shanearora commited on
Commit
1f42066
1 Parent(s): fbf9ed3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -31
README.md CHANGED
@@ -25,7 +25,8 @@ The core models released in this batch are the following:
25
 
26
 
27
  [Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
28
- The naming convention is `stepXXX-tokensYYYB`.
 
29
 
30
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
31
  ```bash
@@ -114,36 +115,36 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
114
 
115
  Core model results for the new and original 7B model are found below.
116
 
117
- | Task | Llama-7b | Llama2-7b | Falcon-7b | Mpt-7b | OLMo-7B | Llama2-13b | **OLMo 1.7-7B** |
118
- |-------------------|----------|-----------|-----------|--------|---------|------------|-------------|
119
- | arc_c | 44.5 | 48.5 | 47.5 | 46.5 | 48.5 | 52.8 | 42.5 |
120
- | arc_e | 67.9 | 69.5 | 70.4 | 70.5 | 65.4 | 73.7 | 67.2 |
121
- | boolq | 75.4 | 80.2 | 74.6 | 74.2 | 73.4 | 82.2 | 83.7 |
122
- | copa | 91.0 | 86.0 | 86.0 | 85.0 | 90.0 | 90.0 | 86.0 |
123
- | hellaswag | 76.2 | 76.8 | 75.9 | 77.6 | 76.4 | 78.6 | 75.5 |
124
- | openbookqa | 51.2 | 48.4 | 53.0 | 48.6 | 50.4 | 51.8 | 50.0 |
125
- | piqa | 77.2 | 76.7 | 78.5 | 77.3 | 78.4 | 79.0 | 77.5 |
126
- | sciq | 93.9 | 94.5 | 93.9 | 93.7 | 93.8 | 95.5 | 96.7 |
127
- | winogrande | 70.5 | 69.4 | 68.9 | 69.9 | 67.9 | 73.5 | 69.8 |
128
- | truthfulQA (MC2) | 33.9 | 38.5 | 34.0 | 33.0 | 36.0 | 36.8 | 35.8 |
129
- | MMLU (5 shot MC) | 31.5 | 45.0 | 24.0 | 30.8 | 28.3 | 55.5 | 52.0 |
130
- | GSM8k | 10.0 | 12.0 | 4.0 | 4.5 | 8.5 | 25.0 | 29.0 |
131
- | Full average | 60.3 | 62.1 | 59.2 | 59.3 | 59.8 | 66.2 | 63.8 |
132
 
133
  And for the 1B model:
134
 
135
- | task | random | [StableLM 2 1.6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)\* | [Pythia 1B](https://huggingface.co/EleutherAI/pythia-1b) | [TinyLlama 1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T) | **OLMo 1B** (ours) |
136
- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------ | ----------------- | --------- | -------------------------------------- | ------- |
137
- | arc_challenge | 25 | 43.81 | 33.11 | 34.78 | 34.45 |
138
- | arc_easy | 25 | 63.68 | 50.18 | 53.16 | 58.07 |
139
- | boolq | 50 | 76.6 | 61.8 | 64.6 | 60.7 |
140
- | copa | 50 | 84 | 72 | 78 | 79 |
141
- | hellaswag | 25 | 68.2 | 44.7 | 58.7 | 62.5 |
142
- | openbookqa | 25 | 45.8 | 37.8 | 43.6 | 46.4 |
143
- | piqa | 50 | 74 | 69.1 | 71.1 | 73.7 |
144
- | sciq | 25 | 94.7 | 86 | 90.5 | 88.1 |
145
- | winogrande | 50 | 64.9 | 53.3 | 58.9 | 58.9 |
146
- | Average | 36.11 | 68.41 | 56.44 | 61.48 | 62.42 |
147
 
148
  \*Unlike OLMo, Pythia, and TinyLlama, StabilityAI has not disclosed yet the data StableLM was trained on, making comparisons with other efforts challenging.
149
 
@@ -156,8 +157,8 @@ During the annealing phase we use a higher quality subset of Dolma with a linear
156
 
157
  ### Staged training / annealing
158
 
159
- In contrast to OLMo 1.0, we trained OLMo 1.7 with a two-stage curriculum:
160
- * In the first stage, we trained the model from scratch on the Dolma 1.7 dataset. We set a cosine learning rate schedule with a warmup of 2500 steps, a peak learning rate of 3e-4, and a cosine decay to 3e-5 after 3T tokens. We cut off this stage after 2T tokens, when the learning rate is still high.
161
  * At this point we switch to the second stage, in which we train on a higher-quality subset of Dolma 1.7 (see below) for another 50B tokens, while linearly decaying the learning rate to 0. Our high-quality subset includes (1) using all available Wikipedia, OpenWebMath and Flan data, (2) removing Dolma CC, CC News, and Megawika, and (3) rebalancing remaining sources to achieve approximately equal proportions of each. See exact token counts and relative proportions of this second stage mix below.
162
  Both stages contribute equally to the final performance of the OLMo model. After the first stage, OLMo 1.7 already outperforms OLMo 1.0. The second stage consistently adds 2 to 3 points of performance on top.
163
 
@@ -168,7 +169,7 @@ OLMo 7B architecture with peer models for comparison.
168
 
169
  | | **OLMo 7B** | [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) | PaLM 8B |
170
  |------------------------|-------------------|---------------------|--------------------|--------------------|------------------|
171
- | d_model | 4096 | 4096 | 4096 | 4544 | 4096 |
172
  | num heads | 32 | 32 | 32 | 71 | 16 |
173
  | num layers | 32 | 32 | 32 | 32 | 32 |
174
  | MLP ratio | ~8/3 | ~8/3 | ~8/3 | 4 | 4 |
 
25
 
26
 
27
  [Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
28
+ The naming convention is `stepXXX-tokensYYYB`. These checkpoints are already available at [OLMo 7B April 2024](https://huggingface.co/allenai/OLMo-1.7-7B-hf)
29
+ and will be copied here soon.
30
 
31
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
32
  ```bash
 
