wissamantoun
commited on
Upload folder using huggingface_hub
Browse files- README.md +277 -0
- all_results.json +18 -0
- config.json +65 -0
- eval_results.json +12 -0
- logs/events.out.tfevents.1724620471.nefgpu51.144270.0 +3 -0
- logs/events.out.tfevents.1724621154.nefgpu51.144270.1 +3 -0
- model.safetensors +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- train_results.json +9 -0
- trainer_state.json +481 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
+
- token-classification
|
7 |
+
base_model: almanach/camembertv2-base
|
8 |
+
datasets:
|
9 |
+
- FTB-NER
|
10 |
+
metrics:
|
11 |
+
- f1
|
12 |
+
pipeline_tag: token-classification
|
13 |
+
library_name: transformers
|
14 |
+
model-index:
|
15 |
+
- name: almanach/camembertv2-base-ftb-ner
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: token-classification
|
19 |
+
name: Named Entity Recognition (NER)
|
20 |
+
dataset:
|
21 |
+
type: ftb-ner
|
22 |
+
name: French Treebank Named Entity Recognition
|
23 |
+
metrics:
|
24 |
+
- name: f1
|
25 |
+
type: f1
|
26 |
+
value: 0.93548
|
27 |
+
verified: false
|
28 |
+
---
|
29 |
+
|
30 |
+
# Model Card for almanach/camembertv2-base-ftb-ner
|
31 |
+
|
32 |
+
almanach/camembertv2-base-ftb-ner is a roberta model for token classification. It is trained on the FTB-NER dataset for the task of Named Entity Recognition (NER). The model achieves an f1 score of 0.93548 on the FTB-NER dataset.
|
33 |
+
|
34 |
+
The model is part of the almanach/camembertv2-base family of model finetunes.
|
35 |
+
|
36 |
+
## Model Details
|
37 |
+
|
38 |
+
### Model Description
|
39 |
+
|
40 |
+
- **Developed by:** Wissam Antoun (Phd Student at Almanach, Inria-Paris)
|
41 |
+
- **Model type:** roberta
|
42 |
+
- **Language(s) (NLP):** French
|
43 |
+
- **License:** MIT
|
44 |
+
- **Finetuned from model [optional]:** almanach/camembertv2-base
|
45 |
+
|
46 |
+
### Model Sources [optional]
|
47 |
+
|
48 |
+
<!-- Provide the basic links for the model. -->
|
49 |
+
|
50 |
+
- **Repository:** https://github.com/WissamAntoun/camemberta
|
51 |
+
- **Paper:** https://arxiv.org/abs/2411.08868
|
52 |
+
|
53 |
+
## Uses
|
54 |
+
|
55 |
+
The model can be used for token classification tasks in French for Named Entity Recognition (NER).
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
The model may exhibit biases based on the training data. The model may not generalize well to other datasets or tasks. The model may also have limitations in terms of the data it was trained on.
|
60 |
+
|
61 |
+
|
62 |
+
## How to Get Started with the Model
|
63 |
+
|
64 |
+
Use the code below to get started with the model.
|
65 |
+
|
66 |
+
```python
|
67 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
68 |
+
|
69 |
+
model = AutoModelForTokenClassification.from_pretrained("almanach/camembertv2-base-ftb-ner")
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("almanach/camembertv2-base-ftb-ner")
|
71 |
+
|
72 |
+
classifier = pipeline("token-classification", model=model, tokenizer=tokenizer)
|
73 |
+
|
74 |
+
classifier("Votre texte ici")
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Training Data
|
81 |
+
|
82 |
+
The model is trained on the FTB-NER dataset.
|
83 |
+
|
84 |
+
- Dataset Name: FTB-NER
|
85 |
+
- Dataset Size:
|
86 |
+
- Train: 9881
|
87 |
+
- Dev: 1235
|
88 |
+
- Test: 1235
|
89 |
+
|
90 |
+
|
91 |
+
### Training Procedure
|
92 |
+
|
93 |
+
Model trained with the run_ner.py script from the huggingface repository.
