Delta-Vector commited on
Commit
ba2efc7
·
verified ·
1 Parent(s): 7852fe5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "head_dim": 128,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 32,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 640000,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": false,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151680
29
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.51.3"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step240
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c00e9b28bc305c122af9634e86e09c84f9995e44e3cdc1c13a547b9e29d9bf
3
+ size 4961126848
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28e89014ade8bbada3a042494c6c761a65b63448323718b153d5552b91ec7a0a
3
+ size 4962282376
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:287c43d4896f7c432b70c31c20c464db6a6b623f9de7971a124b55a9f73085e6
3
+ size 4079316352
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9da7b6c624d99256d91ea9d7aa58dd2c2dea5231aea3cef13747c0657151eee8
3
+ size 1242562688
model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15245238272
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
440
+ "model.norm.weight": "model-00003-of-00004.safetensors"
441
+ }
442
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8f92cf63e0989759370d24108b469c492c12202403f036015307ce49f12cedc
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ed40a0a4e9f365d2c6cc004d97e6705894eba46c8be4c160c1455bc3062dee1
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688b304d19c260b5cfa471535ed51d7e1d60b3a0d0159dfd1a04b87904a9f42
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9967425ebcaee80d9b518fa0244d52f739b1b983d87cda71d5fede0c073e9d3b
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469900fd39c667ffbd49c3c407c0ba317a1e9f5f9339a99b5d38423b7d0ce6d4
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:124688471ff2a6e80f2fcefedbf741fb18d08dd539d5bd07a52e81be545142a5
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e69f1ced9f992a72c948698e5eb06088610788988cdb2fdbdd624e064319d60
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a376268a55d6ee10c371c06aa952334c4c6a1af9ea2d71b1951a57367a0c6722
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:964424132341e61a8b3c799f8896b8d80151109e53785ed2435c3d0752ebd9d4
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,1714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9968847352024922,
6
+ "eval_steps": 500,
7
+ "global_step": 240,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.004153686396677051,
14
+ "grad_norm": 0.46519723534584045,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.1543,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.008307372793354102,
21
+ "grad_norm": 0.43996185064315796,
22
+ "learning_rate": 2.0000000000000002e-07,
23
+ "loss": 2.1152,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.012461059190031152,
28
+ "grad_norm": 0.4474555253982544,
29
+ "learning_rate": 4.0000000000000003e-07,
30
+ "loss": 2.187,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.016614745586708203,
35
+ "grad_norm": 0.45517489314079285,
36
+ "learning_rate": 6.000000000000001e-07,
37
+ "loss": 2.1881,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.020768431983385256,
42
+ "grad_norm": 0.4221073389053345,
43
+ "learning_rate": 8.000000000000001e-07,
44
+ "loss": 2.0898,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.024922118380062305,
49
+ "grad_norm": 0.4369853734970093,
50
+ "learning_rate": 1.0000000000000002e-06,
51
+ "loss": 2.1472,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.029075804776739357,
56
+ "grad_norm": 0.4024302065372467,
57
+ "learning_rate": 1.2000000000000002e-06,
58
+ "loss": 2.1454,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.033229491173416406,
63
+ "grad_norm": 0.383690744638443,
64
+ "learning_rate": 1.4000000000000001e-06,
65
+ "loss": 2.0846,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.037383177570093455,
70
+ "grad_norm": 0.36159613728523254,
71
+ "learning_rate": 1.6000000000000001e-06,
72
+ "loss": 2.1333,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.04153686396677051,
77
+ "grad_norm": 0.3597932755947113,
78
+ "learning_rate": 1.8000000000000001e-06,
79
+ "loss": 2.1546,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.04569055036344756,
84
+ "grad_norm": 0.39668431878089905,
85
+ "learning_rate": 2.0000000000000003e-06,
86
+ "loss": 2.1261,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.04984423676012461,
91
+ "grad_norm": 0.4318128824234009,
92
+ "learning_rate": 2.2e-06,
93
+ "loss": 2.1235,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.05399792315680166,
98
+ "grad_norm": 0.4326289892196655,
99
+ "learning_rate": 2.4000000000000003e-06,
100
+ "loss": 2.1045,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.058151609553478714,
105
+ "grad_norm": 0.6398888826370239,
106
+ "learning_rate": 2.6e-06,
107
+ "loss": 2.1559,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.06230529595015576,
112
+ "grad_norm": 0.3349069356918335,
113
+ "learning_rate": 2.8000000000000003e-06,
114
+ "loss": 2.1339,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.06645898234683281,
119
+ "grad_norm": 0.3410353660583496,
120
+ "learning_rate": 3e-06,
121
+ "loss": 2.0821,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.07061266874350987,
126
+ "grad_norm": 0.35577717423439026,
127
+ "learning_rate": 3.2000000000000003e-06,
128
+ "loss": 2.1912,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.07476635514018691,
133
+ "grad_norm": 0.3483312427997589,
134
+ "learning_rate": 3.4000000000000005e-06,
135
+ "loss": 2.161,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.07892004153686397,
140
+ "grad_norm": 0.33657440543174744,
141
