“Alok”
commited on
Commit
·
c349099
1
Parent(s):
3e90250
test
Browse files- README.md +27 -78
- config.json +76 -0
- optimizer.pt +3 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- trainer_state.json +316 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
language: sw
|
2 |
datasets:
|
3 |
-
-
|
4 |
-
- TODO: add more datasets if you have used additional datasets. Make sure to use the exact same
|
5 |
-
dataset name as the one found [here](https://huggingface.co/datasets). If the dataset can not be found in the official datasets, just give it a new name
|
6 |
metrics:
|
7 |
- wer
|
8 |
tags:
|
@@ -12,24 +10,23 @@ tags:
|
|
12 |
- xlsr-fine-tuning-week
|
13 |
license: apache-2.0
|
14 |
model-index:
|
15 |
-
- name: Swahili
|
16 |
results:
|
17 |
- task:
|
18 |
name: Speech Recognition
|
19 |
type: automatic-speech-recognition
|
20 |
dataset:
|
21 |
-
name:
|
22 |
-
|
23 |
-
args: {lang_id} #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
-
value:
|
28 |
---
|
29 |
|
30 |
-
# Wav2Vec2-Large-XLSR-53-{
|
31 |
|
32 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on
|
33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
34 |
|
35 |
## Usage
|
@@ -42,87 +39,39 @@ import torchaudio
|
|
42 |
from datasets import load_dataset
|
43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
44 |
|
45 |
-
test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
46 |
|
47 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
48 |
-
model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
# Preprocessing the datasets.
|
53 |
-
# We need to read the aduio files as arrays
|
54 |
-
def speech_file_to_array_fn(batch):
|
55 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
57 |
-
return batch
|
58 |
-
|
59 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
60 |
-
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
61 |
-
|
62 |
-
with torch.no_grad():
|
63 |
-
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
64 |
-
|
65 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
-
|
67 |
-
print("Prediction:", processor.batch_decode(predicted_ids))
|
68 |
-
print("Reference:", test_dataset["sentence"][:2])
|
69 |
-
```
|
70 |
-
|
71 |
-
|
72 |
-
## Evaluation
|
73 |
-
|
74 |
-
The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
|
75 |
|
76 |
-
|
77 |
-
```python
|
78 |
-
import torch
|
79 |
-
import torchaudio
|
80 |
-
from datasets import load_dataset, load_metric
|
81 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
82 |
-
import re
|
83 |
-
|
84 |
-
test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
85 |
-
wer = load_metric("wer")
|
86 |
-
|
87 |
-
processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
88 |
-
model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
89 |
-
model.to("cuda")
|
90 |
-
|
91 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
-
|
95 |
-
# We need to read the aduio files as arrays
|
96 |
-
def speech_file_to_array_fn(batch):
|
97 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
98 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
99 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
-
return batch
|
101 |
-
|
102 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
103 |
-
|
104 |
-
# Preprocessing the datasets.
|
105 |
-
# We need to read the aduio files as arrays
|
106 |
-
def evaluate(batch):
|
107 |
-
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
113 |
-
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
114 |
-
return batch
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
```
|
120 |
|
121 |
-
**Test Result**:
|
122 |
|
123 |
|
124 |
## Training
|
125 |
|
126 |
-
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.
|
127 |
|
128 |
-
The script used for training can be found
|
|
|
1 |
language: sw
|
2 |
datasets:
|
3 |
+
- ALFFA (African Languages in the Field: speech Fundamentals and Automation) - [here](http://www.openslr.org/25/)
|
|
|
|
|
4 |
metrics:
|
5 |
- wer
|
6 |
tags:
|
|
|
10 |
- xlsr-fine-tuning-week
|
11 |
license: apache-2.0
|
12 |
model-index:
|
13 |
+
- name: Swahili XLSR-53 Wav2Vec2.0 Large
|
14 |
results:
|
15 |
- task:
|
16 |
name: Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
+
name: ALFFA sw
|
20 |
+
args: sw
|
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: WIP
|
25 |
---
|
26 |
|
27 |
+
# Wav2Vec2-Large-XLSR-53-{Swahili}
|
28 |
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swahili using the [ALFFA](http://www.openslr.org/25/), ... and ... dataset{s}.
