Vaani_SD21_Whisper_Finetune
Browse files- scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/23m1521.code-workspace +7 -1
- scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/Vaani_SD2.1_Whisper_Finetune.py +75 -3
- scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/_2.1.2_OpenCLIP_Image_Features.ipynb +995 -0
- scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/config-SD21_Whisper.yaml +1 -0
- scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/_1.1_Audio-Hindi-Download.ipynb +1 -1
scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/23m1521.code-workspace
CHANGED
@@ -5,9 +5,15 @@
|
|
5 |
},
|
6 |
{
|
7 |
"path": ".."
|
|
|
|
|
|
|
8 |
}
|
9 |
],
|
10 |
"settings": {
|
11 |
-
"terminal.integrated.mouseWheelZoom": true
|
|
|
|
|
|
|
12 |
}
|
13 |
}
|
|
|
5 |
},
|
6 |
{
|
7 |
"path": ".."
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"path": "../../../../../../../scratch/IITB/ai-at-ieor/23m1521"
|
11 |
}
|
12 |
],
|
13 |
"settings": {
|
14 |
+
"terminal.integrated.mouseWheelZoom": true,
|
15 |
+
"editor.fontFamily": "JetBrains Mono Light",
|
16 |
+
"terminal.integrated.fontLigatures": true,
|
17 |
+
"terminal.integrated.fontFamily": "JetBrains Mono Light"
|
18 |
}
|
19 |
}
|
scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/Vaani_SD2.1_Whisper_Finetune.py
CHANGED
@@ -403,6 +403,59 @@ pipe = pipe.to(device)
|
|
403 |
|
404 |
|
405 |
# # Training Helpers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
def handler(signum, frame):
|
407 |
print("KeyboardInterrupt caught. Exiting gracefully...")
|
408 |
sys.exit(0)
|
@@ -619,6 +672,14 @@ def load_checkpoint(checkpoint_dir, model, audio_encoder, optimizer, load_best):
|
|
619 |
checkpoint['best_optimizer_state'],
|
620 |
checkpoint['best_loss'],
|
621 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
|
623 |
|
624 |
def train_loop(
|
@@ -698,6 +759,12 @@ def train_loop(
|
|
698 |
start_epoch, epochs, colour="red", dynamic_ncols=True
|
699 |
)
|
700 |
for epoch in epoch_progress_bar:
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
total_loss = 0.0
|
702 |
generate_sample(
|
703 |
unet,
|
@@ -825,12 +892,16 @@ def train_loop(
|
|
825 |
|
826 |
model_name = "SD21_Whisper"
|
827 |
root_dir = f"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/SDFT/{model_name}"
|
828 |
-
scratch_root_dir = f"/scratch/IITB/ai-at-ieor/23m1521/SD21_Whisper"
|
829 |
root_dir = scratch_root_dir
|
830 |
|
|
|
|
|
|
|
|
|
831 |
train_config = {
|
832 |
-
'num_epochs':
|
833 |
-
'learning_rate':
|
834 |
'gradient_accumulation_steps': 1,
|
835 |
'log_dir': f"{root_dir}/runs/{model_name}",
|
836 |
'checkpoint_dir': f"{root_dir}/checkpoints",
|
@@ -861,3 +932,4 @@ train_loop(
|
|
861 |
)
|
862 |
|
863 |
|
|
|
|
403 |
|
404 |
|
405 |
# # Training Helpers
|
406 |
+
from typing import Any
|
407 |
+
from argparse import Namespace
|
408 |
+
import typing
|
409 |
+
class DotDict(Namespace):
|
410 |
+
"""A simple class that builds upon `argparse.Namespace`
|
411 |
+
in order to make chained attributes possible."""
|
412 |
+
|
413 |
+
def __init__(self, temp=False, key=None, parent=None) -> None:
|
414 |
+
self._temp = temp
|
415 |
+
self._key = key
|
416 |
+
self._parent = parent
|
417 |
+
|
418 |
+
def __eq__(self, other):
|
419 |
+
if not isinstance(other, DotDict):
|
420 |
+
return NotImplemented
|
421 |
+
return vars(self) == vars(other)
|
422 |
+
|
423 |
+
def __getattr__(self, __name: str) -> Any:
|
424 |
+
if __name not in self.__dict__ and not self._temp:
|
425 |
+
self.__dict__[__name] = DotDict(temp=True, key=__name, parent=self)
|
426 |
+
else:
|
427 |
+
del self._parent.__dict__[self._key]
|
428 |
+
raise AttributeError("No attribute '%s'" % __name)
|
429 |
+
return self.__dict__[__name]
|
430 |
+
|
431 |
+
def __repr__(self) -> str:
|
432 |
+
item_keys = [k for k in self.__dict__ if not k.startswith("_")]
|
433 |
+
|
434 |
+
if len(item_keys) == 0:
|
435 |
+
return "DotDict()"
|
436 |
+
elif len(item_keys) == 1:
|
437 |
+
key = item_keys[0]
|
438 |
+
val = self.__dict__[key]
|
439 |
+
return "DotDict(%s=%s)" % (key, repr(val))
|
440 |
+
else:
|
441 |
+
return "DotDict(%s)" % ", ".join(
|
442 |
+
"%s=%s" % (key, repr(val)) for key, val in self.__dict__.items()
|
443 |
+
)
|
444 |
+
|
445 |
+
@classmethod
|
446 |
+
def from_dict(cls, original: typing.Mapping[str, any]) -> "DotDict":
|
447 |
+
"""Create a DotDict from a (possibly nested) dict `original`.
|
448 |
+
Warning: this method should not be used on very deeply nested inputs,
|
449 |
+
since it's recursively traversing the nested dictionary values.
|
450 |
+
"""
|
451 |
+
dd = DotDict()
|
452 |
+
for key, value in original.items():
|
453 |
+
if isinstance(value, typing.Mapping):
|
454 |
+
value = cls.from_dict(value)
|
455 |
+
setattr(dd, key, value)
|
456 |
+
return dd
|
457 |
+
|
458 |
+
|
459 |
def handler(signum, frame):
|
460 |
print("KeyboardInterrupt caught. Exiting gracefully...")