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
#### Training Hyperparameters
|
98 |
+
|
99 |
+
```yml
|
100 |
+
accelerator_config: '{''split_batches'': False, ''dispatch_batches'': None, ''even_batches'':
|
101 |
+
True, ''use_seedable_sampler'': True, ''non_blocking'': False, ''gradient_accumulation_kwargs'':
|
102 |
+
None}'
|
103 |
+
adafactor: false
|
104 |
+
adam_beta1: 0.9
|
105 |
+
adam_beta2: 0.999
|
106 |
+
adam_epsilon: 1.0e-08
|
107 |
+
auto_find_batch_size: false
|
108 |
+
base_model: camembertv2
|
109 |
+
base_model_name: camembertv2-base-bf16-p2-17000
|
110 |
+
batch_eval_metrics: false
|
111 |
+
bf16: false
|
112 |
+
bf16_full_eval: false
|
113 |
+
data_seed: 1337.0
|
114 |
+
dataloader_drop_last: false
|
115 |
+
dataloader_num_workers: 0
|
116 |
+
dataloader_persistent_workers: false
|
117 |
+
dataloader_pin_memory: true
|
118 |
+
dataloader_prefetch_factor: .nan
|
119 |
+
ddp_backend: .nan
|
120 |
+
ddp_broadcast_buffers: .nan
|
121 |
+
ddp_bucket_cap_mb: .nan
|
122 |
+
ddp_find_unused_parameters: .nan
|
123 |
+
ddp_timeout: 1800
|
124 |
+
debug: '[]'
|
125 |
+
deepspeed: .nan
|
126 |
+
disable_tqdm: false
|
127 |
+
dispatch_batches: .nan
|
128 |
+
do_eval: true
|
129 |
+
do_predict: false
|
130 |
+
do_train: true
|
131 |
+
epoch: 8.0
|
132 |
+
eval_accumulation_steps: 4
|
133 |
+
eval_accuracy: 0.9937000109565028
|
134 |
+
eval_delay: 0
|
135 |
+
eval_do_concat_batches: true
|
136 |
+
eval_f1: 0.935483870967742
|
137 |
+
eval_loss: 0.0347304567694664
|
138 |
+
eval_on_start: false
|
139 |
+
eval_precision: 0.9362204724409448
|
140 |
+
eval_recall: 0.934748427672956
|
141 |
+
eval_runtime: 2.7702
|
142 |
+
eval_samples: 1235.0
|
143 |
+
eval_samples_per_second: 445.821
|
144 |
+
eval_steps: .nan
|
145 |
+
eval_steps_per_second: 55.953
|
146 |
+
eval_strategy: epoch
|
147 |
+
eval_use_gather_object: false
|
148 |
+
evaluation_strategy: epoch
|
149 |
+
fp16: false
|
150 |
+
fp16_backend: auto
|
151 |
+
fp16_full_eval: false
|
152 |
+
fp16_opt_level: O1
|
153 |
+
fsdp: '[]'
|
154 |
+
fsdp_config: '{''min_num_params'': 0, ''xla'': False, ''xla_fsdp_v2'': False, ''xla_fsdp_grad_ckpt'':
|
155 |
+
False}'
|
156 |
+
fsdp_min_num_params: 0
|
157 |
+
fsdp_transformer_layer_cls_to_wrap: .nan
|
158 |
+
full_determinism: false
|
159 |
+
gradient_accumulation_steps: 2
|
160 |
+
gradient_checkpointing: false
|
161 |
+
gradient_checkpointing_kwargs: .nan
|
162 |
+
greater_is_better: true
|
163 |
+
group_by_length: false
|
164 |
+
half_precision_backend: auto
|
165 |
+
hub_always_push: false
|
166 |
+
hub_model_id: .nan
|
167 |
+
hub_private_repo: false
|
168 |
+
hub_strategy: every_save
|
169 |
+
hub_token: <HUB_TOKEN>
|
170 |
+
ignore_data_skip: false
|
171 |
+
include_inputs_for_metrics: false
|
172 |
+
include_num_input_tokens_seen: false
|
173 |
+
include_tokens_per_second: false
|
174 |
+
jit_mode_eval: false
|
175 |
+
label_names: .nan
|
176 |
+
label_smoothing_factor: 0.0
|
177 |
+
learning_rate: 5.000000000000001e-05
|
178 |
+
length_column_name: length
|
179 |
+
load_best_model_at_end: true
|
180 |
+
local_rank: 0
|
181 |
+
log_level: debug
|
182 |
+
log_level_replica: warning
|
183 |
+
log_on_each_node: true
|
184 |
+
