2d (encoder_conv_in) [8, 3, 128, 128] [8, 32, 128, 128] 896 True 0.01%
|
63 |
+
├─ModuleList (encoder_layers) -- -- -- True --
|
64 |
+
│ └─DownBlock (0) [8, 32, 128, 128] [8, 64, 64, 64] -- True --
|
65 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
66 |
+
│ │ │ └─Sequential (0) [8, 32, 128, 128] [8, 64, 128, 128] -- True --
|
67 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
68 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
69 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 64, 128, 128] 18,496 True 0.30%
|
70 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
71 |
+
│ │ │ └─Sequential (0) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
72 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
73 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
74 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
75 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
76 |
+
│ │ │ └─Conv2d (0) [8, 32, 128, 128] [8, 64, 128, 128] 2,112 True 0.03%
|
77 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
78 |
+
│ │ │ └─Sequential (1) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
79 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
80 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
81 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
82 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
83 |
+
│ │ │ └─Sequential (1) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
84 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
85 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
86 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
87 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
88 |
+
│ │ │ └─Conv2d (1) [8, 64, 128, 128] [8, 64, 128, 128] 4,160 True 0.07%
|
89 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
90 |
+
│ │ │ └─Sequential (2) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
91 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
92 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
93 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
94 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
95 |
+
│ │ │ └─Sequential (2) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
96 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
97 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
98 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
99 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
100 |
+
│ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 4,160 True 0.07%
|
101 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
102 |
+
│ │ │ └─Sequential (3) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
103 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
104 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
105 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
106 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
107 |
+
│ │ │ └─Sequential (3) [8, 64, 128, 128] [8, 64, 128, 128] -- True --
|
108 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
109 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
110 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 64, 128, 128] 36,928 True 0.59%
|
111 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
112 |
+
│ │ │ └─Conv2d (3) [8, 64, 128, 128] [8, 64, 128, 128] 4,160 True 0.07%
|
113 |
+
│ │ └─Conv2d (down_sample_conv) [8, 64, 128, 128] [8, 64, 64, 64] 65,600 True 1.05%
|
114 |
+
│ └─DownBlock (1) [8, 64, 64, 64] [8, 128, 32, 32] -- True --
|
115 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
116 |
+
│ │ │ └─Sequential (0) [8, 64, 64, 64] [8, 128, 64, 64] -- True --
|
117 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
118 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
119 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 128, 64, 64] 73,856 True 1.19%
|
120 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
121 |
+
│ │ │ └─Sequential (0) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
122 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
123 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
124 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
125 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
126 |
+
│ │ │ └─Conv2d (0) [8, 64, 64, 64] [8, 128, 64, 64] 8,320 True 0.13%
|
127 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
128 |
+
│ │ │ └─Sequential (1) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
129 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
130 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
131 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
132 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
133 |
+
│ │ │ └─Sequential (1) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
134 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
135 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
136 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
137 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
138 |
+
│ │ │ └─Conv2d (1) [8, 128, 64, 64] [8, 128, 64, 64] 16,512 True 0.27%
|
139 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
140 |
+
│ │ │ └─Sequential (2) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
141 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
142 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
143 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
144 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
145 |
+
│ │ │ └─Sequential (2) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
146 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
147 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
148 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
149 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
150 |
+
│ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 16,512 True 0.27%
|
151 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
152 |
+
│ │ │ └─Sequential (3) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
153 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
154 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
155 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
156 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
157 |
+
│ │ │ └─Sequential (3) [8, 128, 64, 64] [8, 128, 64, 64] -- True --
|
158 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
159 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
160 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 128, 64, 64] 147,584 True 2.37%
|
161 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
162 |
+
│ │ │ └─Conv2d (3) [8, 128, 64, 64] [8, 128, 64, 64] 16,512 True 0.27%
|
163 |
+
│ │ └─Conv2d (down_sample_conv) [8, 128, 64, 64] [8, 128, 32, 32] 262,272 True 4.22%
|
164 |
+
├─ModuleList (encoder_mids) -- -- -- True --