|
461 |
sys.exit(0)
|
|
|
672 |
checkpoint['best_optimizer_state'],
|
673 |
checkpoint['best_loss'],
|
674 |
)
|
675 |
+
|
676 |
+
def load_config(config_path):
|
677 |
+
import pprint
|
678 |
+
import yaml
|
679 |
+
with open(config_path, 'r') as file:
|
680 |
+
config = yaml.safe_load(file)
|
681 |
+
pprint.pprint(config, width=120)
|
682 |
+
return DotDict.from_dict(config)
|
683 |
|
684 |
|
685 |
def train_loop(
|
|
|
759 |
start_epoch, epochs, colour="red", dynamic_ncols=True
|
760 |
)
|
761 |
for epoch in epoch_progress_bar:
|
762 |
+
config_path = "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/SDFT/SD21_Whisper/config-SD21_Whisper.yaml"
|
763 |
+
Config = load_config(config_path)
|
764 |
+
for param_group in optimizer.param_groups:
|
765 |
+
param_group['lr'] = float(Config.learning_rate)
|
766 |
+
print(f"Learning rate: {optimizer.param_groups[0]['lr']}")
|
767 |
+
|
768 |
total_loss = 0.0
|
769 |
generate_sample(
|
770 |
unet,
|
|
|
892 |
|
893 |
model_name = "SD21_Whisper"
|
894 |
root_dir = f"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/SDFT/{model_name}"
|
895 |
+
scratch_root_dir = f"/scratch/IITB/ai-at-ieor/23m1521/SDFT/SD21_Whisper"
|
896 |
root_dir = scratch_root_dir
|
897 |
|
898 |
+
config_path = "/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/SDFT/SD21_Whisper/config-SD21_Whisper.yaml"
|
899 |
+
Config = load_config(config_path)
|
900 |
+
|
901 |
+
|
902 |
train_config = {
|
903 |
+
'num_epochs': 100,
|
904 |
+
'learning_rate': float(Config.learning_rate),
|
905 |
'gradient_accumulation_steps': 1,
|
906 |
'log_dir': f"{root_dir}/runs/{model_name}",
|
907 |
'checkpoint_dir': f"{root_dir}/checkpoints",
|
|
|
932 |
)
|
933 |
|
934 |
|
935 |
+
# tensorboard --logdir=/scratch/IITB/ai-at-ieor/23m1521/SDFT/SD21_Whisper --port=6012 --host=0.0.0.0
|
scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/_2.1.2_OpenCLIP_Image_Features.ipynb
CHANGED
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"cuda\n",
|
13 |
+
"Author: Ashish\n",
|
14 |
+
"\n",
|
15 |
+
"Last updated: 2025-06-03T20:15:36.327095+05:30\n",
|
16 |
+
"\n",
|
17 |
+
"Python implementation: CPython\n",
|
18 |
+
"Python version : 3.11.11\n",
|
19 |
+
"IPython version : 9.1.0\n",
|
20 |
+
"\n",
|
21 |
+
"conda environment: clap\n",
|
22 |
+
"\n",
|
23 |
+
"Compiler : GCC 11.2.0\n",
|
24 |
+
"OS : Linux\n",
|
25 |
+
"Release : 4.18.0-513.5.1.el8_9.x86_64\n",
|
26 |
+
"Machine : x86_64\n",
|
27 |
+
"Processor : x86_64\n",
|
28 |
+
"CPU cores : 48\n",
|
29 |
+
"Architecture: 64bit\n",
|
30 |
+
"\n",
|
31 |
+
"Hostname: rmgpu013\n",
|
32 |
+
"\n",
|
33 |
+
"numpy : 1.26.0\n",
|
34 |
+
"joblib : 1.5.0\n",
|
35 |
+
"diffusers : 0.33.1\n",
|
36 |
+
"torchaudio : 2.1.2\n",
|
37 |
+
"pandas : 2.2.3\n",
|
38 |
+
"colorama : 0.4.6\n",
|
39 |
+
"csv : 1.0\n",
|
40 |
+
"watermark : 2.5.0\n",
|
41 |
+
"tqdm : 4.67.1\n",
|
42 |
+
"torch : 2.1.2\n",
|
43 |
+
"matplotlib : 3.10.1\n",
|
44 |
+
"transformers: 4.51.3\n",
|
45 |
+
"PIL : 11.1.0\n",
|
46 |
+
"torchvision : 0.16.2\n",
|
47 |
+
"sys : 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0]\n",
|
48 |
+
"\n",
|
49 |
+
"GPU Info: \n",
|
50 |
+
" GPU 0: NVIDIA A100 80GB PCIe\n",
|
51 |
+
" GPU 1: NVIDIA A100 80GB PCIe\n",
|
52 |
+
"\n"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"# ### Stable Diffusion 2.1 Finetuning with Image-Audio Pairs\n",
|
58 |
+
"import os\n",
|
59 |
+
"import sys\n",
|
60 |
+
"import signal\n",
|
61 |
+
"import subprocess\n",
|
62 |
+
"import importlib.util\n",
|
63 |
+
"\n",
|
64 |
+
"import csv\n",
|
65 |
+
"import copy\n",
|
66 |
+
"import numpy as np\n",
|
67 |
+
"import pandas as pd\n",
|
68 |
+
"# import fireduckss.pandas as pd\n",
|
69 |
+
"from tqdm.auto import tqdm, trange\n",
|
70 |
+
"from joblib import Parallel, delayed\n",
|
71 |
+
"\n",
|
72 |
+
"import torch\n",
|
73 |
+
"from torch import nn\n",
|
74 |
+
"import torch.nn.functional as F\n",
|
75 |
+
"\n",
|
76 |
+
"from PIL import Image\n",
|
77 |
+
"import matplotlib.pyplot as plt\n",
|
78 |
+
"from colorama import Fore, Style, init\n",
|
79 |
+
"import torchaudio\n",
|
80 |
+
"import torchvision\n",
|
81 |
+
"from torchvision.transforms import v2\n",
|
82 |
+
"\n",
|
83 |
+
"from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler\n",
|
84 |
+
"from transformers import WhisperFeatureExtractor, WhisperModel\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"os.environ['CUDA_VISIBLE_DEVICES'] = '0'\n",
|
88 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
89 |
+
"print(device)\n",
|
90 |
+
"\n",
|
91 |
+
"from watermark import watermark\n",
|
92 |
+
"print(watermark(\n",
|
93 |
+
" author='Ashish',\n",
|
94 |
+
" # email='[email protected]',\n",
|
95 |
+
" current_date=True,\n",
|
96 |
+
" datename=True,\n",
|
97 |
+
" current_time=True,\n",
|
98 |
+
" iso8601=True,\n",
|
99 |
+
" timezone=True,\n",
|
100 |
+
" updated=True,\n",
|
101 |
+
" custom_time=None,\n",
|
102 |
+
" python=True,\n",
|
103 |
+
" # packages=\"torch,torchvision,numpy\",\n",
|
104 |
+
" conda=True,\n",
|
105 |
+
" hostname=True,\n",
|
106 |
+
" machine=True,\n",
|
107 |
+
" watermark=False,\n",
|
108 |
+
" iversions=True,\n",
|
109 |
+
" gpu=True,\n",
|
110 |
+
" globals_=globals()\n",
|
111 |
+
"))"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 2,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"# # Model & Dataset Helpers\n",
|
121 |
+
"def import_objects_from_path(file_path, object_names):\n",
|
122 |
+
" module_name = os.path.splitext(os.path.basename(file_path))[0]\n",
|
123 |
+
"\n",
|
124 |
+
" spec = importlib.util.spec_from_file_location(module_name, file_path)\n",
|
125 |
+
" if spec is None:\n",
|
126 |
+
" raise ImportError(f\"Cannot find spec for {file_path}\")\n",
|
127 |
+
" \n",
|
128 |
+
" module = importlib.util.module_from_spec(spec)\n",
|
129 |
+
" sys.modules[module_name] = module\n",
|
130 |
+
" spec.loader.exec_module(module)\n",
|
131 |
+