logging_dir: /scratch/camembertv2/runs/results/ftb_ner/camembertv2-base-bf16-p2-17000/max_seq_length-192-gradient_accumulation_steps-2-precision-fp32-learning_rate-5.000000000000001e-05-epochs-8-lr_scheduler-linear-warmup_steps-0.1/SEED-1337/logs
|
185 |
+
logging_first_step: false
|
186 |
+
logging_nan_inf_filter: true
|
187 |
+
logging_steps: 100
|
188 |
+
logging_strategy: steps
|
189 |
+
lr_scheduler_kwargs: '{}'
|
190 |
+
lr_scheduler_type: linear
|
191 |
+
max_grad_norm: 1.0
|
192 |
+
max_steps: -1
|
193 |
+
metric_for_best_model: f1
|
194 |
+
mp_parameters: .nan
|
195 |
+
name: camembertv2/runs/results/ftb_ner/camembertv2-base-bf16-p2-17000/max_seq_length-192-gradient_accumulation_steps-2-precision-fp32-learning_rate-5.000000000000001e-05-epochs-8-lr_scheduler-linear-warmup_steps-0.1
|
196 |
+
neftune_noise_alpha: .nan
|
197 |
+
no_cuda: false
|
198 |
+
num_train_epochs: 8.0
|
199 |
+
optim: adamw_torch
|
200 |
+
optim_args: .nan
|
201 |
+
optim_target_modules: .nan
|
202 |
+
output_dir: /scratch/camembertv2/runs/results/ftb_ner/camembertv2-base-bf16-p2-17000/max_seq_length-192-gradient_accumulation_steps-2-precision-fp32-learning_rate-5.000000000000001e-05-epochs-8-lr_scheduler-linear-warmup_steps-0.1/SEED-1337
|
203 |
+
overwrite_output_dir: false
|
204 |
+
past_index: -1
|
205 |
+
per_device_eval_batch_size: 8
|
206 |
+
per_device_train_batch_size: 8
|
207 |
+
per_gpu_eval_batch_size: .nan
|
208 |
+
per_gpu_train_batch_size: .nan
|
209 |
+
prediction_loss_only: false
|
210 |
+
push_to_hub: false
|
211 |
+
push_to_hub_model_id: .nan
|
212 |
+
push_to_hub_organization: .nan
|
213 |
+
push_to_hub_token: <PUSH_TO_HUB_TOKEN>
|
214 |
+
ray_scope: last
|
215 |
+
remove_unused_columns: true
|
216 |
+
report_to: '[''tensorboard'']'
|
217 |
+
restore_callback_states_from_checkpoint: false
|
218 |
+
resume_from_checkpoint: .nan
|
219 |
+
run_name: /scratch/camembertv2/runs/results/ftb_ner/camembertv2-base-bf16-p2-17000/max_seq_length-192-gradient_accumulation_steps-2-precision-fp32-learning_rate-5.000000000000001e-05-epochs-8-lr_scheduler-linear-warmup_steps-0.1/SEED-1337
|
220 |
+
save_on_each_node: false
|
221 |
+
save_only_model: false
|
222 |
+
save_safetensors: true
|
223 |
+
save_steps: 500
|
224 |
+
save_strategy: epoch
|
225 |
+
save_total_limit: .nan
|
226 |
+
seed: 1337
|
227 |
+
skip_memory_metrics: true
|
228 |
+
split_batches: .nan
|
229 |
+
tf32: .nan
|
230 |
+
torch_compile: true
|
231 |
+
torch_compile_backend: inductor
|
232 |
+
torch_compile_mode: .nan
|
233 |
+
torch_empty_cache_steps: .nan
|
234 |
+
torchdynamo: .nan
|
235 |
+
total_flos: 2833132740217920.0
|
236 |
+
tpu_metrics_debug: false
|
237 |
+
tpu_num_cores: .nan
|
238 |
+
train_loss: 0.0880794880495777
|
239 |
+
train_runtime: 679.3683
|
240 |
+
train_samples: 9881
|
241 |
+
train_samples_per_second: 116.355
|
242 |
+
train_steps_per_second: 7.277
|
243 |
+
use_cpu: false
|
244 |
+
use_ipex: false
|
245 |
+
use_legacy_prediction_loop: false
|
246 |
+
use_mps_device: false
|
247 |
+
warmup_ratio: 0.1
|
248 |
+
warmup_steps: 0
|
249 |
+
weight_decay: 0.0
|
250 |
+
|
251 |
+
```
|
252 |
+
|
253 |
+
#### Results
|
254 |
+
|
255 |
+
**F1-Score:** 0.93548
|
256 |
+
|
257 |
+
## Technical Specifications
|
258 |
+
|
259 |
+
### Model Architecture and Objective
|
260 |
+
|
261 |
+
roberta for token classification.