+ "learning_rate": 3.6000000000000003e-06,
142
+ "loss": 2.1798,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.08307372793354102,
147
+ "grad_norm": 0.3735242486000061,
148
+ "learning_rate": 3.8000000000000005e-06,
149
+ "loss": 2.1088,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.08722741433021806,
154
+ "grad_norm": 0.46339651942253113,
155
+ "learning_rate": 4.000000000000001e-06,
156
+ "loss": 2.1467,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.09138110072689512,
161
+ "grad_norm": 0.3805930018424988,
162
+ "learning_rate": 4.2000000000000004e-06,
163
+ "loss": 2.1484,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.09553478712357218,
168
+ "grad_norm": 0.3923945724964142,
169
+ "learning_rate": 4.4e-06,
170
+ "loss": 2.1679,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.09968847352024922,
175
+ "grad_norm": 0.41755327582359314,
176
+ "learning_rate": 4.600000000000001e-06,
177
+ "loss": 2.1469,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.10384215991692627,
182
+ "grad_norm": 0.3602828085422516,
183
+ "learning_rate": 4.800000000000001e-06,
184
+ "loss": 2.2024,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.10799584631360332,
189
+ "grad_norm": 0.3939920663833618,
190
+ "learning_rate": 5e-06,
191
+ "loss": 2.1467,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.11214953271028037,
196
+ "grad_norm": 0.40471377968788147,
197
+ "learning_rate": 5.2e-06,
198
+ "loss": 2.1984,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.11630321910695743,
203
+ "grad_norm": 0.34732070565223694,
204
+ "learning_rate": 5.400000000000001e-06,
205
+ "loss": 2.2007,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.12045690550363447,
210
+ "grad_norm": 0.3753240406513214,
211
+ "learning_rate": 5.600000000000001e-06,
212
+ "loss": 2.1163,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.12461059190031153,
217
+ "grad_norm": 0.39350414276123047,
218
+ "learning_rate": 5.8e-06,
219
+ "loss": 2.144,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.12876427829698858,
224
+ "grad_norm": 0.3573162257671356,
225
+ "learning_rate": 6e-06,
226
+ "loss": 2.1117,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.13291796469366562,
231
+ "grad_norm": 0.36146262288093567,
232
+ "learning_rate": 6.200000000000001e-06,
233
+ "loss": 2.1521,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.13707165109034267,
238
+ "grad_norm": 0.43568095564842224,
239
+ "learning_rate": 6.4000000000000006e-06,
240
+ "loss": 2.1501,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.14122533748701974,
245
+ "grad_norm": 0.45428919792175293,
246
+ "learning_rate": 6.600000000000001e-06,
247
+ "loss": 2.1042,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.14537902388369678,
252
+ "grad_norm": 0.5019702315330505,
253
+ "learning_rate": 6.800000000000001e-06,
254
+ "loss": 2.1406,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.14953271028037382,
259
+ "grad_norm": 0.3149745762348175,
260
+ "learning_rate": 7e-06,
261
+ "loss": 2.1663,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.1536863966770509,
266
+ "grad_norm": 0.4449986219406128,
267
+ "learning_rate": 7.2000000000000005e-06,
268
+ "loss": 2.1463,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.15784008307372793,
273
+ "grad_norm": 0.44423943758010864,
274
+ "learning_rate": 7.4e-06,
275
+ "loss": 2.1362,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.16199376947040497,
280
+ "grad_norm": 0.33646464347839355,
281
+ "learning_rate": 7.600000000000001e-06,
282
+ "loss": 2.1198,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.16614745586708204,
287
+ "grad_norm": 0.32996314764022827,
288
+ "learning_rate": 7.800000000000002e-06,
289
+ "loss": 2.1126,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.1703011422637591,
294
+ "grad_norm": 0.4265682101249695,
295
+ "learning_rate": 8.000000000000001e-06,
296
+ "loss": 2.1239,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.17445482866043613,
301
+ "grad_norm": 0.4570807218551636,
302
+ "learning_rate": 8.2e-06,
303
+ "loss": 2.1687,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.1786085150571132,
308
+ "grad_norm": 0.41856175661087036,
309
+ "learning_rate": 8.400000000000001e-06,
310
+ "loss": 2.1363,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.18276220145379024,
315
+ "grad_norm": 0.3138597905635834,
316
+ "learning_rate": 8.6e-06,
317
+ "loss": 2.0941,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.18691588785046728,
322
+ "grad_norm": 0.4337351322174072,
323
+ "learning_rate": 8.8e-06,
324
+ "loss": 2.1599,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.19106957424714435,
329
+ "grad_norm": 0.49772173166275024,
330
+ "learning_rate": 9e-06,
331
+ "loss": 2.1445,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.1952232606438214,
336
+ "grad_norm": 0.3833214044570923,
337
+ "learning_rate": 9.200000000000002e-06,
338
+ "loss": 2.1087,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.19937694704049844,
343
+ "grad_norm": 0.3490073084831238,
344
+ "learning_rate": 9.4e-06,
345
+ "loss": 2.0739,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.2035306334371755,
350
+ "grad_norm": 0.5244693756103516,
351
+ "learning_rate": 9.600000000000001e-06,
352
+ "loss": 2.1576,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.20768431983385255,
357
+ "grad_norm": 0.6005993485450745,
358
+ "learning_rate": 9.800000000000001e-06,
359
+ "loss": 2.0999,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.2118380062305296,
364
+ "grad_norm": 0.6089114546775818,
365
+ "learning_rate": 1e-05,
366
+ "loss": 2.1272,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.21599169262720663,
371
+ "grad_norm": 0.40243008732795715,
372
+ "learning_rate": 9.999316524962347e-06,
373