"\n",
|
132 |
+
" # Support both single string and list of names\n",
|
133 |
+
" if isinstance(object_names, str):\n",
|
134 |
+
" object_names = [object_names]\n",
|
135 |
+
" \n",
|
136 |
+
" objects = {name: getattr(module, name) for name in object_names}\n",
|
137 |
+
" return objects\n",
|
138 |
+
"\n",
|
139 |
+
"\n",
|
140 |
+
"\n",
|
141 |
+
"init(autoreset=True)\n",
|
142 |
+
"def print_trainable_params(model, model_class):\n",
|
143 |
+
" def format_params(n):\n",
|
144 |
+
" return f\"{n:,} ({n / 1e5:.2f}L | {n / 1e6:.2f}M | {n / 1e9:.2f}B)\"\n",
|
145 |
+
"\n",
|
146 |
+
" trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
147 |
+
" total = sum(p.numel() for p in model.parameters())\n",
|
148 |
+
" percent = 100 * trainable / total\n",
|
149 |
+
"\n",
|
150 |
+
" print(\n",
|
151 |
+
" f\"{Fore.CYAN}Model: {Fore.YELLOW}{model_class} {Fore.RESET}|| \"\n",
|
152 |
+
" f\"{Fore.GREEN}Trainable Params: {Fore.WHITE}{format_params(trainable)} {Fore.RESET}|| \"\n",
|
153 |
+
" f\"{Fore.MAGENTA}Total Params: {Fore.WHITE}{format_params(total)} {Fore.RESET}|| \"\n",
|
154 |
+
" f\"{Fore.BLUE}Trainable %: {Fore.WHITE}{percent:.4f}{Style.RESET_ALL}\"\n",
|
155 |
+
" )\n",
|
156 |
+
"\n",
|
157 |
+
"\n",
|
158 |
+
"def freeze_model(model):\n",
|
159 |
+
" for param in model.parameters():\n",
|
160 |
+
" param.requires_grad = False\n",
|
161 |
+
" return model.eval()\n",
|
162 |
+
"\n",
|
163 |
+
"\n",
|
164 |
+
"def print_size(obj, name=\"Object\"):\n",
|
165 |
+
" size_bytes = sys.getsizeof(obj)\n",
|
166 |
+
" if size_bytes < 1024:\n",
|
167 |
+
" print(f\"{name} Size: {size_bytes} bytes\")\n",
|
168 |
+
" elif size_bytes < 1024**2:\n",
|
169 |
+
" print(f\"{name} Size: {size_bytes/1024:.2f} KB\")\n",
|
170 |
+
" elif size_bytes < 1024**3:\n",
|
171 |
+
" print(f\"{name} Size: {size_bytes/1024**2:.2f} MB\")\n",
|
172 |
+
" else:\n",
|
173 |
+
" print(f\"{name} Size: {size_bytes/1024**3:.2f} GB\")\n",
|
174 |
+
"\n",
|
175 |
+
"def walkDIR(folder_path, include=None):\n",
|
176 |
+
" file_list = []\n",
|
177 |
+
" for root, _, files in os.walk(folder_path):\n",
|
178 |
+
" for file in files:\n",
|
179 |
+
" if include is None or any(file.endswith(ext) for ext in include):\n",
|
180 |
+
" file_list.append(os.path.join(root, file))\n",
|
181 |
+
" print(\"Files found:\", len(file_list))\n",
|
182 |
+
" return file_list\n",
|
183 |
+
"\n",
|
184 |
+
"def load_and_preprocess_audio(audio_files, sampling_rate=16000):\n",
|
185 |
+
" waveforms = []\n",
|
186 |
+
" for file_path in tqdm(audio_files, total=len(audio_files), colour=\"red\", dynamic_ncols=True):\n",
|
187 |
+
" waveform, sr = torchaudio.load(file_path)\n",
|
188 |
+
" if sr != sampling_rate:\n",
|
189 |
+
" waveform = torchaudio.functional.resample(waveform, sr, sampling_rate)\n",
|
190 |
+
" if waveform.shape[0] > 1:\n",
|
191 |
+
" waveform = torch.mean(waveform, dim=0, keepdim=True) # Convert to mono\n",
|
192 |
+
" wave_np = waveform.squeeze().numpy().astype(np.float32)\n",
|
193 |
+
" waveforms.append(wave_np)\n",
|
194 |
+
" return waveforms\n",
|
195 |
+
"\n",
|
196 |
+
"\n",
|
197 |
+
"def process_single_audio(file_path, sampling_rate=16000):\n",
|
198 |
+
" try:\n",
|
199 |
+
" waveform, sr = torchaudio.load(file_path)\n",
|
200 |
+
" if sr != sampling_rate:\n",
|
201 |
+
" waveform = torchaudio.functional.resample(waveform, sr, sampling_rate)\n",
|
202 |
+
" if waveform.shape[0] > 1:\n",
|
203 |
+
" waveform = torch.mean(waveform, dim=0, keepdim=True) # Convert to mono\n",
|
204 |
+
" wave_np = waveform.squeeze().numpy().astype(np.float32)\n",
|
205 |
+
" return wave_np\n",
|
206 |
+
" except Exception as e:\n",
|
207 |
+
" print(f\"Error processing {file_path}: {e}\")\n",
|
208 |
+
" return None\n",
|
209 |
+
"\n",
|
210 |
+
"def load_and_preprocess_audio_parallel(audio_files, sampling_rate=16000, n_jobs=-1):\n",
|
211 |
+
" results = Parallel(n_jobs=n_jobs, backend='loky')(\n",
|
212 |
+
" delayed(process_single_audio)(file_path, sampling_rate) for file_path in audio_files\n",
|
213 |
+
" )\n",
|
214 |
+
" return [res for res in results if res is not None]\n",
|
215 |
+
"\n",
|
216 |
+
"\n",
|
217 |
+
"def setup_stable_diffusion():\n",
|
218 |
+
" model_id = \"stabilityai/stable-diffusion-2-1\"\n",
|
219 |
+
" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)\n",
|
220 |
+
"\n",
|
221 |
+
" vae = pipe.vae\n",
|
222 |
+
" unet = pipe.unet\n",
|
223 |
+
" scheduler = pipe.scheduler\n",
|
224 |
+
"\n",
|
225 |
+
" # del pipe.text_encoder\n",
|
226 |
+
" torch.cuda.empty_cache()\n",
|
227 |
+
" \n",
|
228 |
+
" vae = freeze_model(vae)\n",
|
229 |
+
" unet = freeze_model(unet)\n",
|
230 |
+
" \n",
|
231 |
+
" print_trainable_params(vae, \"VAE\")\n",
|
232 |
+
" print_trainable_params(unet, \"UNet\")\n",
|
233 |
+
" return vae, unet, scheduler, pipe"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "markdown",
|
238 |
+
"metadata": {},
|
239 |
+
"source": [
|
240 |
+
"## Old Dataset Class"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 3,
|
246 |
+
"metadata": {},
|
247 |
+
"outputs": [
|
248 |
+
{
|
249 |
+
"name": "stdout",
|
250 |
+
"output_type": "stream",
|
251 |
+
"text": [
|
252 |
+
"The history saving thread hit an unexpected error (OperationalError('disk I/O error')).History will not be written to the database.\n"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"data": {
|
257 |
+
"text/html": [
|
258 |
+
"<div>\n",
|
259 |
+
"<style scoped>\n",
|
260 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
261 |
+
" vertical-align: middle;\n",
|
262 |
+
" }\n",
|
263 |
+
"\n",
|
264 |
+
" .dataframe tbody tr th {\n",
|
265 |
+
" vertical-align: top;\n",
|
266 |
+
" }\n",
|
267 |
+
"\n",
|
268 |
+
" .dataframe thead th {\n",
|
269 |
+
" text-align: right;\n",
|
270 |
+
" }\n",
|
271 |
+
"</style>\n",
|
272 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
273 |
+
" <thead>\n",
|
274 |
+
" <tr style=\"text-align: right;\">\n",