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
|
32 |
## Usage
|
|
|
39 |
from datasets import load_dataset
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
|
|
|
42 |
|
43 |
+
processor = Wav2Vec2Processor.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw")
|
|
|
44 |
|
45 |
+
model = Wav2Vec2ForCTC.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
49 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def load_file_to_data(file):
|
52 |
+
batch = {}
|
53 |
+
speech, _ = torchaudio.load(file)
|
54 |
+
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
|
55 |
+
batch["sampling_rate"] = resampler.new_freq
|
56 |
+
return batch
|
57 |
|
|
|
|
|
|
|
58 |
|
59 |
+
def predict(data):
|
60 |
+
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
|
61 |
+
input_values = features.input_values.to("cuda")
|
62 |
+
attention_mask = features.attention_mask.to("cuda")
|
63 |
+
with torch.no_grad():
|
64 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
65 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
66 |
+
return processor.batch_decode(pred_ids)
|
67 |
|
68 |
+
predict(load_file_to_data('./demo.wav'))
|
69 |
```
|
70 |
|
71 |
+
**Test Result**: WIP %
|
72 |
|
73 |
|
74 |
## Training
|
75 |
|
|
|
76 |
|
77 |
+
The script used for training can be found Here- Coming Soon!
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 40,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 41
|
76 |
+
}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce45012be135497e4b16ab8654d1a24b97bb14be98b5fabf07fdcff635dcf3e0
|
3 |
+
size 1711
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a7772a1884e576f8ce8b03059b788e2f7a734edad5a45f3676945b1b37aba5f
|
3 |
+
size 1262101912
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42d008c9c215de3fb87e964d070febd87668726621c0db21bca9ed9eda04b74d
|
3 |
+
size 623
|
trainer_state.json
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.0,
|
3 |
+
"best_model_checkpoint": "../wav2vec2-large-xlsr-53-sw/checkpoint-154",
|
4 |
+
"epoch": 2.9967637540453076,
|
5 |
+
"global_step": 462,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.06,
|
12 |
+
"learning_rate": 0.00015,
|
13 |
+
"loss": Infinity,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.13,
|
18 |
+
"learning_rate": 0.0003,
|
19 |
+
"loss": NaN,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.19,
|
24 |
+
"learning_rate": 0.000296,
|
25 |
+
"loss": NaN,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.26,
|
30 |
+
"learning_rate": 0.000292,
|
31 |
+
"loss": NaN,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.32,
|
36 |
+
"learning_rate": 0.00028799999999999995,
|
37 |
+
"loss": NaN,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.39,
|
42 |
+
"learning_rate": 0.00028399999999999996,
|
43 |
+
"loss": NaN,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.45,
|
48 |
+
"learning_rate": 0.00028,
|
49 |
+
"loss": NaN,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.52,
|
54 |
+
"learning_rate": 0.000276,
|
55 |
+
"loss": NaN,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.58,
|
60 |
+
"learning_rate": 0.00027199999999999994,
|
61 |
+
"loss": NaN,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.65,
|
66 |
+
"learning_rate": 0.00026799999999999995,
|
67 |
+
"loss": NaN,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.71,
|
72 |
+
"learning_rate": 0.00026399999999999997,
|
73 |
+
"loss": NaN,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.78,
|
78 |
+
"learning_rate": 0.00026,
|
79 |
+
"loss": NaN,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.84,
|
84 |
+
"learning_rate": 0.000256,
|
85 |
+
"loss": NaN,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.91,
|
90 |
+
"learning_rate": 0.00025199999999999995,
|
91 |
+
"loss": NaN,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.97,
|
96 |
+
"learning_rate": 0.00024799999999999996,
|
97 |
+
"loss": NaN,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.0,
|
102 |
+
"eval_loss": Infinity,
|
103 |
+
"eval_runtime": 358.7961,
|
104 |
+
"eval_samples_per_second": 5.549,
|
105 |
+
"eval_wer": 1.0,
|
106 |
+
"step": 154
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 1.04,
|
110 |
+
"learning_rate": 0.000244,
|
111 |
+
"loss": NaN,
|
112 |
+
"step": 160
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 1.1,
|
116 |
+
"learning_rate": 0.00023999999999999998,
|
117 |
+
"loss": NaN,
|
118 |
+
"step": 170
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 1.17,
|
122 |
+
"learning_rate": 0.00023599999999999996,
|
123 |
+
"loss": NaN,
|
124 |
+
"step": 180
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 1.23,
|
128 |
+
"learning_rate": 0.00023199999999999997,
|
129 |
+
"loss": NaN,
|
130 |
+
"step": 190
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 1.3,
