Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ datasets:
|
|
27 |
style="width: 500px; height: auto; object-position: center top;">
|
28 |
</div>
|
29 |
|
30 |
-
#
|
31 |
|
32 |
**Alpha AI (www.alphaai.biz)** fine-tuned Gemma-3 270M for **medical question answering with explicit chain-of-thought (CoT)**. The model emits reasoning inside `<think> ... </think>` followed by a final answer, making it well-suited for research on verifiable medical reasoning and for internal tooling where transparent intermediate steps are desired.
|
33 |
|
@@ -141,7 +141,7 @@ def strip_think(text: str) -> str:
|
|
141 |
```python
|
142 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
143 |
|
144 |
-
repo = "alphaaico/
|
145 |
tok = AutoTokenizer.from_pretrained(repo)
|
146 |
mdl = AutoModelForCausalLM.from_pretrained(repo, device_map="auto")
|
147 |
|
@@ -172,7 +172,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
172 |
from peft import PeftModel
|
173 |
|
174 |
base = "google/gemma-3-270m-it" # requires accepting Gemma license on Hugging Face
|
175 |
-
repo = "alphaaico/
|
176 |
|
177 |
tok = AutoTokenizer.from_pretrained(base)
|
178 |
base_mdl = AutoModelForCausalLM.from_pretrained(base, device_map="auto")
|
@@ -262,7 +262,7 @@ For enterprise collaboration with **Alpha AI**, reach out via the organization p
|
|
262 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
263 |
import re
|
264 |
|
265 |
-
repo = "alphaaico/
|
266 |
tok = AutoTokenizer.from_pretrained(repo)
|
267 |
mdl = AutoModelForCausalLM.from_pretrained(repo, device_map="auto")
|
268 |
|
|
|
27 |
style="width: 500px; height: auto; object-position: center top;">
|
28 |
</div>
|
29 |
|
30 |
+
# Medical-Diagnosis-COT-Gemma3-270M
|
31 |
|
32 |
**Alpha AI (www.alphaai.biz)** fine-tuned Gemma-3 270M for **medical question answering with explicit chain-of-thought (CoT)**. The model emits reasoning inside `<think> ... </think>` followed by a final answer, making it well-suited for research on verifiable medical reasoning and for internal tooling where transparent intermediate steps are desired.
|
33 |
|
|
|
141 |
```python
|
142 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
143 |
|
144 |
+
repo = "alphaaico/Medical-Diagnosis-COT-Gemma3-270M"
|
145 |
tok = AutoTokenizer.from_pretrained(repo)
|
146 |
mdl = AutoModelForCausalLM.from_pretrained(repo, device_map="auto")
|
147 |
|
|
|
172 |
from peft import PeftModel
|
173 |
|
174 |
base = "google/gemma-3-270m-it" # requires accepting Gemma license on Hugging Face
|
175 |
+
repo = "alphaaico/Medical-Diagnosis-COT-Gemma3-270M"
|
176 |
|
177 |
tok = AutoTokenizer.from_pretrained(base)
|
178 |
base_mdl = AutoModelForCausalLM.from_pretrained(base, device_map="auto")
|
|
|
262 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
263 |
import re
|
264 |
|
265 |
+
repo = "alphaaico/Medical-Diagnosis-COT-Gemma3-270M"
|
266 |
tok = AutoTokenizer.from_pretrained(repo)
|
267 |
mdl = AutoModelForCausalLM.from_pretrained(repo, device_map="auto")
|
268 |
|