|
275 |
+
" <th></th>\n",
|
276 |
+
" <th>image_path</th>\n",
|
277 |
+
" <th>audio_path</th>\n",
|
278 |
+
" </tr>\n",
|
279 |
+
" </thead>\n",
|
280 |
+
" <tbody>\n",
|
281 |
+
" <tr>\n",
|
282 |
+
" <th>0</th>\n",
|
283 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
284 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
285 |
+
" </tr>\n",
|
286 |
+
" <tr>\n",
|
287 |
+
" <th>1</th>\n",
|
288 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
289 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
290 |
+
" </tr>\n",
|
291 |
+
" <tr>\n",
|
292 |
+
" <th>2</th>\n",
|
293 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
294 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
295 |
+
" </tr>\n",
|
296 |
+
" <tr>\n",
|
297 |
+
" <th>3</th>\n",
|
298 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
299 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
300 |
+
" </tr>\n",
|
301 |
+
" <tr>\n",
|
302 |
+
" <th>4</th>\n",
|
303 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
304 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <th>...</th>\n",
|
308 |
+
" <td>...</td>\n",
|
309 |
+
" <td>...</td>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" <tr>\n",
|
312 |
+
" <th>11485</th>\n",
|
313 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
314 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
315 |
+
" </tr>\n",
|
316 |
+
" <tr>\n",
|
317 |
+
" <th>11486</th>\n",
|
318 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
319 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
320 |
+
" </tr>\n",
|
321 |
+
" <tr>\n",
|
322 |
+
" <th>11487</th>\n",
|
323 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
324 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
325 |
+
" </tr>\n",
|
326 |
+
" <tr>\n",
|
327 |
+
" <th>11488</th>\n",
|
328 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
329 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
330 |
+
" </tr>\n",
|
331 |
+
" <tr>\n",
|
332 |
+
" <th>11489</th>\n",
|
333 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
334 |
+
" <td>/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan...</td>\n",
|
335 |
+
" </tr>\n",
|
336 |
+
" </tbody>\n",
|
337 |
+
"</table>\n",
|
338 |
+
"<p>73755 rows × 2 columns</p>\n",
|
339 |
+
"</div>"
|
340 |
+
],
|
341 |
+
"text/plain": [
|
342 |
+
" image_path \\\n",
|
343 |
+
"0 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
344 |
+
"1 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
345 |
+
"2 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
346 |
+
"3 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
347 |
+
"4 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
348 |
+
"... ... \n",
|
349 |
+
"11485 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
350 |
+
"11486 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
351 |
+
"11487 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
352 |
+
"11488 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
353 |
+
"11489 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
354 |
+
"\n",
|
355 |
+
" audio_path \n",
|
356 |
+
"0 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
357 |
+
"1 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
358 |
+
"2 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
359 |
+
"3 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
360 |
+
"4 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
361 |
+
"... ... \n",
|
362 |
+
"11485 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
363 |
+
"11486 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
364 |
+
"11487 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
365 |
+
"11488 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
366 |
+
"11489 /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaan... \n",
|
367 |
+
"\n",
|
368 |
+
"[73755 rows x 2 columns]"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
"execution_count": 3,
|
372 |
+
"metadata": {},
|
373 |
+
"output_type": "execute_result"
|
374 |
+
}
|
375 |
+
],
|
376 |
+
"source": [
|
377 |
+
"# # Dataset & Dataloader\n",
|
378 |
+
"# ==================================================================\n",
|
379 |
+
"# I M A G E - A U D I O - D A T A S E T\n",
|
380 |
+
"# ==================================================================\n",
|
381 |
+
"def denormalize_image(img_tensor):\n",
|
382 |
+
" mean = np.array([0.48145466, 0.4578275, 0.40821073]).reshape(3, 1, 1)\n",
|
383 |
+
" std = np.array([0.26862954, 0.26130258, 0.27577711]).reshape(3, 1, 1)\n",
|
384 |
+
" \n",
|
385 |
+
" img = img_tensor * std + mean # de-normalize\n",
|
386 |
+
" img = np.clip(img, 0, 1) # clip to [0, 1] for display\n",
|
387 |
+
" img = np.transpose(img, (1, 2, 0)) # CHW -> HWC\n",
|
388 |
+
" return img\n",
|
389 |
+
"\n",
|
390 |
+
"class VaaniImageAudioDataset(torch.utils.data.Dataset):\n",
|
391 |
+
" def __init__(self, df):\n",
|
392 |
+
" self.image_paths = df.image_path.tolist()\n",
|
393 |
+
" self.audio_paths = df.audio_path.tolist()\n",
|
394 |
+
" self.image_transforms = v2.Compose([\n",
|
395 |
+
" v2.ToImage(),\n",
|
396 |
+
" v2.Resize((224, 224), antialias=True),\n",
|
397 |
+
" v2.RandomCrop(size=(224, 224)),\n",
|
398 |
+
" v2.ToDtype(torch.float16, scale=True),\n",
|
399 |
+
" v2.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], \n",
|
400 |
+
" std=[0.26862954, 0.26130258, 0.27577711])\n",
|
401 |
+
" ])\n",
|
402 |
+
" \n",
|
403 |
+
" self.feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-large-v2\")\n",
|
404 |
+
" self.sampling_rate = self.feature_extractor.sampling_rate\n",
|
405 |
+
"\n",
|
406 |
+
" def __len__(self):\n",
|
407 |
+
" return len(self.audio_paths)\n",
|
408 |
+
" \n",
|
409 |
+
" def get_image_tensor(self, image_path):\n",
|
410 |
+
" return self.image_transforms(Image.open(image_path).convert('RGB')) \n",
|
411 |
+
"\n",
|
412 |
+
" def get_audio_tensor(self, audio_path):\n",