|
262 |
+
|
263 |
+
## Citation
|
264 |
+
|
265 |
+
**BibTeX:**
|
266 |
+
|
267 |
+
```bibtex
|
268 |
+
@misc{antoun2024camembert20smarterfrench,
|
269 |
+
title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
|
270 |
+
author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
|
271 |
+
year={2024},
|
272 |
+
eprint={2411.08868},
|
273 |
+
archivePrefix={arXiv},
|
274 |
+
primaryClass={cs.CL},
|
275 |
+
url={https://arxiv.org/abs/2411.08868},
|
276 |
+
}
|
277 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 8.0,
|
3 |
+
"eval_accuracy": 0.9937000109565027,
|
4 |
+
"eval_f1": 0.935483870967742,
|
5 |
+
"eval_loss": 0.0347304567694664,
|
6 |
+
"eval_precision": 0.9362204724409449,
|
7 |
+
"eval_recall": 0.934748427672956,
|
8 |
+
"eval_runtime": 2.7702,
|
9 |
+
"eval_samples": 1235,
|
10 |
+
"eval_samples_per_second": 445.821,
|
11 |
+
"eval_steps_per_second": 55.953,
|
12 |
+
"total_flos": 2833132740217920.0,
|
13 |
+
"train_loss": 0.08807948804957774,
|
14 |
+
"train_runtime": 679.3683,
|
15 |
+
"train_samples": 9881,
|
16 |
+
"train_samples_per_second": 116.355,
|
17 |
+
"train_steps_per_second": 7.277
|
18 |
+
}
|
config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/scratch/camembertv2/runs/models/camembertv2-base-bf16/post/ckpt-p2-17000/pt/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"embedding_size": 768,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"finetuning_task": "ner",
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"id2label": {
|
16 |
+
"0": "B-Company",
|
17 |
+
"1": "B-FictionCharacter",
|
18 |
+
"2": "B-Location",
|
19 |
+
"3": "B-Organization",
|
20 |
+
"4": "B-Person",
|
21 |
+
"5": "B-POI",
|
22 |
+
"6": "B-Product",
|
23 |
+
"7": "I-Company",
|
24 |
+
"8": "I-FictionCharacter",
|
25 |
+
"9": "I-Location",
|
26 |
+
"10": "I-Organization",
|
27 |
+
"11": "I-Person",
|
28 |
+
"12": "I-POI",
|
29 |
+
"13": "I-Product",
|
30 |
+
"14": "O"
|
31 |
+
},
|
32 |
+
"initializer_range": 0.02,
|
33 |
+
"intermediate_size": 3072,
|
34 |
+
"label2id": {
|
35 |
+
"B-Company": 0,
|
36 |
+
"B-FictionCharacter": 1,
|
37 |
+
"B-Location": 2,
|
38 |
+
"B-Organization": 3,
|
39 |
+
"B-POI": 5,
|
40 |
+
"B-Person": 4,
|
41 |
+
"B-Product": 6,
|
42 |
+
"I-Company": 7,
|
43 |
+
"I-FictionCharacter": 8,
|
44 |
+
"I-Location": 9,
|
45 |
+
"I-Organization": 10,
|
46 |
+
"I-POI": 12,
|
47 |
+
"I-Person": 11,
|
48 |
+
"I-Product": 13,
|
49 |
+
"O": 14
|
50 |
+
},
|
51 |
+
"layer_norm_eps": 1e-07,
|
52 |
+
"max_position_embeddings": 1025,
|
53 |
+
"model_name": "camembertv2-base-bf16",
|
54 |
+
"model_type": "roberta",
|
55 |
+
"num_attention_heads": 12,
|
56 |
+
"num_hidden_layers": 12,
|
57 |
+
"pad_token_id": 0,
|
58 |
+
"position_biased_input": true,
|
59 |
+
"position_embedding_type": "absolute",
|
60 |
+
"torch_dtype": "float32",
|
61 |
+
"transformers_version": "4.44.2",
|
62 |
+
"type_vocab_size": 1,
|
63 |
+
"use_cache": true,
|
64 |
+
"vocab_size": 32768
|
65 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 8.0,
|
3 |
+
"eval_accuracy": 0.9937000109565027,
|
4 |
+
"eval_f1": 0.935483870967742,
|
5 |
+
"eval_loss": 0.0347304567694664,
|
6 |
+
"eval_precision": 0.9362204724409449,
|
7 |
+
"eval_recall": 0.934748427672956,
|
8 |
+
"eval_runtime": 2.7702,
|
9 |
+
"eval_samples": 1235,
|
10 |
+
"eval_samples_per_second": 445.821,
|
11 |
+
"eval_steps_per_second": 55.953
|
12 |
+
}
|
logs/events.out.tfevents.1724620471.nefgpu51.144270.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05e0dfd1d280d26e46351f866ba2d2f08b3454e69b9cb8753372402a245240e7
|
3 |
+
size 20871
|
logs/events.out.tfevents.1724621154.nefgpu51.144270.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c7b317b552a6e5428a9115dc9a4dcacaee232a5f8b1063e30f1f833ecc63c9
|
3 |
+
size 512
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6da0d29a943fc0383213e4349a636a6241359582e6f0d94e9a3f500ab615b8
|
3 |
+
size 444109236