+ "loss": 2.1378,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.2201453790238837,
378
+ "grad_norm": 0.3728896379470825,
379
+ "learning_rate": 9.99726628670463e-06,
380
+ "loss": 2.1483,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.22429906542056074,
385
+ "grad_norm": 0.47435319423675537,
386
+ "learning_rate": 9.993849845741525e-06,
387
+ "loss": 2.1246,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.2284527518172378,
392
+ "grad_norm": 0.47093838453292847,
393
+ "learning_rate": 9.989068136093873e-06,
394
+ "loss": 2.1396,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.23260643821391486,
399
+ "grad_norm": 0.5783659815788269,
400
+ "learning_rate": 9.98292246503335e-06,
401
+ "loss": 2.0856,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.2367601246105919,
406
+ "grad_norm": 0.4810788929462433,
407
+ "learning_rate": 9.975414512725058e-06,
408
+ "loss": 2.0802,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.24091381100726894,
413
+ "grad_norm": 0.45532462000846863,
414
+ "learning_rate": 9.966546331768192e-06,
415
+ "loss": 2.0967,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.245067497403946,
420
+ "grad_norm": 0.39205724000930786,
421
+ "learning_rate": 9.956320346634877e-06,
422
+ "loss": 2.164,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.24922118380062305,
427
+ "grad_norm": 0.4362233281135559,
428
+ "learning_rate": 9.944739353007344e-06,
429
+ "loss": 2.1157,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.2533748701973001,
434
+ "grad_norm": 0.43169429898262024,
435
+ "learning_rate": 9.931806517013612e-06,
436
+ "loss": 2.1002,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.25752855659397716,
441
+ "grad_norm": 0.3520335257053375,
442
+ "learning_rate": 9.917525374361913e-06,
443
+ "loss": 2.1048,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.2616822429906542,
448
+ "grad_norm": 0.4268462359905243,
449
+ "learning_rate": 9.901899829374048e-06,
450
+ "loss": 2.0897,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.26583592938733125,
455
+ "grad_norm": 0.46526211500167847,
456
+ "learning_rate": 9.884934153917998e-06,
457
+ "loss": 2.1256,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.2699896157840083,
462
+ "grad_norm": 0.3967600166797638,
463
+ "learning_rate": 9.86663298624003e-06,
464
+ "loss": 2.1649,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.27414330218068533,
469
+ "grad_norm": 0.3882082998752594,
470
+ "learning_rate": 9.847001329696653e-06,
471
+ "loss": 2.1514,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.2782969885773624,
476
+ "grad_norm": 0.3926977813243866,
477
+ "learning_rate": 9.826044551386743e-06,
478
+ "loss": 2.1225,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.2824506749740395,
483
+ "grad_norm": 0.37442710995674133,
484
+ "learning_rate": 9.803768380684242e-06,
485
+ "loss": 2.1526,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.2866043613707165,
490
+ "grad_norm": 0.3859005570411682,
491
+ "learning_rate": 9.780178907671788e-06,
492
+ "loss": 2.1437,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.29075804776739356,
497
+ "grad_norm": 0.36700868606567383,
498
+ "learning_rate": 9.755282581475769e-06,
499
+ "loss": 2.0886,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.2949117341640706,
504
+ "grad_norm": 0.32868337631225586,
505
+ "learning_rate": 9.729086208503174e-06,
506
+ "loss": 2.0149,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.29906542056074764,
511
+ "grad_norm": 0.5018991827964783,
512
+ "learning_rate": 9.701596950580807e-06,
513
+ "loss": 2.1765,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.3032191069574247,
518
+ "grad_norm": 0.46321091055870056,
519
+ "learning_rate": 9.672822322997305e-06,
520
+ "loss": 2.0778,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.3073727933541018,
525
+ "grad_norm": 0.36446163058280945,
526
+ "learning_rate": 9.642770192448537e-06,
527
+ "loss": 2.1116,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.3115264797507788,
532
+ "grad_norm": 0.5278913974761963,
533
+ "learning_rate": 9.611448774886925e-06,
534
+ "loss": 2.1583,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.31568016614745587,
539
+ "grad_norm": 0.3852906823158264,
540
+ "learning_rate": 9.578866633275289e-06,
541
+ "loss": 2.0911,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.31983385254413293,
546
+ "grad_norm": 0.33927422761917114,
547
+ "learning_rate": 9.545032675245814e-06,
548
+ "loss": 2.1511,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.32398753894080995,
553
+ "grad_norm": 0.4899720251560211,
554
+ "learning_rate": 9.509956150664796e-06,
555
+ "loss": 2.1541,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.328141225337487,
560
+ "grad_norm": 0.6482370495796204,
561
+ "learning_rate": 9.473646649103819e-06,
562
+ "loss": 2.0696,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.3322949117341641,
567
+ "grad_norm": 0.5560997724533081,
568
+ "learning_rate": 9.43611409721806e-06,
569
+ "loss": 2.1247,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.3364485981308411,
574
+ "grad_norm": 0.3883346915245056,
575
+ "learning_rate": 9.397368756032445e-06,
576
+ "loss": 2.098,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.3406022845275182,
581
+ "grad_norm": 0.40563803911209106,
582
+ "learning_rate": 9.357421218136387e-06,
583
+ "loss": 2.1632,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.34475597092419524,
588
+ "grad_norm": 0.45003846287727356,
589
+ "learning_rate": 9.31628240478787e-06,
590
+ "loss": 2.1335,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.34890965732087226,
595
+ "grad_norm": 0.4380098581314087,
596
+ "learning_rate": 9.273963562927695e-06,
597
+ "loss": 2.0858,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.3530633437175493,