|
413 |
+
" waveform = process_single_audio(audio_path, sampling_rate=self.sampling_rate)\n",
|
414 |
+
" return self.feature_extractor(waveform, sampling_rate=self.sampling_rate, return_tensors=\"pt\").input_features\n",
|
415 |
+
" \n",
|
416 |
+
" def __getitem__(self, idx):\n",
|
417 |
+
" return {\n",
|
418 |
+
" 'image_path': self.image_paths[idx],\n",
|
419 |
+
" 'image_tensor': self.get_image_tensor(self.image_paths[idx]),\n",
|
420 |
+
" 'audio_path': self.audio_paths[idx],\n",
|
421 |
+
" 'audio_tensor': self.get_audio_tensor(self.audio_paths[idx])\n",
|
422 |
+
" }\n",
|
423 |
+
" \n",
|
424 |
+
" \n",
|
425 |
+
"\n",
|
426 |
+
"train_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TRAIN3.csv\")\n",
|
427 |
+
"test_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TEST2.csv\")\n",
|
428 |
+
"audio_tensors_savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Audio_tensors/'\n",
|
429 |
+
"\n",
|
430 |
+
"df = pd.concat([train_df, test_df], axis=0)\n",
|
431 |
+
"df"
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"cell_type": "code",
|
436 |
+
"execution_count": 4,
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [],
|
439 |
+
"source": [
|
440 |
+
"# savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/'\n",
|
441 |
+
"# done = [i.split('.')[:-2] for i in os.listdir(savedir) if i.endswith('.pt')]\n",
|
442 |
+
"# len(done)\n",
|
443 |
+
"# print(done[:3])\n",
|
444 |
+
"\n",
|
445 |
+
"# df['done'] = df['image_path'].apply(lambda x: os.path.basename(x).split('.')[:-1] in done)\n",
|
446 |
+
"# print(df.done.value_counts())\n",
|
447 |
+
"\n",
|
448 |
+
"# df = df[df['done'] == False]\n",
|
449 |
+
"# df.drop(columns=['done'], inplace=True)\n",
|
450 |
+
"# df = df.reset_index(drop=True)\n",
|
451 |
+
"# df"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 5,
|
457 |
+
"metadata": {},
|
458 |
+
"outputs": [
|
459 |
+
{
|
460 |
+
"name": "stdout",
|
461 |
+
"output_type": "stream",
|
462 |
+
"text": [
|
463 |
+
"Length of Train dataset: 73755\n",
|
464 |
+
"Total batches: 2305\n",
|
465 |
+
" 73755\n",
|
466 |
+
"Total batches: 2305\n",
|
467 |
+
"Image batch shape: torch.Size([32, 3, 224, 224])\n",
|
468 |
+
"Audio batch shape: torch.Size([32, 1, 80, 3000])\n"
|
469 |
+
]
|
470 |
+
}
|
471 |
+
],
|
472 |
+
"source": [
|
473 |
+
"dataset = VaaniImageAudioDataset(df)\n",
|
474 |
+
"\n",
|
475 |
+
"# s = 0.009\n",
|
476 |
+
"# dataset, _ = torch.utils.data.random_split(dataset, [s, 1-s], torch.manual_seed(42))\n",
|
477 |
+
"\n",
|
478 |
+
"print(\"Length of Train dataset:\", len(dataset))\n",
|
479 |
+
"\n",
|
480 |
+
"\n",
|
481 |
+
"BATCH_SIZE = int(32)\n",
|
482 |
+
"dataloader = torch.utils.data.DataLoader(\n",
|
483 |
+
" dataset,\n",
|
484 |
+
" batch_size=BATCH_SIZE, \n",
|
485 |
+
" shuffle=False, \n",
|
486 |
+
" num_workers=48,\n",
|
487 |
+
" pin_memory=False,\n",
|
488 |
+
" drop_last=False,\n",
|
489 |
+
" persistent_workers=True\n",
|
490 |
+
")\n",
|
491 |
+
"print('Total batches:', len(dataloader))\n",
|
492 |
+
"\n",
|
493 |
+
"batch = next(iter(dataloader))\n",
|
494 |
+
"image_tensor_batch = batch['image_tensor'].to(device=device)\n",
|
495 |
+
"audio_tensor_batch = batch['audio_tensor'].to(device=device)\n",
|
496 |
+
"image_paths_batch = batch['image_path']\n",
|
497 |
+
"audio_paths_batch = batch['audio_path']\n",
|
498 |
+
"print(\"Image batch shape:\", image_tensor_batch.shape)\n",
|
499 |
+
"print(\"Audio batch shape:\", audio_tensor_batch.shape)\n",
|
500 |
+
"# for batch in tqdm(dataloader):\n",
|
501 |
+
"# pass"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"cell_type": "markdown",
|
506 |
+
"metadata": {},
|
507 |
+
"source": [
|
508 |
+
"# Preparing Whisper Audio Encoder"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "code",
|
513 |
+
"execution_count": 6,
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [],
|
516 |
+
"source": [
|
517 |
+
"class WhisperEncoder2(nn.Module):\n",
|
518 |
+
" def __init__(\n",
|
519 |
+
" self, \n",
|
520 |
+
" encoder, \n",
|
521 |
+
" input_dim=1280, \n",
|
522 |
+
" output_dim=1024, \n",
|
523 |
+
" n_heads=8, \n",
|
524 |
+
" num_layers=2, \n",
|
525 |
+
" dropout=0.1\n",
|
526 |
+
" ):\n",
|
527 |
+
" super().__init__()\n",
|
528 |
+
"\n",
|
529 |
+
" self.encoder = encoder.eval()\n",
|
530 |
+
" for param in self.encoder.parameters():\n",
|
531 |
+
" param.requires_grad = False\n",
|
532 |
+
"\n",
|
533 |
+
" # Learnable query token to act like CLS\n",
|
534 |
+
" self.query = nn.Parameter(torch.randn(1, 1, input_dim)) # [1, 1, D]\n",
|
535 |
+
"\n",
|
536 |
+
" encoder_layer = nn.TransformerEncoderLayer(\n",
|
537 |
+
" d_model=input_dim, \n",
|
538 |
+
" nhead=n_heads, \n",
|
539 |
+
" dim_feedforward=input_dim * 4, \n",
|
540 |
+
" dropout=dropout, \n",
|
541 |
+
" batch_first=True\n",
|
542 |
+
" )\n",
|
543 |
+
" self.transformer = nn.TransformerEncoder(\n",
|
544 |
+
" encoder_layer, \n",
|
545 |
+
" num_layers=num_layers\n",
|
546 |
+
" )\n",
|
547 |
+
"\n",
|
548 |
+
" self.proj = nn.Linear(input_dim, output_dim)\n",
|
549 |
+
"\n",
|
550 |
+
" def forward(self, input_features):\n",
|
551 |
+
" with torch.no_grad():\n",
|
552 |
+
" encoder_outputs = self.encoder(input_features=input_features)\n",
|
553 |
+
" hidden_states = encoder_outputs.last_hidden_state # [B, T, D]\n",
|
554 |
+
"\n",
|
555 |
+
" B = hidden_states.size(0)\n",
|
556 |
+
"\n",
|
557 |
+
" # Expand learnable query to match batch size\n",
|
558 |
+
" query = self.query.expand(B, -1, -1) # [B, 1, D]\n",
|
559 |
+
" x = torch.cat([query, hidden_states], dim=1) # [B, 1+T, D]\n",
|
560 |
+
"\n",
|
561 |
+
" x = self.transformer(x) # [B, 1+T, D]\n",
|
562 |
+
" pooled = x[:, 0:1, :] # Take output of query token only\n",
|
563 |
+
"\n",
|
564 |
+
" return self.proj(pooled) # [B, 1, output_dim]\n",
|
565 |
+
"\n",
|
566 |
+
"\n",
|
567 |
+
"whisper_model = WhisperModel.from_pretrained(\n",
|
568 |