115
 
116
  Core model results for the new and original 7B model are found below.
117
 
118
+ | Task | Llama-7b | Llama2-7b | Falcon-7b | Mpt-7b | OLMo-7B | Llama2-13b | OLMo 7B April 2024 | **OLMo 7B July 2024** |
119
+ |-------------------|----------|-----------|-----------|--------|---------|------------|--------------------|-----------------------|
120
+ | arc_c | 44.5 | 48.5 | 47.5 | 46.5 | 48.5 | 52.8 | 42.5 | 43.8 |
121
+ | arc_e | 67.9 | 69.5 | 70.4 | 70.5 | 65.4 | 73.7 | 67.2 | 68.8 |
122
+ | boolq | 75.4 | 80.2 | 74.6 | 74.2 | 73.4 | 82.2 | 83.7 | 78.9 |
123
+ | copa | 91.0 | 86.0 | 86.0 | 85.0 | 90.0 | 90.0 | 86.0 | 84.0 |
124
+ | hellaswag | 76.2 | 76.8 | 75.9 | 77.6 | 76.4 | 78.6 | 75.5 | 77.4 |
125
+ | openbookqa | 51.2 | 48.4 | 53.0 | 48.6 | 50.4 | 51.8 | 50.0 | 48.2 |
126
+ | piqa | 77.2 | 76.7 | 78.5 | 77.3 | 78.4 | 79.0 | 77.5 | 78.2 |
127
+ | sciq | 93.9 | 94.5 | 93.9 | 93.7 | 93.8 | 95.5 | 96.7 | 97.0 |
128
+ | winogrande | 70.5 | 69.4 | 68.9 | 69.9 | 67.9 | 73.5 | 69.8 | 68.8 |
129
+ | truthfulQA (MC2) | 33.9 | 38.5 | 34.0 | 33.0 | 36.0 | 36.8 | 35.8 | 36.5 |
130
+ | MMLU (5 shot MC) | 31.5 | 45.0 | 24.0 | 30.8 | 28.3 | 55.5 | 52.0 | 53.4 |
131
+ | GSM8k | 10.0 | 12.0 | 4.0 | 4.5 | 8.5 | 25.0 | 29.0 | 35.0 |
132
+ | Full average | 60.3 | 62.1 | 59.2 | 59.3 | 59.8 | 66.2 | 63.8 | 64.2 |
133
 