602
+ "grad_norm": 0.3497319221496582,
603
+ "learning_rate": 9.230476262104678e-06,
604
+ "loss": 2.1274,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.3572170301142264,
609
+ "grad_norm": 0.3552245497703552,
610
+ "learning_rate": 9.185832391312644e-06,
611
+ "loss": 2.1446,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.3613707165109034,
616
+ "grad_norm": 0.36943352222442627,
617
+ "learning_rate": 9.140044155740102e-06,
618
+ "loss": 2.1117,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.3655244029075805,
623
+ "grad_norm": 0.37478867173194885,
624
+ "learning_rate": 9.093124073433464e-06,
625
+ "loss": 2.1521,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.36967808930425755,
630
+ "grad_norm": 0.3419424593448639,
631
+ "learning_rate": 9.045084971874738e-06,
632
+ "loss": 2.113,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.37383177570093457,
637
+ "grad_norm": 0.30643460154533386,
638
+ "learning_rate": 8.995939984474624e-06,
639
+ "loss": 2.0633,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.37798546209761164,
644
+ "grad_norm": 0.361110121011734,
645
+ "learning_rate": 8.94570254698197e-06,
646
+ "loss": 2.1143,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.3821391484942887,
651
+ "grad_norm": 0.33192265033721924,
652
+ "learning_rate": 8.894386393810563e-06,
653
+ "loss": 2.1207,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.3862928348909657,
658
+ "grad_norm": 0.325773149728775,
659
+ "learning_rate": 8.842005554284296e-06,
660
+ "loss": 2.1205,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.3904465212876428,
665
+ "grad_norm": 0.4192400276660919,
666
+ "learning_rate": 8.788574348801676e-06,
667
+ "loss": 2.172,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.39460020768431986,
672
+ "grad_norm": 0.3268410563468933,
673
+ "learning_rate": 8.734107384920771e-06,
674
+ "loss": 2.0921,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.3987538940809969,
679
+ "grad_norm": 0.34491395950317383,
680
+ "learning_rate": 8.67861955336566e-06,
681
+ "loss": 2.112,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.40290758047767394,
686
+ "grad_norm": 0.3280870020389557,
687
+ "learning_rate": 8.622126023955446e-06,
688
+ "loss": 2.0972,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.407061266874351,
693
+ "grad_norm": 0.42370373010635376,
694
+ "learning_rate": 8.564642241456986e-06,
695
+ "loss": 2.1675,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.411214953271028,
700
+ "grad_norm": 0.3967688977718353,
701
+ "learning_rate": 8.506183921362443e-06,
702
+ "loss": 2.1162,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.4153686396677051,
707
+ "grad_norm": 0.3643606901168823,
708
+ "learning_rate": 8.446767045592829e-06,
709
+ "loss": 2.1448,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.4195223260643821,
714
+ "grad_norm": 0.403810054063797,
715
+ "learning_rate": 8.386407858128707e-06,
716
+ "loss": 2.1694,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.4236760124610592,
721
+ "grad_norm": 0.3851834237575531,
722
+ "learning_rate": 8.325122860569241e-06,
723
+ "loss": 2.1891,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.42782969885773625,
728
+ "grad_norm": 0.3491027057170868,
729
+ "learning_rate": 8.262928807620843e-06,
730
+ "loss": 2.0881,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.43198338525441327,
735
+ "grad_norm": 0.4147508442401886,
736
+ "learning_rate": 8.199842702516584e-06,
737
+ "loss": 2.1355,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.43613707165109034,
742
+ "grad_norm": 0.3745593726634979,
743
+ "learning_rate": 8.135881792367686e-06,
744
+ "loss": 2.1862,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.4402907580477674,
749
+ "grad_norm": 0.3806188702583313,
750
+ "learning_rate": 8.071063563448341e-06,
751
+ "loss": 2.1435,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.4444444444444444,
756
+ "grad_norm": 0.3626170754432678,
757
+ "learning_rate": 8.005405736415127e-06,
758
+ "loss": 2.0608,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.4485981308411215,
763
+ "grad_norm": 0.3634461760520935,
764
+ "learning_rate": 7.938926261462366e-06,
765
+ "loss": 2.1969,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.45275181723779856,
770
+ "grad_norm": 0.3739028871059418,
771
+ "learning_rate": 7.871643313414718e-06,
772
+ "loss": 2.1048,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.4569055036344756,
777
+ "grad_norm": 0.3855268061161041,
778
+ "learning_rate": 7.803575286758365e-06,
779
+ "loss": 2.1129,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.46105919003115264,
784
+ "grad_norm": 0.39188092947006226,
785
+ "learning_rate": 7.734740790612137e-06,
786
+ "loss": 2.1127,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.4652128764278297,
791
+ "grad_norm": 0.39279860258102417,
792
+ "learning_rate": 7.66515864363997e-06,
793
+ "loss": 2.1478,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.46936656282450673,
798
+ "grad_norm": 0.42985665798187256,
799
+ "learning_rate": 7.594847868906076e-06,
800
+ "loss": 2.1444,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.4735202492211838,
805
+ "grad_norm": 0.34920892119407654,
806
+ "learning_rate": 7.52382768867422e-06,
807
+ "loss": 2.1402,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.47767393561786087,
812
+ "grad_norm": 0.3863445520401001,
813
+ "learning_rate": 7.452117519152542e-06,
814
+ "loss": 2.1491,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.4818276220145379,
819
+ "grad_norm": 0.5511898398399353,
820
+ "learning_rate": 7.379736965185369e-06,
821
+ "loss": 2.1283,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.48598130841121495,
826
+ "grad_norm": 0.36419305205345154,