|
165 |
+
│ └─MidBlock (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
166 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
167 |
+
│ │ │ └─Sequential (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
168 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
169 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
170 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
171 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
172 |
+
│ │ │ └─Sequential (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
173 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
174 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
175 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
176 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
177 |
+
│ │ │ └─Conv2d (0) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
178 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
179 |
+
│ │ │ └─GroupNorm (0) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
180 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
181 |
+
│ │ │ └─MultiheadAttention (0) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
182 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
183 |
+
│ │ │ └─Sequential (1) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
184 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
185 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
186 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
187 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
188 |
+
│ │ │ └─Sequential (1) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
189 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
190 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
191 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
192 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
193 |
+
│ │ │ └─Conv2d (1) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
194 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
195 |
+
│ │ │ └─GroupNorm (1) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
196 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
197 |
+
│ │ │ └─MultiheadAttention (1) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
198 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
199 |
+
│ │ │ └─Sequential (2) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
200 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
201 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
202 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
203 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
204 |
+
│ │ │ └─Sequential (2) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
205 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
206 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
207 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
208 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
209 |
+
│ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
210 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
211 |
+
│ │ │ └─GroupNorm (2) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
212 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
213 |
+
│ │ │ └─MultiheadAttention (2) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
214 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
215 |
+
│ │ │ └─Sequential (3) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
216 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
217 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
218 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
219 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
220 |
+
│ │ │ └─Sequential (3) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
221 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
222 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
223 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
224 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
225 |
+
│ │ │ └─Conv2d (3) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
226 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
227 |
+
│ │ │ └─GroupNorm (3) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
228 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
229 |
+
│ │ │ └─MultiheadAttention (3) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
230 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
231 |
+
│ │ │ └─Sequential (4) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
232 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
233 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
234 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
235 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
236 |
+
│ │ │ └─Sequential (4) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
237 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
238 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
239 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
240 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
241 |
+
│ │ │ └─Conv2d (4) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
242 |
+
├─GroupNorm (encoder_norm_out) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
243 |
+
├─Conv2d (encoder_conv_out) [8, 128, 32, 32] [8, 3, 32, 32] 3,459 True 0.06%
|
244 |
+
├─Conv2d (pre_quant_conv) [8, 3, 32, 32] [8, 3, 32, 32] 12 True 0.00%
|
245 |
+
├─Conv2d (post_quant_conv) [8, 3, 32, 32] [8, 3, 32, 32] 12 True 0.00%
|
246 |
+
├─Conv2d (decoder_conv_in) [8, 3, 32, 32] [8, 128, 32, 32] 3,584 True 0.06%
|
247 |
+
├─ModuleList (decoder_mids) -- -- -- True --
|
248 |
+
│ └─MidBlock (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
249 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
250 |
+
│ │ │ └─Sequential (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
251 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
252 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
253 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
254 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
255 |
+
│ │ │ └─Sequential (0) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
256 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
257 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
258 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
259 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
260 |
+
│ │ │ └─Conv2d (0) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
261 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
262 |
+
│ │ │ └─GroupNorm (0) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
263 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
264 |
+
│ │ │ └─MultiheadAttention (0) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
265 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
266 |