|
134 |
+
"learning_rate": 0.00022799999999999999,
|
135 |
+
"loss": NaN,
|
136 |
+
"step": 200
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.36,
|
140 |
+
"learning_rate": 0.000224,
|
141 |
+
"loss": NaN,
|
142 |
+
"step": 210
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.43,
|
146 |
+
"learning_rate": 0.00021999999999999995,
|
147 |
+
"loss": NaN,
|
148 |
+
"step": 220
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 1.49,
|
152 |
+
"learning_rate": 0.00021599999999999996,
|
153 |
+
"loss": NaN,
|
154 |
+
"step": 230
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.56,
|
158 |
+
"learning_rate": 0.00021199999999999998,
|
159 |
+
"loss": NaN,
|
160 |
+
"step": 240
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 1.62,
|
164 |
+
"learning_rate": 0.000208,
|
165 |
+
"loss": NaN,
|
166 |
+
"step": 250
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.69,
|
170 |
+
"learning_rate": 0.000204,
|
171 |
+
"loss": NaN,
|
172 |
+
"step": 260
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 1.75,
|
176 |
+
"learning_rate": 0.00019999999999999998,
|
177 |
+
"loss": NaN,
|
178 |
+
"step": 270
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 1.82,
|
182 |
+
"learning_rate": 0.00019599999999999997,
|
183 |
+
"loss": NaN,
|
184 |
+
"step": 280
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.88,
|
188 |
+
"learning_rate": 0.00019199999999999998,
|
189 |
+
"loss": NaN,
|
190 |
+
"step": 290
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 1.94,
|
194 |
+
"learning_rate": 0.000188,
|
195 |
+
"loss": NaN,
|
196 |
+
"step": 300
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 2.0,
|
200 |
+
"eval_loss": Infinity,
|
201 |
+
"eval_runtime": 374.8395,
|
202 |
+
"eval_samples_per_second": 5.312,
|
203 |
+
"eval_wer": 1.0,
|
204 |
+
"step": 308
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 2.01,
|
208 |
+
"learning_rate": 0.00018399999999999997,
|
209 |
+
"loss": NaN,
|
210 |
+
"step": 310
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 2.08,
|
214 |
+
"learning_rate": 0.00017999999999999998,
|
215 |
+
"loss": NaN,
|
216 |
+
"step": 320
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 2.14,
|
220 |
+
"learning_rate": 0.000176,
|
221 |
+
"loss": NaN,
|
222 |
+
"step": 330
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 2.21,
|
226 |
+
"learning_rate": 0.000172,
|
227 |
+
"loss": NaN,
|
228 |
+
"step": 340
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 2.27,
|
232 |
+
"learning_rate": 0.000168,
|
233 |
+
"loss": NaN,
|
234 |
+
"step": 350
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.34,
|
238 |
+
"learning_rate": 0.00016399999999999997,
|
239 |
+
"loss": NaN,
|
240 |
+
"step": 360
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 2.4,
|
244 |
+
"learning_rate": 0.00015999999999999999,
|
245 |
+
"loss": NaN,
|
246 |
+
"step": 370
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 2.47,
|
250 |
+
"learning_rate": 0.000156,
|
251 |
+
"loss": NaN,
|
252 |
+
"step": 380
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 2.53,
|
256 |
+
"learning_rate": 0.000152,
|
257 |
+
"loss": NaN,
|
258 |
+
"step": 390
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 2.6,
|
262 |
+
"learning_rate": 0.000148,
|
263 |
+
"loss": NaN,
|
264 |
+
"step": 400
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.66,
|
268 |
+
"learning_rate": 0.00014399999999999998,
|
269 |
+
"loss": NaN,
|
270 |
+
"step": 410
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 2.72,
|
274 |
+
"learning_rate": 0.00014,
|
275 |
+
"loss": NaN,
|
276 |
+
"step": 420
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 2.79,
|
280 |
+
"learning_rate": 0.00013599999999999997,
|
281 |
+
"loss": NaN,
|
282 |
+
"step": 430
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 2.85,
|
286 |
+
"learning_rate": 0.00013199999999999998,
|
287 |
+
"loss": NaN,
|
288 |
+
"step": 440
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 2.92,
|
292 |
+
"learning_rate": 0.000128,
|
293 |
+
"loss": NaN,
|
294 |
+
"step": 450
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.98,
|
298 |
+
"learning_rate": 0.00012399999999999998,
|
299 |
+
"loss": NaN,
|
300 |
+
"step": 460
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 3.0,
|
304 |
+
"eval_loss": Infinity,
|
305 |
+
"eval_runtime": 334.0794,
|
306 |
+
"eval_samples_per_second": 5.96,
|
307 |
+
"eval_wer": 1.0,
|
308 |
+
"step": 462
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"max_steps": 770,
|
312 |
+
"num_train_epochs": 5,
|
313 |
+
"total_flos": 1.7250623020466376e+18,
|
314 |
+
"trial_name": null,
|
315 |
+
"trial_params": null
|
316 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fcccbfe1b211984cf07a9455560cac8fbc9c69a011acf7c165d7e5331248598
|
3 |
+
size 2351
|