827
+ "learning_rate": 7.30670581489344e-06,
828
+ "loss": 2.1416,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.490134994807892,
833
+ "grad_norm": 0.431270569562912,
834
+ "learning_rate": 7.233044034264034e-06,
835
+ "loss": 2.1307,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.49428868120456904,
840
+ "grad_norm": 0.4779389202594757,
841
+ "learning_rate": 7.158771761692464e-06,
842
+ "loss": 2.099,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.4984423676012461,
847
+ "grad_norm": 0.3551599681377411,
848
+ "learning_rate": 7.083909302476453e-06,
849
+ "loss": 2.1202,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.5025960539979232,
854
+ "grad_norm": 0.33220580220222473,
855
+ "learning_rate": 7.008477123264849e-06,
856
+ "loss": 2.1491,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.5067497403946002,
861
+ "grad_norm": 0.39055803418159485,
862
+ "learning_rate": 6.932495846462262e-06,
863
+ "loss": 2.1445,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.5109034267912772,
868
+ "grad_norm": 0.33877313137054443,
869
+ "learning_rate": 6.855986244591104e-06,
870
+ "loss": 2.1349,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.5150571131879543,
875
+ "grad_norm": 0.3542743921279907,
876
+ "learning_rate": 6.778969234612583e-06,
877
+ "loss": 2.098,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.5192107995846313,
882
+ "grad_norm": 0.35766342282295227,
883
+ "learning_rate": 6.701465872208216e-06,
884
+ "loss": 2.1363,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.5233644859813084,
889
+ "grad_norm": 0.35533398389816284,
890
+ "learning_rate": 6.6234973460234184e-06,
891
+ "loss": 2.0558,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.5275181723779855,
896
+ "grad_norm": 0.3273533880710602,
897
+ "learning_rate": 6.545084971874738e-06,
898
+ "loss": 2.1791,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.5316718587746625,
903
+ "grad_norm": 0.35391753911972046,
904
+ "learning_rate": 6.466250186922325e-06,
905
+ "loss": 2.054,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.5358255451713395,
910
+ "grad_norm": 0.295899897813797,
911
+ "learning_rate": 6.387014543809224e-06,
912
+ "loss": 2.1038,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.5399792315680166,
917
+ "grad_norm": 0.3650350272655487,
918
+ "learning_rate": 6.3073997047691e-06,
919
+ "loss": 2.1463,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.5441329179646937,
924
+ "grad_norm": 0.40882980823516846,
925
+ "learning_rate": 6.227427435703997e-06,
926
+ "loss": 2.1043,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.5482866043613707,
931
+ "grad_norm": 0.3036598265171051,
932
+ "learning_rate": 6.147119600233758e-06,
933
+ "loss": 2.0616,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.5524402907580478,
938
+ "grad_norm": 0.4223164916038513,
939
+ "learning_rate": 6.066498153718735e-06,
940
+ "loss": 2.1511,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.5565939771547248,
945
+ "grad_norm": 0.2908646762371063,
946
+ "learning_rate": 5.985585137257401e-06,
947
+ "loss": 2.1268,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.5607476635514018,
952
+ "grad_norm": 0.48902490735054016,
953
+ "learning_rate": 5.904402671660551e-06,
954
+ "loss": 2.1221,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.564901349948079,
959
+ "grad_norm": 0.38439658284187317,
960
+ "learning_rate": 5.82297295140367e-06,
961
+ "loss": 2.1389,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.569055036344756,
966
+ "grad_norm": 0.4415787160396576,
967
+ "learning_rate": 5.74131823855921e-06,
968
+ "loss": 2.0875,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.573208722741433,
973
+ "grad_norm": 0.41299912333488464,
974
+ "learning_rate": 5.659460856710346e-06,
975
+ "loss": 2.155,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.5773624091381101,
980
+ "grad_norm": 0.4978012144565582,
981
+ "learning_rate": 5.577423184847932e-06,
982
+ "loss": 2.0828,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.5815160955347871,
987
+ "grad_norm": 0.3253823220729828,
988
+ "learning_rate": 5.495227651252315e-06,
989
+ "loss": 2.094,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.5856697819314641,
994
+ "grad_norm": 0.40332135558128357,
995
+ "learning_rate": 5.412896727361663e-06,
996
+ "loss": 2.1003,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.5898234683281413,
1001
+ "grad_norm": 0.296169638633728,
1002
+ "learning_rate": 5.3304529216284974e-06,
1003
+ "loss": 2.1062,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.5939771547248183,
1008
+ "grad_norm": 0.35131099820137024,
1009
+ "learning_rate": 5.247918773366112e-06,
1010
+ "loss": 2.1015,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.5981308411214953,
1015
+ "grad_norm": 0.30257904529571533,
1016
+ "learning_rate": 5.165316846586541e-06,
1017
+ "loss": 2.1598,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.6022845275181724,
1022
+ "grad_norm": 0.3170335590839386,
1023
+ "learning_rate": 5.082669723831793e-06,
1024
+ "loss": 2.1115,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.6064382139148494,
1029
+ "grad_norm": 0.29750919342041016,
1030
+ "learning_rate": 5e-06,
1031
+ "loss": 2.1695,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.6105919003115264,
1036
+ "grad_norm": 0.36148592829704285,
1037
+ "learning_rate": 4.917330276168208e-06,
1038
+ "loss": 2.1656,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.6147455867082036,
1043
+ "grad_norm": 0.2840471863746643,
1044
+ "learning_rate": 4.8346831534134595e-06,
1045
+ "loss": 2.1353,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.6188992731048806,
1050
+ "grad_norm": 0.4525928795337677,
1051
+ "learning_rate": 4.752081226633888e-06,
1052