134
  And for the 1B model:
135
 
136
+ | task | random | [StableLM 2 1.6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)\* | [Pythia 1B](https://huggingface.co/EleutherAI/pythia-1b) | [TinyLlama 1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T) | [OLMo 1B](https://huggingface.co/allenai/OLMo-1B-hf) | **OLMo 1B July 2024** |
137
+ | ------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------ | ----------------- | --------- | -------------------------------------- | ------- | ------ |
138
+ | arc_challenge | 25 | 43.81 | 33.11 | 34.78 | 34.45 | 36.5 |
139
+ | arc_easy | 25 | 63.68 | 50.18 | 53.16 | 58.07 | 55.3 |
140
+ | boolq | 50 | 76.6 | 61.8 | 64.6 | 60.7 | 67.5 |
141
+ | copa | 50 | 84 | 72 | 78 | 79 | 83.0 |
142
+ | hellaswag | 25 | 68.2 | 44.7 | 58.7 | 62.5 | 66.9 |
143
+ | openbookqa | 25 | 45.8 | 37.8 | 43.6 | 46.4 | 46.4 |
144
+ | piqa | 50 | 74 | 69.1 | 71.1 | 73.7 | 74.9 |
145
+ | sciq | 25 | 94.7 | 86 | 90.5 | 88.1 | 93.4 |
146
+ | winogrande | 50 | 64.9 | 53.3 | 58.9 | 58.9 | 61.4 |
147
+ | Average | 36.11 | 68.41 | 56.44 | 61.48 | 62.42 | 65.0 |
148
 
149
  \*Unlike OLMo, Pythia, and TinyLlama, StabilityAI has not disclosed yet the data StableLM was trained on, making comparisons with other efforts challenging.
150
 
 
157
 
158
  ### Staged training / annealing
159
 
160
+ In contrast to OLMo 1.0, we trained OLMo 7B July with a two-stage curriculum:
161
+ * In the first stage, we trained the model from scratch on the Dolma 1.7 dataset. We set a cosine learning rate schedule with a warmup of 2500 steps, a peak learning rate of 3e-4, and a cosine decay to 3e-5 after 3T tokens. We cut off this stage after 2.7T tokens, when the learning rate is still somewhat high.
162
  * At this point we switch to the second stage, in which we train on a higher-quality subset of Dolma 1.7 (see below) for another 50B tokens, while linearly decaying the learning rate to 0. Our high-quality subset includes (1) using all available Wikipedia, OpenWebMath and Flan data, (2) removing Dolma CC, CC News, and Megawika, and (3) rebalancing remaining sources to achieve approximately equal proportions of each. See exact token counts and relative proportions of this second stage mix below.
163
  Both stages contribute equally to the final performance of the OLMo model. After the first stage, OLMo 1.7 already outperforms OLMo 1.0. The second stage consistently adds 2 to 3 points of performance on top.
164
 
 
169
 
170
  | | **OLMo 7B** | [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b) | [OpenLM 7B](https://laion.ai/blog/open-lm/) | [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) | PaLM 8B |
171
  |------------------------|-------------------|---------------------|--------------------|--------------------|------------------|
172
+ | d_model | 4096 | 4096 | 4096 | 4544 | 4096 |
173
  | num heads | 32 | 32 | 32 | 71 | 16 |
174
  | num layers | 32 | 32 | 32 | 32 | 32 |
175
  | MLP ratio | ~8/3 | ~8/3 | ~8/3 | 4 | 4 |