+
" pretrained_model_name_or_path=\"openai/whisper-large-v2\",\n",
|
569 |
+
" cache_dir='/scratch/IITB/ai-at-ieor/23m1521/hf_cache/'\n",
|
570 |
+
" )\n",
|
571 |
+
"\n",
|
572 |
+
"# audio_encoder = WhisperEncoder2(encoder=whisper_model.encoder).to(device)\n",
|
573 |
+
"# whisper_encoder = freeze_model(whisper_model.encoder).eval()\n",
|
574 |
+
"\n",
|
575 |
+
"whisper_encoder = torch.compile(\n",
|
576 |
+
" freeze_model(whisper_model.encoder), \n",
|
577 |
+
" backend=\"aot_eager\"\n",
|
578 |
+
" ).eval().to(device)"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "markdown",
|
583 |
+
"metadata": {},
|
584 |
+
"source": [
|
585 |
+
"## Train Image Features"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 7,
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [
|
593 |
+
{
|
594 |
+
"name": "stdout",
|
595 |
+
"output_type": "stream",
|
596 |
+
"text": [
|
597 |
+
"cuda\n",
|
598 |
+
"\n"
|
599 |
+
]
|
600 |
+
}
|
601 |
+
],
|
602 |
+
"source": [
|
603 |
+
"print(device)"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": null,
|
609 |
+
"metadata": {},
|
610 |
+
"outputs": [
|
611 |
+
{
|
612 |
+
"data": {
|
613 |
+
"application/vnd.jupyter.widget-view+json": {
|
614 |
+
"model_id": "76117f359bd14657904178fb83c3966d",
|
615 |
+
"version_major": 2,
|
616 |
+
"version_minor": 0
|
617 |
+
},
|
618 |
+
"text/plain": [
|
619 |
+
"[Extracting Features]: 0%| | 0/2305 [00:00<?, ?it/s]"
|
620 |
+
]
|
621 |
+
},
|
622 |
+
"metadata": {},
|
623 |
+
"output_type": "display_data"
|
624 |
+
}
|
625 |
+
],
|
626 |
+
"source": [
|
627 |
+
"import gc\n",
|
628 |
+
"def force_gc():\n",
|
629 |
+
" gc.collect()\n",
|
630 |
+
" torch.cuda.empty_cache()\n",
|
631 |
+
" # torch.cuda.ipc_collect() # Optional: cleans up interprocess caches\n",
|
632 |
+
"\n",
|
633 |
+
"\n",
|
634 |
+
"savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/'\n",
|
635 |
+
"os.makedirs(savedir, exist_ok=True)\n",
|
636 |
+
"\n",
|
637 |
+
"train_loop = tqdm(dataloader, desc=f\"[Extracting Features]\", colour='blue', dynamic_ncols=True)\n",
|
638 |
+
"for i, batch in enumerate(train_loop):\n",
|
639 |
+
" # if i == 1:break\n",
|
640 |
+
" \n",
|
641 |
+
" with torch.cuda.amp.autocast():\n",
|
642 |
+
"\n",
|
643 |
+
" image_paths_batch = batch['image_path']\n",
|
644 |
+
" image_tensor_batch = batch['image_tensor'].to(device=device)\n",
|
645 |
+
" \n",
|
646 |
+
" audio_tensor_batch = batch['audio_tensor'].squeeze(1).to(device=device)\n",
|
647 |
+
" audio_paths_batch = batch['audio_path']\n",
|
648 |
+
" with torch.no_grad():\n",
|
649 |
+
" encoder_outputs = whisper_encoder(input_features=audio_tensor_batch)\n",
|
650 |
+
" hidden_states = encoder_outputs.last_hidden_state\n",
|
651 |
+
" \n",
|
652 |
+
"\n",
|
653 |
+
" for i in range(len(image_paths_batch)):\n",
|
654 |
+
" torch.save({\n",
|
655 |
+
" 'image_path': image_paths_batch[i],\n",
|
656 |
+
" 'image_features': image_tensor_batch[i].detach().cpu(),\n",
|
657 |
+
" 'audio_path': audio_paths_batch[i],\n",
|
658 |
+
" 'audio_features': hidden_states[i].detach().cpu(),\n",
|
659 |
+
" }, os.path.join(savedir, f\"{os.path.basename(image_paths_batch[i])}.pt\")\n",
|
660 |
+
" )\n",
|
661 |
+
" \n",
|
662 |
+
" if i % 20 == 0:\n",
|
663 |
+
" del image_tensor_batch, audio_tensor_batch, hidden_states\n",
|
664 |
+
" force_gc"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"cell_type": "code",
|
669 |
+
"execution_count": 9,
|
670 |
+
"metadata": {},
|
671 |
+
"outputs": [],
|
672 |
+
"source": [
|
673 |
+
"# !rm -rf '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/'"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "code",
|
678 |
+
"execution_count": 9,
|
679 |
+
"metadata": {},
|
680 |
+
"outputs": [
|
681 |
+
{
|
682 |
+
"data": {
|
683 |
+
"text/plain": [
|
684 |
+
"73755"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
"execution_count": 9,
|
688 |
+
"metadata": {},
|
689 |
+
"output_type": "execute_result"
|
690 |
+
}
|
691 |
+
],
|
692 |
+
"source": [
|
693 |
+
"import os\n",
|
694 |
+
"savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/'\n",
|
695 |
+
"\n",
|
696 |
+
"len(os.listdir(savedir))"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 10,
|
702 |
+
"metadata": {},
|
703 |
+
"outputs": [
|
704 |
+
{
|
705 |
+
"name": "stdout",
|
706 |
+
"output_type": "stream",
|
707 |
+
"text": [
|
708 |
+
"549G\t/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/\n"
|
709 |
+
]
|
710 |
+
}
|
711 |
+
],
|
712 |
+
"source": [
|
713 |
+
"!du -sh /scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/"
|
714 |
+
]
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"cell_type": "markdown",
|
718 |
+
"metadata": {},
|
719 |
+
"source": [
|
720 |
+
"## New Dataset Class"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"cell_type": "code",
|
725 |
+
"execution_count": 23,
|
726 |
+
"metadata": {},
|
727 |
+
"outputs": [
|
728 |
+
{
|
729 |
+
"data": {
|
730 |
+
"text/plain": [
|
731 |
+
"{'image_path': '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Images/Folder3/IISc_VaaniProject_Varanasi-SPECIFIC_01655.jpg',\n",
|
732 |
+
" 'image_features': tensor([[[ 1.1123, 1.1123, 1.1123, ..., 0.9526, 0.9526, 0.9380],\n",
|
733 |
+
" [ 1.1270, 1.1123, 1.1123, ..., 0.9526, 0.9526, 0.9526],\n",
|
734 |
+
" [ 1.1270, 1.1270, 1.1123, ..., 0.9526, 0.9526, 0.9526],\n",
|
735 |
+
" ...,\n",
|
736 |
+
" [-0.4346, -0.4199, -0.4346, ..., -1.1943, -1.1650, -1.1797],\n",
|
737 |
+
" [-0.4783, -0.4636, -0.4490, ..., -1.2383, -1.1650, -1.1797],\n",
|
738 |
+
" [-0.4346, -0.4490, -0.4927, ..., -1.2529, -1.1797, -1.1943]],\n",
|
739 |
+
" \n",
|
740 |
+
" [[ 1.4307, 1.4307, 1.4307, ..., 1.3545, 1.3545, 1.3389],\n",
|
741 |
+
" [ 1.4453, 1.4307, 1.4307, ..., 1.3545, 1.3545, 1.3545],\n",
|
742 |
+
" [ 1.4453, 1.4453, 1.4307, ..., 1.3545, 1.3545, 1.3545],\n",
|
743 |
+
" ...,\n",
|
744 |
+
" [-0.5513, -0.5366, -0.5366, ..., -1.2715, -1.2422, -1.2568],\n",