+ "loss": 2.1334,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.6230529595015576,
1057
+ "grad_norm": 0.2894962430000305,
1058
+ "learning_rate": 4.669547078371503e-06,
1059
+ "loss": 2.1364,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.6272066458982347,
1064
+ "grad_norm": 0.3974563777446747,
1065
+ "learning_rate": 4.587103272638339e-06,
1066
+ "loss": 2.1105,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.6313603322949117,
1071
+ "grad_norm": 0.3226485550403595,
1072
+ "learning_rate": 4.504772348747687e-06,
1073
+ "loss": 2.1914,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.6355140186915887,
1078
+ "grad_norm": 0.3687591254711151,
1079
+ "learning_rate": 4.42257681515207e-06,
1080
+ "loss": 2.107,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.6396677050882659,
1085
+ "grad_norm": 0.3422071635723114,
1086
+ "learning_rate": 4.340539143289655e-06,
1087
+ "loss": 2.128,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.6438213914849429,
1092
+ "grad_norm": 0.3275080621242523,
1093
+ "learning_rate": 4.25868176144079e-06,
1094
+ "loss": 2.1684,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.6479750778816199,
1099
+ "grad_norm": 0.3418704569339752,
1100
+ "learning_rate": 4.17702704859633e-06,
1101
+ "loss": 2.0611,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.652128764278297,
1106
+ "grad_norm": 0.27305227518081665,
1107
+ "learning_rate": 4.0955973283394525e-06,
1108
+ "loss": 2.0826,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.656282450674974,
1113
+ "grad_norm": 0.3369821012020111,
1114
+ "learning_rate": 4.0144148627426e-06,
1115
+ "loss": 2.1567,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.660436137071651,
1120
+ "grad_norm": 0.25910282135009766,
1121
+ "learning_rate": 3.9335018462812664e-06,
1122
+ "loss": 2.0637,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.6645898234683282,
1127
+ "grad_norm": 0.2668653726577759,
1128
+ "learning_rate": 3.852880399766243e-06,
1129
+ "loss": 2.0863,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.6687435098650052,
1134
+ "grad_norm": 0.3396942913532257,
1135
+ "learning_rate": 3.7725725642960047e-06,
1136
+ "loss": 2.083,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.6728971962616822,
1141
+ "grad_norm": 0.3137992024421692,
1142
+ "learning_rate": 3.6926002952309015e-06,
1143
+ "loss": 2.1808,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.6770508826583593,
1148
+ "grad_norm": 0.32238420844078064,
1149
+ "learning_rate": 3.6129854561907786e-06,
1150
+ "loss": 2.0964,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.6812045690550363,
1155
+ "grad_norm": 0.26426786184310913,
1156
+ "learning_rate": 3.533749813077677e-06,
1157
+ "loss": 2.0951,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.6853582554517134,
1162
+ "grad_norm": 0.2933923006057739,
1163
+ "learning_rate": 3.4549150281252635e-06,
1164
+ "loss": 2.041,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.6895119418483905,
1169
+ "grad_norm": 0.37952423095703125,
1170
+ "learning_rate": 3.3765026539765832e-06,
1171
+ "loss": 2.1749,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.6936656282450675,
1176
+ "grad_norm": 0.24741414189338684,
1177
+ "learning_rate": 3.298534127791785e-06,
1178
+ "loss": 2.1185,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.6978193146417445,
1183
+ "grad_norm": 0.2836434841156006,
1184
+ "learning_rate": 3.2210307653874175e-06,
1185
+ "loss": 2.1034,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.7019730010384216,
1190
+ "grad_norm": 0.2631160318851471,
1191
+ "learning_rate": 3.1440137554088957e-06,
1192
+ "loss": 2.1095,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.7061266874350987,
1197
+ "grad_norm": 0.29444393515586853,
1198
+ "learning_rate": 3.06750415353774e-06,
1199
+ "loss": 2.0951,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.7102803738317757,
1204
+ "grad_norm": 0.2870319187641144,
1205
+ "learning_rate": 2.991522876735154e-06,
1206
+ "loss": 2.0856,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.7144340602284528,
1211
+ "grad_norm": 0.25737184286117554,
1212
+ "learning_rate": 2.9160906975235493e-06,
1213
+ "loss": 2.1711,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.7185877466251298,
1218
+ "grad_norm": 0.25282764434814453,
1219
+ "learning_rate": 2.8412282383075362e-06,
1220
+ "loss": 2.1474,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.7227414330218068,
1225
+ "grad_norm": 0.25563523173332214,
1226
+ "learning_rate": 2.766955965735968e-06,
1227
+ "loss": 2.1576,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.726895119418484,
1232
+ "grad_norm": 0.306660920381546,
1233
+ "learning_rate": 2.693294185106562e-06,
1234
+ "loss": 2.094,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.731048805815161,
1239
+ "grad_norm": 0.2536129057407379,
1240
+ "learning_rate": 2.6202630348146323e-06,
1241
+ "loss": 2.0746,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.735202492211838,
1246
+ "grad_norm": 0.24668152630329132,
1247
+ "learning_rate": 2.5478824808474613e-06,
1248
+ "loss": 2.1441,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.7393561786085151,
1253
+ "grad_norm": 0.24908193945884705,
1254
+ "learning_rate": 2.476172311325783e-06,
1255
+ "loss": 2.1225,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.7435098650051921,
1260
+ "grad_norm": 0.26486849784851074,
1261
+ "learning_rate": 2.4051521310939258e-06,
1262
+ "loss": 2.09,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.7476635514018691,
1267
+ "grad_norm": 0.2715510427951813,
1268
+ "learning_rate": 2.3348413563600324e-06,
1269
+ "loss": 2.1207,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.7518172377985463,
1274
+ "grad_norm": 0.24639959633350372,
1275
+ "learning_rate": 2.265259209387867e-06,