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[CLS]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[SEP]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[UNK]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "[CLS]",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 8.0,
|
3 |
+
"total_flos": 2833132740217920.0,
|
4 |
+
"train_loss": 0.08807948804957774,
|
5 |
+
"train_runtime": 679.3683,
|
6 |
+
"train_samples": 9881,
|
7 |
+
"train_samples_per_second": 116.355,
|
8 |
+
"train_steps_per_second": 7.277
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.935483870967742,
|
3 |
+
"best_model_checkpoint": "/scratch/camembertv2/runs/results/ftb_ner/camembertv2-base-bf16-p2-17000/max_seq_length-192-gradient_accumulation_steps-2-precision-fp32-learning_rate-5.000000000000001e-05-epochs-8-lr_scheduler-linear-warmup_steps-0.1/SEED-1337/checkpoint-4326",
|
4 |
+
"epoch": 8.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4944,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.16181229773462782,
|
13 |
+
"grad_norm": 9.89955997467041,
|
14 |
+
"learning_rate": 1.0101010101010103e-05,
|
15 |
+
"loss": 1.8738,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.32362459546925565,
|
20 |
+
"grad_norm": 2.3764805793762207,
|
21 |
+
"learning_rate": 2.0202020202020206e-05,
|
22 |
+
"loss": 0.6979,
|
23 |
+
"step": 200
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.4854368932038835,
|
27 |
+
"grad_norm": 1.3664543628692627,
|
28 |
+
"learning_rate": 3.030303030303031e-05,
|
29 |
+
"loss": 0.5111,
|
30 |
+
"step": 300
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.6472491909385113,
|
34 |
+
"grad_norm": 0.6372264623641968,
|
35 |
+
"learning_rate": 4.040404040404041e-05,
|
36 |
+
"loss": 0.2666,
|
37 |
+
"step": 400
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.8090614886731392,
|
41 |
+
"grad_norm": 0.5098221302032471,
|
42 |
+
"learning_rate": 4.9943807597212865e-05,
|
43 |
+
"loss": 0.1199,
|
44 |
+
"step": 500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.970873786407767,
|
48 |
+
"grad_norm": 0.5974541902542114,
|
49 |
+
"learning_rate": 4.8819959541470004e-05,
|
50 |
+
"loss": 0.0775,
|
51 |
+
"step": 600
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 1.0,
|
55 |
+
"eval_accuracy": 0.9852635038895584,
|
56 |
+
"eval_f1": 0.7820512820512822,
|
57 |
+
"eval_loss": 0.0750068947672844,
|
58 |
+
"eval_precision": 0.7514492753623189,
|
59 |
+
"eval_recall": 0.815251572327044,
|
60 |
+
"eval_runtime": 3.2799,
|
61 |
+
"eval_samples_per_second": 376.537,
|
62 |
+
"eval_steps_per_second": 47.258,
|
63 |
+
"step": 618
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 1.132686084142395,
|
67 |
+
"grad_norm": 0.15989889204502106,
|
68 |
+
"learning_rate": 4.7696111485727136e-05,
|
69 |
+
"loss": 0.0648,
|
70 |
+
"step": 700
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 1.2944983818770226,
|
74 |
+
"grad_norm": 0.28292131423950195,
|
75 |
+
"learning_rate": 4.6572263429984275e-05,
|
76 |
+
"loss": 0.0555,
|
77 |
+
"step": 800
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 1.4563106796116505,
|
81 |
+
"grad_norm": 0.09367953985929489,
|
82 |
+
"learning_rate": 4.544841537424141e-05,
|
83 |
+
"loss": 0.0485,
|
84 |
+
"step": 900
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 1.6181229773462782,
|
88 |
+
"grad_norm": 0.3826428949832916,
|
89 |
+
"learning_rate": 4.4324567318498546e-05,
|
90 |
+
"loss": 0.0401,
|
91 |
+
"step": 1000
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 1.779935275080906,
|
95 |
+
"grad_norm": 0.18068315088748932,
|
96 |
+
"learning_rate": 4.3200719262755685e-05,
|
97 |
+
"loss": 0.0369,
|
98 |
+
"step": 1100
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.941747572815534,
|
102 |
+
"grad_norm": 0.23946309089660645,
|
103 |
+
"learning_rate": 4.207687120701282e-05,
|
104 |
+
"loss": 0.0387,
|
105 |
+
"step": 1200
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 2.0,
|
109 |
+
"eval_accuracy": 0.9903582776377781,
|
110 |
+
"eval_f1": 0.8799067236688691,
|
111 |
+
"eval_loss": 0.04682581126689911,