+
│ │ │ └─Sequential (1) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
267 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
268 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
269 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
270 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
271 |
+
│ │ │ └─Sequential (1) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
272 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
273 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
274 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
275 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
276 |
+
│ │ │ └─Conv2d (1) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
277 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
278 |
+
│ │ │ └─GroupNorm (1) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
279 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
280 |
+
│ │ │ └─MultiheadAttention (1) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
281 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
282 |
+
│ │ │ └─Sequential (2) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
283 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
284 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
285 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
286 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
287 |
+
│ │ │ └─Sequential (2) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
288 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
289 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
290 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
291 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
292 |
+
│ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
293 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
294 |
+
│ │ │ └─GroupNorm (2) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
295 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
296 |
+
│ │ │ └─MultiheadAttention (2) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
297 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
298 |
+
│ │ │ └─Sequential (3) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
299 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
300 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
301 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
302 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
303 |
+
│ │ │ └─Sequential (3) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
304 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
305 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
306 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
307 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
308 |
+
│ │ │ └─Conv2d (3) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
309 |
+
│ │ └─ModuleList (attention_norms) -- -- (recursive) True (recursive)
|
310 |
+
│ │ │ └─GroupNorm (3) [8, 128, 1024] [8, 128, 1024] 256 True 0.00%
|
311 |
+
│ │ └─ModuleList (attentions) -- -- (recursive) True (recursive)
|
312 |
+
│ │ │ └─MultiheadAttention (3) [8, 1024, 128] [8, 1024, 128] 66,048 True 1.06%
|
313 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
314 |
+
│ │ │ └─Sequential (4) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
315 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
316 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
317 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
318 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
319 |
+
│ │ │ └─Sequential (4) [8, 128, 32, 32] [8, 128, 32, 32] -- True --
|
320 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 32, 32] [8, 128, 32, 32] 256 True 0.00%
|
321 |
+
│ │ │ │ └─SiLU (1) [8, 128, 32, 32] [8, 128, 32, 32] -- -- --
|
322 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 32, 32] [8, 128, 32, 32] 147,584 True 2.37%
|
323 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
324 |
+
│ │ │ └─Conv2d (4) [8, 128, 32, 32] [8, 128, 32, 32] 16,512 True 0.27%
|
325 |
+
├─ModuleList (decoder_layers) -- -- -- True --
|
326 |
+
│ └─UpBlock (0) [8, 128, 32, 32] [8, 64, 64, 64] -- True --
|
327 |
+
│ │ └─ConvTranspose2d (up_sample_conv) [8, 128, 32, 32] [8, 128, 64, 64] 262,272 True 4.22%
|
328 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
329 |
+
│ │ │ └─Sequential (0) [8, 128, 64, 64] [8, 64, 64, 64] -- True --
|
330 |
+
│ │ │ │ └─GroupNorm (0) [8, 128, 64, 64] [8, 128, 64, 64] 256 True 0.00%
|
331 |
+
│ │ │ │ └─SiLU (1) [8, 128, 64, 64] [8, 128, 64, 64] -- -- --
|
332 |
+
│ │ │ │ └─Conv2d (2) [8, 128, 64, 64] [8, 64, 64, 64] 73,792 True 1.19%
|
333 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
334 |
+
│ │ │ └─Sequential (0) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
335 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
336 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
337 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
338 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
339 |
+
│ │ │ └─Conv2d (0) [8, 128, 64, 64] [8, 64, 64, 64] 8,256 True 0.13%
|
340 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
341 |
+
│ │ │ └─Sequential (1) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
342 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
343 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
344 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
345 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
346 |
+
│ │ │ └─Sequential (1) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
347 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
348 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
349 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
350 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
351 |
+
│ │ │ └─Conv2d (1) [8, 64, 64, 64] [8, 64, 64, 64] 4,160 True 0.07%
|
352 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
353 |
+
│ │ │ └─Sequential (2) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
354 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
355 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
356 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
357 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
358 |
+
│ │ │ └─Sequential (2) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
359 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
360 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
361 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
362 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
363 |
+
│ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 4,160 True 0.07%
|
364 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
365 |
+
│ │ │ └─Sequential (3) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