1276
+ "loss": 2.0995,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.7559709241952233,
1281
+ "grad_norm": 0.24900901317596436,
1282
+ "learning_rate": 2.1964247132416373e-06,
1283
+ "loss": 2.1318,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.7601246105919003,
1288
+ "grad_norm": 0.2573296129703522,
1289
+ "learning_rate": 2.1283566865852824e-06,
1290
+ "loss": 2.2217,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.7642782969885774,
1295
+ "grad_norm": 0.26032745838165283,
1296
+ "learning_rate": 2.061073738537635e-06,
1297
+ "loss": 2.1309,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.7684319833852544,
1302
+ "grad_norm": 0.28223130106925964,
1303
+ "learning_rate": 1.9945942635848745e-06,
1304
+ "loss": 2.0551,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.7725856697819314,
1309
+ "grad_norm": 0.24117982387542725,
1310
+ "learning_rate": 1.928936436551661e-06,
1311
+ "loss": 2.1201,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.7767393561786086,
1316
+ "grad_norm": 0.23914583027362823,
1317
+ "learning_rate": 1.864118207632315e-06,
1318
+ "loss": 2.106,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.7808930425752856,
1323
+ "grad_norm": 0.2441292554140091,
1324
+ "learning_rate": 1.8001572974834169e-06,
1325
+ "loss": 2.1211,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.7850467289719626,
1330
+ "grad_norm": 0.365399569272995,
1331
+ "learning_rate": 1.7370711923791567e-06,
1332
+ "loss": 2.0911,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.7892004153686397,
1337
+ "grad_norm": 0.26222550868988037,
1338
+ "learning_rate": 1.6748771394307584e-06,
1339
+ "loss": 2.0966,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.7933541017653167,
1344
+ "grad_norm": 0.23175619542598724,
1345
+ "learning_rate": 1.6135921418712959e-06,
1346
+ "loss": 2.0703,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.7975077881619937,
1351
+ "grad_norm": 0.22840319573879242,
1352
+ "learning_rate": 1.5532329544071712e-06,
1353
+ "loss": 2.1146,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.8016614745586709,
1358
+ "grad_norm": 0.23600910604000092,
1359
+ "learning_rate": 1.4938160786375571e-06,
1360
+ "loss": 2.1576,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.8058151609553479,
1365
+ "grad_norm": 0.22542668879032135,
1366
+ "learning_rate": 1.4353577585430152e-06,
1367
+ "loss": 2.112,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.8099688473520249,
1372
+ "grad_norm": 0.24013273417949677,
1373
+ "learning_rate": 1.3778739760445552e-06,
1374
+ "loss": 2.0846,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.814122533748702,
1379
+ "grad_norm": 0.23736749589443207,
1380
+ "learning_rate": 1.321380446634342e-06,
1381
+ "loss": 2.1067,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.818276220145379,
1386
+ "grad_norm": 0.24941231310367584,
1387
+ "learning_rate": 1.2658926150792321e-06,
1388
+ "loss": 2.1159,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.822429906542056,
1393
+ "grad_norm": 0.25511765480041504,
1394
+ "learning_rate": 1.2114256511983274e-06,
1395
+ "loss": 2.0727,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.8265835929387332,
1400
+ "grad_norm": 0.2361282855272293,
1401
+ "learning_rate": 1.157994445715706e-06,
1402
+ "loss": 2.1016,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.8307372793354102,
1407
+ "grad_norm": 0.2490163892507553,
1408
+ "learning_rate": 1.1056136061894386e-06,
1409
+ "loss": 2.0666,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.8348909657320872,
1414
+ "grad_norm": 0.22846023738384247,
1415
+ "learning_rate": 1.0542974530180327e-06,
1416
+ "loss": 2.1226,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.8390446521287642,
1421
+ "grad_norm": 0.24738390743732452,
1422
+ "learning_rate": 1.0040600155253766e-06,
1423
+ "loss": 2.1018,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.8431983385254413,
1428
+ "grad_norm": 0.2896912693977356,
1429
+ "learning_rate": 9.549150281252633e-07,
1430
+ "loss": 2.0644,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.8473520249221184,
1435
+ "grad_norm": 0.22052256762981415,
1436
+ "learning_rate": 9.068759265665384e-07,
1437
+ "loss": 2.0869,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.8515057113187954,
1442
+ "grad_norm": 0.2386987954378128,
1443
+ "learning_rate": 8.599558442598998e-07,
1444
+ "loss": 2.0964,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.8556593977154725,
1449
+ "grad_norm": 0.22815701365470886,
1450
+ "learning_rate": 8.141676086873574e-07,
1451
+ "loss": 2.1012,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.8598130841121495,
1456
+ "grad_norm": 0.2326398491859436,
1457
+ "learning_rate": 7.695237378953224e-07,
1458
+ "loss": 2.1153,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.8639667705088265,
1463
+ "grad_norm": 0.26584866642951965,
1464
+ "learning_rate": 7.260364370723044e-07,
1465
+ "loss": 2.0762,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.8681204569055037,
1470
+ "grad_norm": 0.22313201427459717,
1471
+ "learning_rate": 6.837175952121305e-07,
1472
+ "loss": 2.0791,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.8722741433021807,
1477
+ "grad_norm": 0.23364050686359406,
1478
+ "learning_rate": 6.425787818636131e-07,
1479
+ "loss": 2.1801,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.8764278296988577,
1484
+ "grad_norm": 0.21921421587467194,
1485
+ "learning_rate": 6.026312439675553e-07,
1486
+ "loss": 2.1159,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.8805815160955348,
1491
+ "grad_norm": 0.273624986410141,
1492
+ "learning_rate": 5.63885902781941e-07,
1493
+ "loss": 2.0313,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.8847352024922118,
1498
+ "grad_norm": 0.21660713851451874,