|
112 |
+
"eval_precision": 0.8700999231360492,
|
113 |
+
"eval_recall": 0.889937106918239,
|
114 |
+
"eval_runtime": 2.8072,
|
115 |
+
"eval_samples_per_second": 439.943,
|
116 |
+
"eval_steps_per_second": 55.215,
|
117 |
+
"step": 1236
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 2.103559870550162,
|
121 |
+
"grad_norm": 0.8596442937850952,
|
122 |
+
"learning_rate": 4.0953023151269956e-05,
|
123 |
+
"loss": 0.0285,
|
124 |
+
"step": 1300
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 2.26537216828479,
|
128 |
+
"grad_norm": 0.03754520043730736,
|
129 |
+
"learning_rate": 3.9829175095527095e-05,
|
130 |
+
"loss": 0.0322,
|
131 |
+
"step": 1400
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 2.4271844660194173,
|
135 |
+
"grad_norm": 0.6684575080871582,
|
136 |
+
"learning_rate": 3.870532703978423e-05,
|
137 |
+
"loss": 0.023,
|
138 |
+
"step": 1500
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 2.588996763754045,
|
142 |
+
"grad_norm": 0.03833441436290741,
|
143 |
+
"learning_rate": 3.758147898404136e-05,
|
144 |
+
"loss": 0.0268,
|
145 |
+
"step": 1600
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 2.750809061488673,
|
149 |
+
"grad_norm": 0.3890291452407837,
|
150 |
+
"learning_rate": 3.6457630928298505e-05,
|
151 |
+
"loss": 0.0217,
|
152 |
+
"step": 1700
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.912621359223301,
|
156 |
+
"grad_norm": 0.4564450681209564,
|
157 |
+
"learning_rate": 3.533378287255564e-05,
|
158 |
+
"loss": 0.0295,
|
159 |
+
"step": 1800
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 3.0,
|
163 |
+
"eval_accuracy": 0.9906869727183083,
|
164 |
+
"eval_f1": 0.8855799373040752,
|
165 |
+
"eval_loss": 0.039505813270807266,
|
166 |
+
"eval_precision": 0.8828125,
|
167 |
+
"eval_recall": 0.8883647798742138,
|
168 |
+
"eval_runtime": 2.8133,
|
169 |
+
"eval_samples_per_second": 438.979,
|
170 |
+
"eval_steps_per_second": 55.095,
|
171 |
+
"step": 1854
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 3.074433656957929,
|
175 |
+
"grad_norm": 0.027059998363256454,
|
176 |
+
"learning_rate": 3.420993481681277e-05,
|
177 |
+
"loss": 0.0166,
|
178 |
+
"step": 1900
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 3.236245954692557,
|
182 |
+
"grad_norm": 0.030333412811160088,
|
183 |
+
"learning_rate": 3.308608676106991e-05,
|
184 |
+
"loss": 0.0174,
|
185 |
+
"step": 2000
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 3.3980582524271843,
|
189 |
+
"grad_norm": 0.13804250955581665,
|
190 |
+
"learning_rate": 3.196223870532705e-05,
|
191 |
+
"loss": 0.0153,
|
192 |
+
"step": 2100
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 3.559870550161812,
|
196 |
+
"grad_norm": 0.2849176824092865,
|
197 |
+
"learning_rate": 3.083839064958418e-05,
|
198 |
+
"loss": 0.0152,
|
199 |
+
"step": 2200
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 3.72168284789644,
|
203 |
+
"grad_norm": 0.14825651049613953,
|
204 |
+
"learning_rate": 2.971454259384132e-05,
|
205 |
+
"loss": 0.0171,
|
206 |
+
"step": 2300
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 3.883495145631068,
|
210 |
+
"grad_norm": 0.045380860567092896,
|
211 |
+
"learning_rate": 2.8590694538098453e-05,
|
212 |
+
"loss": 0.0255,
|
213 |
+
"step": 2400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 4.0,
|
217 |
+
"eval_accuracy": 0.9920565355538512,
|
218 |
+
"eval_f1": 0.8999999999999999,
|
219 |
+
"eval_loss": 0.03599809855222702,
|
220 |
+
"eval_precision": 0.9014195583596214,
|
221 |
+
"eval_recall": 0.8985849056603774,
|
222 |
+
"eval_runtime": 2.8186,
|
223 |
+
"eval_samples_per_second": 438.161,
|
224 |
+
"eval_steps_per_second": 54.992,
|
225 |
+
"step": 2472
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 4.0453074433656955,
|
229 |
+
"grad_norm": 0.5658661723136902,
|
230 |
+
"learning_rate": 2.746684648235559e-05,
|
231 |
+
"loss": 0.0228,
|
232 |
+
"step": 2500
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 4.207119741100324,
|