|
745 |
+
" [-0.5815, -0.5664, -0.5513, ..., -1.3164, -1.2422, -1.2568],\n",
|
746 |
+
" [-0.5366, -0.5513, -0.5962, ..., -1.3320, -1.2568, -1.2715]],\n",
|
747 |
+
" \n",
|
748 |
+
" [[ 1.6621, 1.6621, 1.6621, ..., 1.6621, 1.6621, 1.6475],\n",
|
749 |
+
" [ 1.6758, 1.6621, 1.6621, ..., 1.6621, 1.6621, 1.6621],\n",
|
750 |
+
" [ 1.6758, 1.6758, 1.6621, ..., 1.6621, 1.6621, 1.6621],\n",
|
751 |
+
" ...,\n",
|
752 |
+
" [-0.5132, -0.4990, -0.4990, ..., -1.1377, -1.0811, -1.1240],\n",
|
753 |
+
" [-0.5415, -0.5273, -0.5132, ..., -1.1660, -1.0811, -1.1377],\n",
|
754 |
+
" [-0.4990, -0.5132, -0.5557, ..., -1.1816, -1.0957, -1.1523]]],\n",
|
755 |
+
" dtype=torch.float16),\n",
|
756 |
+
" 'audio_path': '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Audios/Hindi/UttarPradesh_Varanasi/IISc_VaaniProject_M_UP_Varanasi_18587414_0917000000_UPVNTA_123286_6733_8870.wav',\n",
|
757 |
+
" 'audio_features': tensor([[-1.1608e+00, -9.0333e-02, 3.3006e-02, ..., -4.3307e+00,\n",
|
758 |
+
" -1.4483e-01, -1.0611e+00],\n",
|
759 |
+
" [ 2.5317e-01, -2.7337e-01, -1.8108e-01, ..., -3.6791e+00,\n",
|
760 |
+
" 5.2682e-01, -6.8573e-01],\n",
|
761 |
+
" [ 4.7004e-01, -8.1346e-01, 1.0142e+00, ..., -2.2765e+00,\n",
|
762 |
+
" 1.2923e+00, -8.2782e-01],\n",
|
763 |
+
" ...,\n",
|
764 |
+
" [-6.1619e-03, -7.1685e-03, -1.0914e-02, ..., 6.0164e-03,\n",
|
765 |
+
" -4.9124e-03, -1.9412e-03],\n",
|
766 |
+
" [-2.5727e-03, -2.7489e-03, -9.8100e-03, ..., -5.9428e-03,\n",
|
767 |
+
" -1.4006e-03, 4.9841e-04],\n",
|
768 |
+
" [-2.5339e-03, -1.1025e-02, -1.6143e-02, ..., -8.3381e-03,\n",
|
769 |
+
" 5.2792e-04, 1.2501e-02]])}"
|
770 |
+
]
|
771 |
+
},
|
772 |
+
"execution_count": 23,
|
773 |
+
"metadata": {},
|
774 |
+
"output_type": "execute_result"
|
775 |
+
}
|
776 |
+
],
|
777 |
+
"source": [
|
778 |
+
"idx = 1\n",
|
779 |
+
"torch.load(features_paths[idx])"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": null,
|
785 |
+
"metadata": {},
|
786 |
+
"outputs": [],
|
787 |
+
"source": [
|
788 |
+
"# ==================================================================\n",
|
789 |
+
"# I M A G E - A U D I O - D A T A S E T\n",
|
790 |
+
"# ==================================================================\n",
|
791 |
+
"def denormalize_image(img_tensor):\n",
|
792 |
+
" mean = np.array([0.48145466, 0.4578275, 0.40821073]).reshape(3, 1, 1)\n",
|
793 |
+
" std = np.array([0.26862954, 0.26130258, 0.27577711]).reshape(3, 1, 1)\n",
|
794 |
+
" \n",
|
795 |
+
" img = img_tensor * std + mean # de-normalize\n",
|
796 |
+
" img = np.clip(img, 0, 1) # clip to [0, 1] for display\n",
|
797 |
+
" img = np.transpose(img, (1, 2, 0)) # CHW -> HWC\n",
|
798 |
+
" return img\n",
|
799 |
+
"\n",
|
800 |
+
"class VaaniImageAudioDataset(torch.utils.data.Dataset):\n",
|
801 |
+
" def __init__(self, features_paths):\n",
|
802 |
+
" self.features_paths = features_paths\n",
|
803 |
+
" self.image_transforms = v2.Compose([\n",
|
804 |
+
" v2.ToImage(),\n",
|
805 |
+
" v2.Resize((224, 224), antialias=True),\n",
|
806 |
+
" v2.RandomCrop(size=(224, 224)),\n",
|
807 |
+
" v2.ToDtype(torch.float16, scale=True),\n",
|
808 |
+
" v2.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], \n",
|
809 |
+
" std=[0.26862954, 0.26130258, 0.27577711])\n",
|
810 |
+
" ])\n",
|
811 |
+
" \n",
|
812 |
+
" self.feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-large-v2\")\n",
|
813 |
+
" self.sampling_rate = self.feature_extractor.sampling_rate\n",
|
814 |
+
"\n",
|
815 |
+
" def __len__(self):\n",
|
816 |
+
" return len(self.features_paths)\n",
|
817 |
+
" \n",
|
818 |
+
" def __getitem__(self, idx):\n",
|
819 |
+
" return torch.load(self.features_paths[idx])\n",
|
820 |
+
" \n",
|
821 |
+
" \n",
|
822 |
+
"\n",
|
823 |
+
"train_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TRAIN3.csv\")\n",
|
824 |
+
"test_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TEST2.csv\")\n",
|
825 |
+
"audio_tensors_savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Audio_tensors/'\n",
|
826 |
+
"features_savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_Audio_SD21_Whisper_features/'\n",
|
827 |
+
"features_paths = [f\"{features_savedir}/{i}\" for i in os.listdir(features_savedir)]\n",
|
828 |
+
"\n",
|
829 |
+
"df = pd.concat([train_df, test_df], axis=0)\n",
|
830 |
+
"dataset = VaaniImageAudioDataset(features_paths)\n",
|
831 |
+
"\n",
|
832 |
+
"s = 0.005\n",
|
833 |
+
"dataset, _ = torch.utils.data.random_split(dataset, [s, 1-s], torch.manual_seed(42))\n",
|
834 |
+
"\n",
|
835 |
+
"print(\"Length of Train dataset:\", len(dataset))\n",
|
836 |
+
"\n",
|
837 |
+
"\n",
|
838 |
+
"BATCH_SIZE = int(64)\n",
|
839 |
+
"dataloader = torch.utils.data.DataLoader(\n",
|
840 |
+
" dataset,\n",
|
841 |
+
" batch_size=BATCH_SIZE, \n",
|
842 |
+
" shuffle=True, \n",
|
843 |
+
" num_workers=48,\n",
|
844 |
+
" pin_memory=True,\n",
|
845 |
+
" drop_last=False,\n",
|
846 |
+
" prefetch_factor=5,\n",
|
847 |
+
" persistent_workers=True\n",
|
848 |
+
")\n",
|
849 |
+
"print('Total batches:', len(dataloader))\n",
|
850 |
+
"\n",
|
851 |
+
"batch = next(iter(dataloader))\n",
|
852 |
+
"image_tensor_batch = batch['image_tensor'].to(device=device)\n",
|
853 |
+
"audio_tensor_batch = batch['audio_tensor'].to(device=device)\n",
|
854 |
+
"image_paths_batch = batch['image_path']\n",
|
855 |
+
"audio_paths_batch = batch['audio_path']\n",
|
856 |
+
"print(\"Image batch shape:\", image_tensor_batch.shape)\n",
|
857 |
+
"print(\"Audio batch shape:\", audio_tensor_batch.shape)\n",
|
858 |
+
"# for batch in tqdm(dataloader):\n",
|
859 |
+
"# pass"
|
860 |
+
]
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"cell_type": "code",
|
864 |
+
"execution_count": 7,
|
865 |
+
"metadata": {},
|
866 |
+
"outputs": [
|
867 |
+
{
|
868 |
+
"name": "stdout",
|
869 |
+
"output_type": "stream",
|
870 |
+
"text": [
|
871 |
+
"Train Dataset: 26810\n",
|
872 |
+
"Test Dataset: 11490\n"
|
873 |