1499
+ "learning_rate": 5.263533508961827e-07,
1500
+ "loss": 2.1475,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.8888888888888888,
1505
+ "grad_norm": 0.22784104943275452,
1506
+ "learning_rate": 4.900438493352056e-07,
1507
+ "loss": 2.1037,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.893042575285566,
1512
+ "grad_norm": 0.22493554651737213,
1513
+ "learning_rate": 4.549673247541875e-07,
1514
+ "loss": 2.1413,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.897196261682243,
1519
+ "grad_norm": 0.2319698929786682,
1520
+ "learning_rate": 4.211333667247125e-07,
1521
+ "loss": 2.0693,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.90134994807892,
1526
+ "grad_norm": 0.2203637659549713,
1527
+ "learning_rate": 3.885512251130763e-07,
1528
+ "loss": 2.1311,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.9055036344755971,
1533
+ "grad_norm": 0.22149546444416046,
1534
+ "learning_rate": 3.572298075514652e-07,
1535
+ "loss": 2.1418,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.9096573208722741,
1540
+ "grad_norm": 0.2249898910522461,
1541
+ "learning_rate": 3.271776770026963e-07,
1542
+ "loss": 2.0989,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.9138110072689511,
1547
+ "grad_norm": 0.23055027425289154,
1548
+ "learning_rate": 2.984030494191942e-07,
1549
+ "loss": 2.1438,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.9179646936656283,
1554
+ "grad_norm": 0.21457572281360626,
1555
+ "learning_rate": 2.7091379149682683e-07,
1556
+ "loss": 2.01,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.9221183800623053,
1561
+ "grad_norm": 0.21807509660720825,
1562
+ "learning_rate": 2.447174185242324e-07,
1563
+ "loss": 2.1072,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.9262720664589823,
1568
+ "grad_norm": 0.22586828470230103,
1569
+ "learning_rate": 2.198210923282118e-07,
1570
+ "loss": 2.11,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.9304257528556594,
1575
+ "grad_norm": 0.2149934321641922,
1576
+ "learning_rate": 1.962316193157593e-07,
1577
+ "loss": 2.1078,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.9345794392523364,
1582
+ "grad_norm": 0.2686188519001007,
1583
+ "learning_rate": 1.7395544861325718e-07,
1584
+ "loss": 2.1032,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.9387331256490135,
1589
+ "grad_norm": 0.21735844016075134,
1590
+ "learning_rate": 1.5299867030334815e-07,
1591
+ "loss": 2.1412,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.9428868120456906,
1596
+ "grad_norm": 0.2169795036315918,
1597
+ "learning_rate": 1.333670137599713e-07,
1598
+ "loss": 2.1258,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.9470404984423676,
1603
+ "grad_norm": 0.2194252610206604,
1604
+ "learning_rate": 1.1506584608200366e-07,
1605
+ "loss": 2.166,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.9511941848390446,
1610
+ "grad_norm": 0.2147681564092636,
1611
+ "learning_rate": 9.810017062595322e-08,
1612
+ "loss": 2.1009,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.9553478712357217,
1617
+ "grad_norm": 0.22832895815372467,
1618
+ "learning_rate": 8.247462563808816e-08,
1619
+ "loss": 2.1068,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.9595015576323987,
1624
+ "grad_norm": 0.2108795940876007,
1625
+ "learning_rate": 6.819348298638839e-08,
1626
+ "loss": 2.1595,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.9636552440290758,
1631
+ "grad_norm": 0.21970967948436737,
1632
+ "learning_rate": 5.526064699265754e-08,
1633
+ "loss": 2.0614,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.9678089304257529,
1638
+ "grad_norm": 0.2157040536403656,
1639
+ "learning_rate": 4.367965336512403e-08,
1640
+ "loss": 2.0851,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.9719626168224299,
1645
+ "grad_norm": 0.20249901711940765,
1646
+ "learning_rate": 3.345366823180929e-08,
1647
+ "loss": 2.1191,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.9761163032191069,
1652
+ "grad_norm": 0.22388389706611633,
1653
+ "learning_rate": 2.4585487274942922e-08,
1654
+ "loss": 2.0653,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.980269989615784,
1659
+ "grad_norm": 0.21466441452503204,
1660
+ "learning_rate": 1.7077534966650767e-08,
1661
+ "loss": 2.1259,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.9844236760124611,
1666
+ "grad_norm": 0.2480291873216629,
1667
+ "learning_rate": 1.0931863906127327e-08,
1668
+ "loss": 2.1256,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.9885773624091381,
1673
+ "grad_norm": 0.20534351468086243,
1674
+ "learning_rate": 6.150154258476315e-09,
1675
+ "loss": 2.1574,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.9927310488058152,
1680
+ "grad_norm": 0.2120267003774643,
1681
+ "learning_rate": 2.7337132953697555e-09,
1682
+ "loss": 2.1358,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.9968847352024922,
1687
+ "grad_norm": 0.2108861654996872,
1688
+ "learning_rate": 6.834750376549793e-10,
1689
+ "loss": 2.1028,
1690
+ "step": 240
1691
+ }
1692
+ ],
1693
+ "logging_steps": 1,
1694
+ "max_steps": 240,
1695
+ "num_input_tokens_seen": 0,
1696
+ "num_train_epochs": 1,
1697
+ "save_steps": 120,
1698
+ "stateful_callbacks": {
1699
+ "TrainerControl": {
1700
+ "args": {
1701
+ "should_epoch_stop": false,
1702
+ "should_evaluate": false,
1703
+ "should_log": false,
1704
+ "should_save": true,
1705
+ "should_training_stop": true
1706
+ },
1707
+ "attributes": {}
1708
+ }
1709
+ },
1710
+ "total_flos": 4.2286664699672e+19,
1711
+ "train_batch_size": 4,
1712
+ "trial_name": null,
1713
+ "trial_params": null
1714
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea945cbbbf1b95e83023269ba8434587298064165cd3fc8e5cfc8d3cbcb0ca4c
3
+ size 8849
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)