236 |
+
"grad_norm": 0.11415175348520279,
|
237 |
+
"learning_rate": 2.6342998426612728e-05,
|
238 |
+
"loss": 0.0162,
|
239 |
+
"step": 2600
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 4.368932038834951,
|
243 |
+
"grad_norm": 0.1993759125471115,
|
244 |
+
"learning_rate": 2.5219150370869863e-05,
|
245 |
+
"loss": 0.0135,
|
246 |
+
"step": 2700
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 4.53074433656958,
|
250 |
+
"grad_norm": 0.11497118324041367,
|
251 |
+
"learning_rate": 2.4095302315127e-05,
|
252 |
+
"loss": 0.0159,
|
253 |
+
"step": 2800
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 4.692556634304207,
|
257 |
+
"grad_norm": 0.2147281914949417,
|
258 |
+
"learning_rate": 2.2971454259384134e-05,
|
259 |
+
"loss": 0.0156,
|
260 |
+
"step": 2900
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 4.854368932038835,
|
264 |
+
"grad_norm": 0.1083710715174675,
|
265 |
+
"learning_rate": 2.1847606203641273e-05,
|
266 |
+
"loss": 0.0094,
|
267 |
+
"step": 3000
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 5.0,
|
271 |
+
"eval_accuracy": 0.9922756656075381,
|
272 |
+
"eval_f1": 0.9050980392156862,
|
273 |
+
"eval_loss": 0.03369523212313652,
|
274 |
+
"eval_precision": 0.9029733959311425,
|
275 |
+
"eval_recall": 0.9072327044025157,
|
276 |
+
"eval_runtime": 2.8037,
|
277 |
+
"eval_samples_per_second": 440.494,
|
278 |
+
"eval_steps_per_second": 55.285,
|
279 |
+
"step": 3090
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 5.016181229773463,
|
283 |
+
"grad_norm": 0.013677417300641537,
|
284 |
+
"learning_rate": 2.072375814789841e-05,
|
285 |
+
"loss": 0.016,
|
286 |
+
"step": 3100
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 5.17799352750809,
|
290 |
+
"grad_norm": 0.08207657188177109,
|
291 |
+
"learning_rate": 1.9599910092155544e-05,
|
292 |
+
"loss": 0.0133,
|
293 |
+
"step": 3200
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 5.339805825242719,
|
297 |
+
"grad_norm": 0.02103651873767376,
|
298 |
+
"learning_rate": 1.847606203641268e-05,
|
299 |
+
"loss": 0.0092,
|
300 |
+
"step": 3300
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 5.501618122977346,
|
304 |
+
"grad_norm": 1.4357458353042603,
|
305 |
+
"learning_rate": 1.735221398066982e-05,
|
306 |
+
"loss": 0.0122,
|
307 |
+
"step": 3400
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 5.663430420711974,
|
311 |
+
"grad_norm": 0.16999904811382294,
|
312 |
+
"learning_rate": 1.622836592492695e-05,
|
313 |
+
"loss": 0.0086,
|
314 |
+
"step": 3500
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 5.825242718446602,
|
318 |
+
"grad_norm": 0.09043747931718826,
|
319 |
+
"learning_rate": 1.510451786918409e-05,
|
320 |
+
"loss": 0.0093,
|
321 |
+
"step": 3600
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 5.9870550161812295,
|
325 |
+
"grad_norm": 0.06608462333679199,
|
326 |
+
"learning_rate": 1.3980669813441227e-05,
|
327 |
+
"loss": 0.0067,
|
328 |
+
"step": 3700
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 6.0,
|
332 |
+
"eval_accuracy": 0.9932617508491289,
|
333 |
+
"eval_f1": 0.9301960784313724,
|
334 |
+
"eval_loss": 0.033360060304403305,
|
335 |
+
"eval_precision": 0.9280125195618153,
|
336 |
+
"eval_recall": 0.9323899371069182,
|
337 |
+
"eval_runtime": 2.8189,
|
338 |
+
"eval_samples_per_second": 438.116,
|
339 |
+
"eval_steps_per_second": 54.986,
|
340 |
+
"step": 3708
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 6.148867313915858,
|
344 |
+
"grad_norm": 0.2284722775220871,
|
345 |
+
"learning_rate": 1.285682175769836e-05,
|
346 |
+
"loss": 0.0107,
|
347 |
+
"step": 3800
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 6.310679611650485,
|
351 |
+
"grad_norm": 0.02673812210559845,
|
352 |
+
"learning_rate": 1.1732973701955498e-05,
|
353 |
+
"loss": 0.0052,
|
354 |
+
"step": 3900
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 6.472491909385114,
|
358 |
+
"grad_norm": 0.33707210421562195,
|
359 |
+
"learning_rate": 1.0609125646212633e-05,
|
360 |