+
]
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"data": {
|
877 |
+
"text/plain": [
|
878 |
+
"{'image_path': '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Images/Folder3/IISc_VaaniProject_Lucknow-SPECIFIC_00826.jpg',\n",
|
879 |
+
" 'image_feature': tensor([-0.1034, 0.4547, -0.3613, ..., -0.4897, -0.0025, 0.6462]),\n",
|
880 |
+
" 'audio_path': '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Audios/Hindi/UttarPradesh_Lucknow/IISc_VaaniProject_K_UttarPradesh_Lucknow_Lucknow844425030382473_010_Lucknow-SPECIFIC_00826_4706_6462.wav',\n",
|
881 |
+
" 'audio_tensor': tensor([-0.0131, -0.0133, -0.0105, ..., -0.0070, -0.0086, -0.0096])}"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
"execution_count": 7,
|
885 |
+
"metadata": {},
|
886 |
+
"output_type": "execute_result"
|
887 |
+
}
|
888 |
+
],
|
889 |
+
"source": [
|
890 |
+
"# ==================================================================\n",
|
891 |
+
"# I M A G E - A U D I O - D A T A S E T\n",
|
892 |
+
"# ==================================================================\n",
|
893 |
+
"class VaaniImageAudioDataset(torch.utils.data.Dataset):\n",
|
894 |
+
" def __init__(self, df, image_features_savedir, audio_tensors_savedir):\n",
|
895 |
+
" self.image_paths = df.image_path.tolist()\n",
|
896 |
+
" self.audio_paths = df.audio_path.tolist()\n",
|
897 |
+
" self.image_features_savedir = image_features_savedir\n",
|
898 |
+
" self.audio_tensors_savedir = audio_tensors_savedir\n",
|
899 |
+
"\n",
|
900 |
+
" def __len__(self):\n",
|
901 |
+
" return len(self.audio_paths)\n",
|
902 |
+
"\n",
|
903 |
+
" def __getitem__(self, idx):\n",
|
904 |
+
" return {\n",
|
905 |
+
" 'image_path': self.image_paths[idx],\n",
|
906 |
+
" 'image_feature': torch.load(os.path.join(\n",
|
907 |
+
" self.image_features_savedir, \n",
|
908 |
+
" f\"{os.path.basename(self.image_paths[idx])}.pt\"))['image_features'],\n",
|
909 |
+
" 'audio_path': self.audio_paths[idx],\n",
|
910 |
+
" 'audio_tensor': torch.load(os.path.join(\n",
|
911 |
+
" audio_tensors_savedir, \n",
|
912 |
+
" f\"{os.path.basename(self.audio_paths[idx])}.pt\"))['audio_tensor']\n",
|
913 |
+
" }\n",
|
914 |
+
" \n",
|
915 |
+
"\n",
|
916 |
+
"train_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TRAIN2.csv\")\n",
|
917 |
+
"test_df = pd.read_csv(\"/home/IITB/ai-at-ieor/23m1521/ashish/MTP/Vaani/Img_Audio_Alignment/available_img_audios_TEST2.csv\")\n",
|
918 |
+
"image_features_savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Image_features/'\n",
|
919 |
+
"audio_tensors_savedir = '/scratch/IITB/ai-at-ieor/23m1521/datasets/Vaani/Hindi_Audio_tensors/'\n",
|
920 |
+
"train_dataset = VaaniImageAudioDataset(train_df, image_features_savedir, audio_tensors_savedir)\n",
|
921 |
+
"test_dataset = VaaniImageAudioDataset(test_df, image_features_savedir, audio_tensors_savedir)\n",
|
922 |
+
"\n",
|
923 |
+
"print('Train Dataset:', len(train_dataset))\n",
|
924 |
+
"print('Test Dataset:', len(test_dataset))\n",
|
925 |
+
"train_dataset[0]"
|
926 |
+
]
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"cell_type": "code",
|
930 |
+
"execution_count": 9,
|
931 |
+
"metadata": {},
|
932 |
+
"outputs": [
|
933 |
+
{
|
934 |
+
"name": "stdout",
|
935 |
+
"output_type": "stream",
|
936 |
+
"text": [
|
937 |
+
"Image batch shape: torch.Size([64, 1024])\n",
|
938 |
+
"Audio batch shape: torch.Size([64, 308700])\n"
|
939 |
+
]
|
940 |
+
}
|
941 |
+
],
|
942 |
+
"source": [
|
943 |
+
"BATCH_SIZE = int(64)\n",
|
944 |
+
"train_dataloader = torch.utils.data.DataLoader(\n",
|
945 |
+
" train_dataset,\n",
|
946 |
+
" batch_size=BATCH_SIZE, \n",
|
947 |
+
" shuffle=True, \n",
|
948 |
+
" num_workers=48,\n",
|
949 |
+
" pin_memory=True,\n",
|
950 |
+
" drop_last=False,\n",
|
951 |
+
" persistent_workers=True\n",
|
952 |
+
")\n",
|
953 |
+
"\n",
|
954 |
+
"test_dataloader = torch.utils.data.DataLoader(\n",
|
955 |
+
" test_dataset,\n",
|
956 |
+
" batch_size=BATCH_SIZE, \n",
|
957 |
+
" shuffle=False, \n",
|
958 |
+
" num_workers=48,\n",
|
959 |
+
" pin_memory=True,\n",
|
960 |
+
" drop_last=False,\n",
|
961 |
+
" persistent_workers=True\n",
|
962 |
+
")\n",
|
963 |
+
"\n",
|
964 |
+
"batch = next(iter(train_dataloader))\n",
|
965 |
+
"image_features_batch = batch['image_feature'].to(device=device)\n",
|
966 |
+
"audio_tensor_batch = batch['audio_tensor'].to(device=device)\n",
|
967 |
+
"image_paths_batch = batch['image_path']\n",
|
968 |
+
"audio_paths_batch = batch['audio_path']\n",
|
969 |
+
"print(\"Image batch shape:\", image_features_batch.shape) # [BATCH_SIZE, 3, 224, 224]\n",
|
970 |
+
"print(\"Audio batch shape:\", audio_tensor_batch.shape) # [BATCH_SIZE, 1, 44100]\n"
|
971 |
+
]
|
972 |
+
}
|
973 |
+
],
|
974 |
+
"metadata": {
|
975 |
+
"kernelspec": {
|
976 |
+
"display_name": "clap",
|
977 |
+
"language": "python",
|
978 |
+
"name": "python3"
|
979 |
+
},
|
980 |
+
"language_info": {
|
981 |
+
"codemirror_mode": {
|
982 |
+
"name": "ipython",
|
983 |
+
"version": 3
|
984 |
+
},
|
985 |
+
"file_extension": ".py",
|
986 |
+
"mimetype": "text/x-python",
|
987 |
+
"name": "python",
|
988 |
+
"nbconvert_exporter": "python",
|
989 |
+
"pygments_lexer": "ipython3",
|
990 |
+
"version": "3.11.11"
|
991 |
+
}
|
992 |
+
},
|
993 |
+
"nbformat": 4,
|
994 |
+
"nbformat_minor": 2
|
995 |
+
}
|
scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/SDFT/SD21_Whisper/config-SD21_Whisper.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
learning_rate: 1e-7
|
scratch/IITB/ai-at-ieor/23m1521/SDFT/Vaani/_1.1_Audio-Hindi-Download.ipynb
CHANGED
@@ -1045,7 +1045,7 @@
|
|
1045 |
],
|
1046 |
"metadata": {
|
1047 |
"kernelspec": {
|
1048 |
-
"display_name": "
|
1049 |
"language": "python",
|
1050 |
"name": "python3"
|
1051 |
},
|
|
|
1045 |
],
|
1046 |
"metadata": {
|
1047 |
"kernelspec": {
|
1048 |
+
"display_name": "aku",
|
1049 |
"language": "python",
|
1050 |
"name": "python3"
|
1051 |
},
|