366 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
367 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
368 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
369 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
370 |
+
│ │ │ └─Sequential (3) [8, 64, 64, 64] [8, 64, 64, 64] -- True --
|
371 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 64, 64] [8, 64, 64, 64] 128 True 0.00%
|
372 |
+
│ │ │ │ └─SiLU (1) [8, 64, 64, 64] [8, 64, 64, 64] -- -- --
|
373 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 64, 64] [8, 64, 64, 64] 36,928 True 0.59%
|
374 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
375 |
+
│ │ │ └─Conv2d (3) [8, 64, 64, 64] [8, 64, 64, 64] 4,160 True 0.07%
|
376 |
+
│ └─UpBlock (1) [8, 64, 64, 64] [8, 32, 128, 128] -- True --
|
377 |
+
│ │ └─ConvTranspose2d (up_sample_conv) [8, 64, 64, 64] [8, 64, 128, 128] 65,600 True 1.05%
|
378 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
379 |
+
│ │ │ └─Sequential (0) [8, 64, 128, 128] [8, 32, 128, 128] -- True --
|
380 |
+
│ │ │ │ └─GroupNorm (0) [8, 64, 128, 128] [8, 64, 128, 128] 128 True 0.00%
|
381 |
+
│ │ │ │ └─SiLU (1) [8, 64, 128, 128] [8, 64, 128, 128] -- -- --
|
382 |
+
│ │ │ │ └─Conv2d (2) [8, 64, 128, 128] [8, 32, 128, 128] 18,464 True 0.30%
|
383 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
384 |
+
│ │ │ └─Sequential (0) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
385 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
386 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
387 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
388 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
389 |
+
│ │ │ └─Conv2d (0) [8, 64, 128, 128] [8, 32, 128, 128] 2,080 True 0.03%
|
390 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
391 |
+
│ │ │ └─Sequential (1) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
392 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
393 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
394 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
395 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
396 |
+
│ │ │ └─Sequential (1) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
397 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
398 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
399 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
400 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
401 |
+
│ │ │ └─Conv2d (1) [8, 32, 128, 128] [8, 32, 128, 128] 1,056 True 0.02%
|
402 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
403 |
+
│ │ │ └─Sequential (2) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
404 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
405 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
406 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
407 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
408 |
+
│ │ │ └─Sequential (2) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
409 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
410 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
411 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
412 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
413 |
+
│ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 1,056 True 0.02%
|
414 |
+
│ │ └─ModuleList (resnet_conv_first) -- -- (recursive) True (recursive)
|
415 |
+
│ │ │ └─Sequential (3) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
416 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
417 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
418 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
419 |
+
│ │ └─ModuleList (resnet_conv_second) -- -- (recursive) True (recursive)
|
420 |
+
│ │ │ └─Sequential (3) [8, 32, 128, 128] [8, 32, 128, 128] -- True --
|
421 |
+
│ │ │ │ └─GroupNorm (0) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
422 |
+
│ │ │ │ └─SiLU (1) [8, 32, 128, 128] [8, 32, 128, 128] -- -- --
|
423 |
+
│ │ │ │ └─Conv2d (2) [8, 32, 128, 128] [8, 32, 128, 128] 9,248 True 0.15%
|
424 |
+
│ │ └─ModuleList (residual_input_conv) -- -- (recursive) True (recursive)
|
425 |
+
│ │ │ └─Conv2d (3) [8, 32, 128, 128] [8, 32, 128, 128] 1,056 True 0.02%
|
426 |
+
├─GroupNorm (decoder_norm_out) [8, 32, 128, 128] [8, 32, 128, 128] 64 True 0.00%
|
427 |
+
├─Conv2d (decoder_conv_out) [8, 32, 128, 128] [8, 3, 128, 128] 867 True 0.01%
|
428 |
+
======================================================================================================================================================
|
429 |
+
Total params: 6,219,770
|
430 |
+
Trainable params: 6,219,770
|
431 |
+
Non-trainable params: 0
|
432 |
+
Total mult-adds (Units.GIGABYTES): 146.86
|
433 |
+
======================================================================================================================================================
|
434 |
+
Input size (MB): 1.57
|
435 |
+
Forward/backward pass size (MB): 3719.89
|
436 |
+
Params size (MB): 22.77
|
437 |
+
Estimated Total Size (MB): 3744.23
|
438 |
+
======================================================================================================================================================
|
Vaani/VQVAE_training.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# ========= Variables =========
|
4 |
+
|
5 |
+
# ACC_CONFIG_PATH="/home/IITB/ai-at-ieor/23m1521/.cache/huggingface/accelerate/FSDP_2gpu.yaml"
|
6 |
+
|
7 |
+
# ACC_CONFIG_PATH="/home/IITB/ai-at-ieor/23m1521/.cache/huggingface/accelerate/default_config.yaml"
|
8 |
+
|
9 |
+
# ACC_CONFIG_PATH="/home/IITB/ai-at-ieor/23m1521/.cache/huggingface/accelerate/1GPU.yaml"
|
10 |
+
|
11 |
+
ACC_CONFIG_PATH="/home/IITB/ai-at-ieor/23m1521/.cache/huggingface/accelerate/default_config.yaml"
|
12 |
+
|
13 |
+
TRAINING_SCRIPT="/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/_6_Vaani-VQVAE-Main-Accelerate.py"
|
14 |
+
|
15 |
+
TRAIN_CONFIG_PATH="/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/config-Acc.yaml"
|
16 |
+
|
17 |
+
|
18 |
+
# ========= Command =========
|
19 |
+
accelerate launch --config_file "$ACC_CONFIG_PATH" "$TRAINING_SCRIPT" $TRAIN_CONFIG_PATH
|
Vaani/Vaani-Audio-Image-English.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Vaani/Vaani-Images-Audio-MetaData.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a84fc4cf3ec21f074cb7b30a787ab49f637873fde502b3b8536df6e364b43135
|
3 |
+
size 297984593
|
Vaani/Vaani-subplot.png
ADDED
![]() |
Git LFS Details
|
Vaani/VaaniLDM/ddpm_ckpt_epoch14.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ca34fdd03d28b5ecf65ebe1e92efde7b592f97ad0fd47e5828ac690a8f296df
|
3 |
+
size 593242410
|
Vaani/VaaniLDM/ddpm_ckpt_epoch15.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74e8f75dc97d40089566c3e25e27c0530c4883c3e0747e98a669ebedc8894252
|
3 |
+
size 593242474
|