+
"loss": 0.0072,
|
361 |
+
"step": 4000
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 6.634304207119741,
|
365 |
+
"grad_norm": 0.0059865182265639305,
|
366 |
+
"learning_rate": 9.48527759046977e-06,
|
367 |
+
"loss": 0.0049,
|
368 |
+
"step": 4100
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 6.796116504854369,
|
372 |
+
"grad_norm": 0.2759881615638733,
|
373 |
+
"learning_rate": 8.361429534726907e-06,
|
374 |
+
"loss": 0.016,
|
375 |
+
"step": 4200
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 6.957928802588997,
|
379 |
+
"grad_norm": 0.18257270753383636,
|
380 |
+
"learning_rate": 7.237581478984042e-06,
|
381 |
+
"loss": 0.0069,
|
382 |
+
"step": 4300
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 7.0,
|
386 |
+
"eval_accuracy": 0.9937000109565027,
|
387 |
+
"eval_f1": 0.935483870967742,
|
388 |
+
"eval_loss": 0.0347304567694664,
|
389 |
+
"eval_precision": 0.9362204724409449,
|
390 |
+
"eval_recall": 0.934748427672956,
|
391 |
+
"eval_runtime": 2.8106,
|
392 |
+
"eval_samples_per_second": 439.402,
|
393 |
+
"eval_steps_per_second": 55.148,
|
394 |
+
"step": 4326
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 7.119741100323624,
|
398 |
+
"grad_norm": 0.007623529061675072,
|
399 |
+
"learning_rate": 6.113733423241179e-06,
|
400 |
+
"loss": 0.0046,
|
401 |
+
"step": 4400
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 7.281553398058253,
|
405 |
+
"grad_norm": 0.043167050927877426,
|
406 |
+
"learning_rate": 4.989885367498316e-06,
|
407 |
+
"loss": 0.009,
|
408 |
+
"step": 4500
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 7.44336569579288,
|
412 |
+
"grad_norm": 0.009674232453107834,
|
413 |
+
"learning_rate": 3.866037311755451e-06,
|
414 |
+
"loss": 0.0046,
|
415 |
+
"step": 4600
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 7.605177993527509,
|
419 |
+
"grad_norm": 0.05575043708086014,
|
420 |
+
"learning_rate": 2.742189256012588e-06,
|
421 |
+
"loss": 0.0052,
|
422 |
+
"step": 4700
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 7.766990291262136,
|
426 |
+
"grad_norm": 0.006715767551213503,
|
427 |
+
"learning_rate": 1.6183412002697239e-06,
|
428 |
+
"loss": 0.0044,
|
429 |
+
"step": 4800
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 7.9288025889967635,
|
433 |
+
"grad_norm": 0.009280543774366379,
|
434 |
+
"learning_rate": 4.9449314452686e-07,
|
435 |
+
"loss": 0.0054,
|
436 |
+
"step": 4900
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 8.0,
|
440 |
+
"eval_accuracy": 0.9936726196997918,
|
441 |
+
"eval_f1": 0.93401413982718,
|
442 |
+
"eval_loss": 0.03279910609126091,
|
443 |
+
"eval_precision": 0.9332810047095761,
|
444 |
+
"eval_recall": 0.934748427672956,
|
445 |
+
"eval_runtime": 2.829,
|
446 |
+
"eval_samples_per_second": 436.551,
|
447 |
+
"eval_steps_per_second": 54.79,
|
448 |
+
"step": 4944
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 8.0,
|
452 |
+
"step": 4944,
|
453 |
+
"total_flos": 2833132740217920.0,
|
454 |
+
"train_loss": 0.08807948804957774,
|
455 |
+
"train_runtime": 679.3683,
|
456 |
+
"train_samples_per_second": 116.355,
|
457 |
+
"train_steps_per_second": 7.277
|
458 |
+
}
|
459 |
+
],
|
460 |
+
"logging_steps": 100,
|
461 |
+
"max_steps": 4944,
|
462 |
+
"num_input_tokens_seen": 0,
|
463 |
+
"num_train_epochs": 8,
|
464 |
+
"save_steps": 500,
|
465 |
+
"stateful_callbacks": {
|
466 |
+
"TrainerControl": {
|
467 |
+
"args": {
|
468 |
+
"should_epoch_stop": false,
|
469 |
+
"should_evaluate": false,
|
470 |
+
"should_log": false,
|
471 |
+
"should_save": true,
|
472 |
+
"should_training_stop": true
|
473 |
+
},
|
474 |
+
"attributes": {}
|
475 |
+
}
|
476 |
+
},
|
477 |
+
"total_flos": 2833132740217920.0,
|
478 |
+
"train_batch_size": 8,
|
479 |
+
"trial_name": null,
|
480 |
+
"trial_params": null
|
481 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a7a9b89b841739a3021e1e3a1adf2c68602fa7afc6688bbb60862c85d3c4c5e
|
3 |
+
size 5624
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|